
TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 1 of 271

TPC EXPRESS BENCHMARK ™ HCI (TPCx-HCI)

Standard Specification

Revision 1.1.7

April 2020

Transaction Processing Performance Council (TPC)

www.tpc.org

info@tpc.org

© 2020 Transaction Processing Performance Council

All Rights Reserved

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 2 of 271

Legal Notice
The TPC reserves all right, title, and interest to this document and associated source code as provided
under U.S. and international laws, including without limitation all patent and trademark rights therein.
Permission to copy without fee all or part of this document is granted provided that the TPC copyright
notice, the title of the publication, and its date appear, and notice is given that copying is by permission
of the Transaction Processing Performance Council. To copy otherwise requires specific permission.

No Warranty
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE INFORMATION CONTAINED HEREIN
IS PROVIDED “AS IS” AND WITH ALL FAULTS, AND THE AUTHORS AND DEVELOPERS OF THE WORK
HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES, DUTIES OR
CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF ACCURACY OR
COMPLETENESS OF RESPONSES, OF RESULTS, OF WORKMANLIKE EFFORT, OF LACK OF VIRUSES, AND OF
LACK OF NEGLIGENCE. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT,
QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO
THE WORK.
IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THE WORK BE LIABLE TO ANY OTHER PARTY FOR
ANY DAMAGES, INCLUDING BUT NOT LIMITED TO THE COST OF PROCURING SUBSTITUTE GOODS OR
SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT,
INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE,
ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THE WORK, WHETHER OR
NOT SUCH AUTHOR OR DEVELOPER HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Trademarks

TPC Benchmark, TPCx-HCI, and tpsHCI are trademarks of the Transaction Processing Performance
Council.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 3 of 271

Acknowledgments
The TPC acknowledges the work and contributions of the TPC-V subcommittee member companies:
Cisco, DataCore, Dell, HPE, Huawei, Microsoft, Nutanix, Oracle, Red Hat, and VMware.

TPC Membership
(as of June 2018)

Full Members

Associate Members

Document Revision History

Date Version Description

September
2017 1.0.0 Initial TPCx-HCI standard

December
2017 1.1.0

Nominal throughput is based on Active Customers; disclose Active Customers in the
Executive Summary
Delete references to VGenValidate
Delete references to Customer Patitioning

March 2018 1.1.1 Delete wording left-over from TPC-E that allowed extension of VGenLoader for direct
loading into the database

June 2018 1.1.2 No changes to the specification. Kit changed in response to bug fixes for FogBugz cases
2456, 2457, 2480, and 2522

August 2018 1.1.3 Add new TPC members

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 4 of 271

Remove references to extension to VGenLoader and 10.7.6.4, which is gone
In 5.6.4.1, all work must be performed at least once during Ramp-up
Measurement Interval is always 2 hours, 10 Phases
Delete 5.6.5.5; doesn’t apply to an Express Kit
Remove references to to partitioning and 3.2.2.1, which is gone
General clean up, fixing broken references
Remove Clauses (left over frpm TPC-E) that don’t apply to TPCx-HCI

December
2018 1.1.4 Modify the Specification and kit for FogBugz cases 2887, 2888, and 2889

April 2019 1.1.5

Minor fixes to Supporting Files Index table
Fix the definition of Hyper-Converged-Infrastructure on page 24
Remove the dependency on version 9.3 of PostgreSQL; replace with any “supported”
version of PostgreSQL

August 2019 1.1.6

More clarity and detailed instructions in Clause 6.5.6
Add wording for Market-Feed frequency requirements in 5.3.1
Modify 5.5.1.2 and add 5.5.1.5 for Market-Feed response time requirements
Fix FogBugz cases:
• 2996 DM application continues to run past the end of the run, and produces

erroneous transaction records
• 3009 Check that we have 1,440 MF transactions per phase
• 3010 Market-Feed response time often fails the 90th percentile > average test
• 3014 In phases when the load of a group drops, runs often fail with too many TR

transactions
• 3015 Transaction load is not evenly divided among the Tier A database front-end

processes
• 3016 The xVAudit app fails at higher LU counts
• 3017 The kit does not catch all transactions with non-success return status codes

April 2020 1.1.7
Minor kit fixes
Increase the 2% threshold of Clause 5.6.3.2 to 4%

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 5 of 271

Typographic Conventions
The following typographic conventions are used in this specification:

Convention Description

Bold Bold type is used to highlight terms that are defined in this document

Italics Italics type is used to highlight a variable that indicates some quantity whose value can be
assigned in one place and referenced in many other places.

UPPERCASE Uppercase letters indicate database schema object names such as table and column names.
In addition, most acronyms are in uppercase.

Diagram Color-Coding Conventions

Concept

Customer Light Green with down diagonal hashing

Broker Pale Blue with up diagonal hashing

Market Rose with horizontal hashing

Implementation

TPC Provided Code Turquoise Italics

Sponsor Provided Code Lavender Underline

Commercially Available Product Light Yellow

Table of Contents

Clause 0 Preamble .. 11
0.1 Introduction ... 11

0.1.1 The TPCx-V Benchmark .. 11
0.1.2 Goal of the TPCx-HCI benchmark ... 11
0.1.3 Restrictions and Limitations ... 12

0.2 General Implementation Guidelines ... 13
0.3 General Measurement Guidelines ... 13
0.4 TPCx-HCI Kit and Licensing .. 14

Clause 1 Benchmark Overview ... 15
1.1 Definitions ... 15
1.2 Business and Application Environment ... 39
1.3 Transaction Summary ... 43

1.3.1 Broker-Volume ... 43
1.3.2 Customer-Position .. 43
1.3.3 Market-Feed ... 43
1.3.4 Market-Watch ... 44
1.3.5 Security-Detail .. 44
1.3.6 Trade-Lookup ... 44
1.3.7 Trade-Order .. 44
1.3.8 Trade-Result ... 44
1.3.9 Trade-Status .. 44
1.3.10 Trade-Update ... 44
1.3.11 Data-Maintenance .. 45
1.3.12 Trade-Cleanup ... 45

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 6 of 271

1.4 Model Description ... 46
1.4.1 Entity Relationships .. 46
1.4.2 Differences between Customer Tiers ... 46
1.4.3 Trade Types .. 46
1.4.4 Effects of Trading on Holdings .. 47

1.5 TPCx-HCI Benchmark Kit .. 47
1.5.1 Kit Contents .. 47
1.5.2 DBMS ... 48
1.5.3 Kit Usage .. 48
1.5.5 Configuration Files ... 48
1.5.6 Addressing Errors in the TPCx-HCI Benchmark Kit ... 48
1.5.7 Process for Reporting Issues with the TPCx-HCI Benchmark Kit .. 49
1.5.8 Submitting TPCx-HCI Benchmark Kit Enhancement Suggestions ... 49
1.5.9 Future Kit Releases ... 50
1.5.10 Common kit with TPCx-V .. 50

Clause 2 Database Design, Scaling & Population .. 51
2.1 Introduction ... 51

2.1.1 Definitions .. 51
2.2 TPCx-HCI Database Schema and Table Definitions .. 51

2.2.1 Data Type Definitions .. 52
2.2.2 Meta-type Definitions ... 53
2.2.3 General Schema Items .. 54
2.2.4 Customer Tables ... 55
2.2.5 Broker Tables ... 59
2.2.6 Market Tables ... 62
2.2.7 Dimension Tables ... 67

2.3 Implementation Rules .. 69
2.4 TPCx-HCI Database Size and Table Cardinality ... 69

2.4.1 Initial Database Size Requirements .. 70
2.4.2 Test Run Database Size Requirements ... 73

Clause 3 Transactions .. 74
3.1 Introduction ... 74

3.1.1 Definitions .. 74
3.1.2 Database Footprint Definition .. 74

3.2 Transaction Implementation Rules .. 77
3.2.1 Frame Implementation .. 77

3.3 The Transactions ... 80

Clause 4 Description of SUT, Driver, and Network .. 82
4.1 Overview .. 82
4.2 Example Test Configuration Implementations .. 82
4.3 Further Requirements for SUT and Driver Implementations ... 83

4.3.1 Disclosure of Network Configuration .. 83
4.3.2 Synchronization of Time .. 83
4.3.3 SUT Implementation Limits on Operator Intervention .. 83
4.3.4 Valid Configurations .. 83

Clause 5 Execution Rules & Metrics .. 87
5.1 Introduction ... 87

5.1.1 Definition of Terms .. 87

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 7 of 271

5.2 Dynamic Workload Variation ... 87
5.3 Transaction Mix .. 89

5.3.1 Mix Requirements .. 89
5.3.2 Required Precision for Mix Percentage Reporting ... 89
5.3.3 Data-Maintenance ... 90
5.3.4 Trade-Cleanup .. 90

5.4 Transaction Parameters .. 90
5.4.1 Input Value Mix Requirements .. 90

5.5 Response Time ... 91
5.5.1 Response Time ... 91

5.6 Test Run ... 94
5.6.1 Definition of Terms .. 94
5.6.2 Database Content .. 94
5.6.3 Sustainable Performance .. 95
5.6.4 Steady State .. 96
5.6.5 Measurement Interval ... 96
5.6.6 Database Growth .. 97
5.6.7 Continuous Operation Requirement ... 97
5.6.8 Performance & Database Size .. 98

5.7 Required Reporting ... 98
5.7.1 Reported Throughput .. 98
5.7.2 Test Run Graph ... 98
5.7.3 Primary Metrics .. 99

Clause 6 Transaction and System Properties (ACID) ... 100
6.1 ACID Properties .. 100
6.2 Atomicity Requirements ... 100

6.2.1 Atomicity Property Definition .. 100
6.2.2 Atomicity Tests .. 101

6.3 Consistency Requirements ... 101
6.3.1 Consistency Property Definition .. 101
6.3.2 Consistency Conditions .. 101
6.3.3 Consistency Tests ... 101

6.4 Isolation Requirements .. 102
6.4.1 Isolation Property Definition .. 102
6.4.2 Isolation Tests ... 103

6.5 Durability Requirements ... 106
6.5.1 Definition of Commit ... 106
6.5.2 Definition of Single Point(s) of Failure .. 106
6.5.3 Definition of Durable / Durability .. 107
6.5.4 Durability Testing Rules and Guidelines ... 107
6.5.5 Definition of Recovery Terms .. 108
6.5.6 Durability Test Procedure for Single Points of Failures .. 109
6.5.7 Required Reporting for Durability ... 110

6.6 Data Accessibility Requirements ... 111
6.6.1 Definition of Terms .. 111
6.6.2 Data Accessibility Throughput Requirements .. 111
6.6.3 Failure of Durable Media ... 112
6.6.4 Required Reporting for Data Accessibility .. 114

Clause 7 Pricing .. 115
7.1 General .. 115

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 8 of 271

7.2 Priced Configuration ... 115
7.3 On-line Storage Requirement .. 115

7.3.3 Archive Operation Requirement ... 115
7.3.4 Back-up Storage Requirements .. 116

7.4 TPCx-HCI Specific Pricing Requirements .. 116
7.4.1 Additional Operational Components .. 116
7.4.2 Additional Software .. 116

7.5 Component Substitution .. 116
7.6 Required Reporting ... 117

Clause 8 Full Disclosure Report .. 118
8.1 Full Disclosure Report Requirements ... 118

8.1.1 General Items .. 118
8.2 Executive Summary Statement ... 118

8.2.1 First Page of the Executive Summary Statement ... 118
8.2.2 Additional Pages of Executive Summary Statement .. 119

8.3 Report Disclosure Requirements .. 120
8.3.1 Report Introduction .. 120
8.3.2 Clause 2 Database Design, Scaling & Population Related Items ... 122
8.3.3 Clause 3 SUT, Driver, and Network Related Items ... 123
8.3.4 Benchmark Kit Related Items .. 123
8.3.5 Clause 5 Performance Metrics and Response Time Related Items .. 123
8.3.6 Clause 6 Transaction and System Properties Related Items .. 123
8.3.7 Clause 7 Pricing Related Items ... 124
8.3.8 Supporting Files Index Table ... 124

8.4 Supporting Files .. 124
8.4.1 SupportingFiles/Introduction Directory ... 125
8.4.2 SupportingFiles/Clause2 Directory .. 125
8.4.3 SupportingFiles/Clause3 Directory .. 125
8.4.4 SupportingFiles/Clause4 Directory .. 125
8.4.5 SupportingFiles/Clause5 Directory .. 125
8.4.6 SupportingFiles/Clause6 Directory .. 125

Clause 9 Audit ... 126
9.1 General Rules .. 126
9.2 Self-validation, Self-audit, and the role of the Auditor ... 127

9.2.1 Numerical validation by the Benchmark Kit .. 128
9.2.2 Audit Tools ... 128

9.3 Auditing the Database ... 128
9.3.1 Schema Related Items .. 129
9.3.2 Population Related Items .. 129

9.4 Auditing the Transactions ... 130
9.5 Auditing the SUT, Driver and Networks ... 130
9.6 Auditing Benchmark Kit .. 130
9.7 Auditing the Execution Rules and Metrics .. 131

9.7.1 Pre-run Configuration Items ... 131
9.7.2 Runtime Configuration Items ... 131
9.7.3 Runtime Data Generation Items ... 132
9.7.4 Response Time Items ... 132
9.7.5 Throughput Items ... 132

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 9 of 271

9.7.6 Market-Feed Items .. 132
9.7.7 Data-Maintenance Items ... 132
9.7.8 Steady State Items .. 132
9.7.9 Space Calculation Items ... 133

9.8 Auditing the ACID Tests .. 133
9.8.1 Atomicity Items .. 134
9.8.2 Consistency Items ... 134
9.8.3 Isolation Items .. 134
9.8.4 Data Accessibility Items ... 134
9.8.5 Business Recovery Items .. 134

9.9 Auditing the Pricing .. 134
9.10 Auditing the FDR .. 135

Clause 10 TPCx-HCI Benchmark Kit design document .. 136
10.1 Description of SUT, Driver, and Network ... 136

10.1.2 Driver & System Under Test (SUT) Definitions ... 141
10.1.3 Further Requirements for SUT and Driver Implementations .. 142

10.2 Driver Implementation Architectures .. 143
10.2.1 The Simple CE ... 143
10.2.2 The Replicated CE ... 144
10.2.3 Driver Reporting Requirements ... 145

10.3 Implementation Rules .. 145
10.3.3 Table Partitioning .. 146
10.3.11 User-Defined Objects .. 147

10.4 Integrity Rules ... 147
10.5 Data Access Transparency Requirements ... 148
10.6 The Transactions ... 148

10.6.1 The Broker-Volume Transaction ... 148
10.6.2 The Customer-Position Transaction .. 151
10.6.3 The Market-Feed Transaction .. 158
10.6.4 The Market-Watch Transaction ... 161
10.6.5 The Security-Detail Transaction .. 165
10.6.6 The Trade-Lookup Transaction ... 173
10.6.7 The Trade-Order Transaction .. 186
10.6.8 The Trade-Result Transaction ... 204
10.6.9 The Trade-Status Transaction .. 225
10.6.10 The Trade-Update Transaction .. 229
10.6.11 The Data-Maintenance Transaction ... 242
10.6.12 The Trade-Cleanup Transaction .. 253

10.7 VGen .. 257
10.7.1 Overview ... 257
10.7.2 VGen Terms .. 257
10.7.3 Compliant VGen Versions ... 258
10.7.4 VGenInputFiles ... 258
10.7.5 VGenSourceFiles ... 258
10.7.6 VGenLoader .. 259
10.7.7 VGenDriver ... 259
10.7.8 VGenTxnHarness .. 259

Appendix A. Executive Summary Statement ... 269
A.1 Sample Executive Summary Statement .. 269

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 10 of 271

Table of Figures

Business Model: Data Center in a Box .. 39
Simplified VM Components ... 40
Demands by workload ... 41
Business Model Transaction Flow .. 42
Application Components .. 43
Frames Interfacing with the Harness and the Database ... 74
Figure 4.a - Sample Component of Physical Test Configuration .. 82
Figure 4.b – Valid number of Tiles versus aggregate LUs ... 85
Figure 5.a - Dynamic load variation ... 88
Figure 5.b - Measuring Response Time ... 93
Figure 5c - Example of the Measured Throughput versus Elapsed Time Graph .. 99
Figure 8a - Example of Measured Benchmark Configuration .. 121
Figure 10.a - Diagram of the Real-World OLTP Environment ... 136
Figure 10.b - Abstraction of the Functional Components in an OLTP Environment ... 137
Figure 10.c - Functional Components of the Test Configuration ... 138
Figure 10.d - Defined Components of the Test Configuration .. 141
Figure 10.e - The Simple CE ... 144
Figure 10.f The Replicated CE .. 145
Figure A.a - Hierarchy of VGen Directory ... 260
Figure A.b - High Level Overview of a Sample Implementation ... 265

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 11 of 271

CLAUSE 0 PREAMBLE

0.1 Introduction
TPC Express Benchmark HCI (TPCx-HCI) is an On-Line Transaction Processing (OLTP) workload
utilizing the latest technology for providing multiple concurrent operating and application environments
running on a platform. The workload is a mixture of read-only and update intensive transactions
distributed across multiple computing environments simulating the activities found in a conglomeration
of complex OLTP application environments. The database schema, data population, transactions, and
implementation rules have been designed to be broadly representative of modern OLTP systems running
in complex virtualized environments. The benchmark exercises a breadth of system components
associated with such environments, which are characterized by:
• The simultaneous execution of multiple transaction types that span a breadth of complexity;
• Moderate system and application execution time;
• Multiple concurrently executing and isolated operating environments;
• Heterogeneous resource requirements across operating environments;
• Dynamic workload requirements across operating environments;
• Flexible resource allocation;
• A balanced mixture of disk input/output and processor usage;
• Transaction integrity (ACID properties);
• A mixture of uniform and non-uniform data access through primary and secondary keys;
• A mixture of heterogeneous and homogenous database and application environments;
• Multiple databases with many tables with a wide variety of sizes, attributes, and relationships with

realistic content;
• Contention on data access and update;
• Stringent Quality of Service requirements.

The TPCx-HCI operations are modeled as follows:
• The operating environments and their databases are continuously available 24 hours a day, 7 days a

week, for data processing from multiple Sessions with full access to the data in all tables, except
possibly during infrequent maintenance Sessions.

• Consolidation of multiple database and application environments utilizing virtual operating
environments to fully utilize system capabilities while limiting operating costs.

• Hyper-Converged Infrastructure systems that integrate compute, storage, networking, and
virtualization resources

• Due to the worldwide nature of the application modeled by the TPCx-HCI benchmark, any of the
transactions may be executed against its database at any time.

0.1.1 The TPCx-V Benchmark

Although the same Benchmark Kit may be used for both TPCx-HCI and TPCx-V benchmarks, the results
of the TPCx-HCI and TPCx-V benchmarks may not be compared against each other.

0.1.2 Goal of the TPCx-HCI benchmark

The TPCx-HCI benchmark simulates the OLTP workload of a brokerage firm. The focus of the
benchmark is the central database that executes transactions related to the firm’s customer accounts. In
keeping with the goal of measuring the performance characteristics of the database system, the
benchmark does not attempt to measure the complex flow of data between multiple application systems
that would exist in a real environment.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 12 of 271

The mixture and variety of transactions being executed on the benchmark system is designed to capture
the characteristic components of a complex system. Different transaction types are defined to simulate
the interactions of the firm with its customers as well as its business partners. Different transaction types
have varying run-time requirements.
The benchmark defines:
• Two types of transactions to simulate Consumer-to-Business as well as Business-to-Business

activities
• Several transactions for each transaction type
• Different execution profiles for each transaction type
• A specific run-time mix for all defined transactions
For example, the database will simultaneously execute transactions generated by systems that interact
with customers along with transactions that are generated by systems that interact with financial markets
as well as administrative systems.

The benchmark system will interact with a set of Driver systems that simulate the various sources of
transactions without requiring the benchmark to implement the complex environment.

The Performance Metric reported by TPCx-HCI is a "business throughput” measure of the number of
completed Trade-Result transactions processed per second (see Clause 5.7.1). Multiple Transactions are
used to simulate the business activity of processing a trade, and each Transaction is subject to a Response
Time constraint. The Performance Metric for the TPCx-HCI benchmark is expressed in transactions-
per-second-HCI (tpsHCI). To be compliant with the TPCx-HCI standard, all references to tpsHCI
Results must include the tpsHCI rate, the associated price-per-tpsHCI and the Availability Date of the
Priced Configuration (See Clause 5.7.3 for more details).
Although this specification defines the implementation in terms of a relational data model, the database
may be implemented using any commercially available Database Management System (DBMS),
Database Server, file system, or other data repository that provides a functionally equivalent
implementation. The terms "table", "row", and "column" are used in this document only as examples of
logical data structures.

TPCx-HCI uses terminology and metrics that are similar to other benchmarks, originated by the TPC and
others. Such similarity in terminology does not imply that TPCx-HCI Results are comparable to other
benchmarks. The only benchmark Results comparable to TPCx-HCI are other TPCx-HCI Results that
conform to a comparable version of the TPCx-HCI specification.

0.1.3 Restrictions and Limitations
Despite the fact that this benchmark offers a rich environment that represents many OLTP applications,
this benchmark does not reflect the entire range of OLTP requirements. In addition, the extent to which
a customer can achieve the Results reported by a vendor is highly dependent on how closely TPCx-HCI
approximates the customer application. The relative performance of systems derived from this
benchmark does not necessarily hold for other workloads or environments. Extrapolations to any other
environment are not recommended.

Benchmark Results are highly dependent upon workload, specific application requirements, and
systems design and implementation. Relative system performance will vary because of these and other
factors. Therefore, TPCx-HCI should not be used as a substitute for specific customer application
benchmarking when critical capacity planning and/or product evaluation decisions are contemplated.

Benchmark Sponsors are permitted various possible implementation designs, insofar as they adhere to
the model described and pictorially illustrated in this specification. A Full Disclosure Report (FDR) of
the implementation details, as specified in Clause 8 , must be made available along with the reported
Results.
Comment: While separated from the main text for readability, comments are a part of the standard and
must be enforced.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 13 of 271

0.2 General Implementation Guidelines
The purpose of TPC benchmarks is to provide relevant, objective performance data to industry users. To
achieve that purpose, TPC benchmark specifications require that benchmark tests be implemented with
systems, products, technologies and pricing that:
• Are generally available to users.
• Are relevant to the market segment that the individual TPC benchmark models or represents (e.g.,

TPCx-HCI models and represents high-volume, complex OLTP database environments).
• A significant number of users in the market segment the benchmark models or represents would

plausibly implement.
The use of new systems, products, technologies (hardware or software) and pricing is encouraged so long
as they meet the requirements above. Specifically prohibited are benchmark systems, products,
technologies, pricing (hereafter referred to as "implementations") whose primary purpose is performance
optimization of TPC benchmark Results without any corresponding applicability to real-world
applications and environments. In other words all "benchmark specials” implementations that improve
benchmark Results but not real-world performance or pricing, are prohibited.
The following characteristics should be used as a guide to judge whether a particular implementation is
a benchmark special. It is not required that each point below be met, but that the cumulative weight of
the evidence be considered to identify an unacceptable implementation. Absolute certainty or certainty
beyond a reasonable doubt is not required to make a judgment on this complex issue. The question that
must be answered is this: based on the available evidence, does the clear preponderance (the greater
share or weight) of evidence indicate that this implementation is a benchmark special?
The following characteristics should be used to judge whether a particular implementation is a
benchmark special:
• Is the implementation generally available, documented, and supported?
• Does the implementation have significant restrictions on its use or applicability that limits its use

beyond TPC benchmarks?
• Is the implementation or part of the implementation poorly integrated into the larger product?
Does the implementation take special advantage of the limited nature of TPC benchmarks (e.g.,
transaction Profile, Transaction Mix, transaction concurrency and/or contention, transaction isolation)
in a manner that would not be generally applicable to the environment the benchmark represents?
• Is the use of the implementation discouraged by the vendor? (This includes failing to promote the

implementation in a manner similar to other products and technologies.)
• Does the implementation require uncommon sophistication on the part of the end-user, programmer,

or system administrator?
• Is the pricing unusual or non-customary for the vendor, or unusual or non-customary to normal

business practices? See the effective version of the TPC Pricing Specification for additional
information.

• Is the implementation being used (including beta) or purchased by end-users in the market area the
benchmark represents? How many? Multiple sites? If the implementation is not currently being
used by end-users, is there any evidence to indicate that it will be used by a significant number of
users?

0.3 General Measurement Guidelines
TPC benchmark Results are expected to be accurate representations of system performance. Therefore,
there are certain guidelines, which are expected to be followed when measuring those Results. The
approach or methodology is explicitly outlined in or described in the specification.
• The approach is an accepted engineering practice or standard.
• The approach does not enhance the Results.
• Equipment used in measuring Results is calibrated according to established quality standards.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 14 of 271

• Fidelity and candor is maintained in reporting any anomalies in the Results, even if not specified in
the benchmark requirements.

The use of new methodologies and approaches is encouraged so long as they meet the requirements
above.

0.4 TPCx-HCI Kit and Licensing
The TPCx-HCI kit is available from the TPC. The user must sign-up and agree to the TPCx-HCI End
User Licensing Agreement (EULA) to download the kit. Re-distribution of the kit is governed by the
terms of the EULA. All related work (such as collaterals, papers, derivatives) must acknowledge the TPC
and include the TPCx-HCI copyright. The TPCx-HCI Benchmark includes: TPCx-HCI Specification
document (this document), TPCx-HCI Users Guide documentation, and the TPCx-HCI Benchmark Kit,
which consists of Java and C++ code to execute the benchmark load, and various scripts to set up the
benchmark environment. The Test Sponsor is required to run the TPC-provided kit as per Section 12 of
TPC policies, which describes the requirements for Express Benchmarks. See Clause 1.5 for details.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 15 of 271

CLAUSE 1 BENCHMARK OVERVIEW

1.1 Definitions
GENERAL _____________________

tpsHCI

tpsHCI (Transactions Per Second; HCI) is the primary performance metric for TPCx-HCI.

A ___________________________

ACID

ACID stands for the transactional properties of Atomicity, Consistency, Isolation and Durability.

Active Customers

Active Customers means the number of customers (with corresponding rows in the associated
TPCx-HCI tables) that are accessed during the Test Run. Active Customers may be a subset of
Configured Customers that were loaded at database generation.

Add

The word “Add” indicates that a number of rows are added to the TPCx-HCI table specified by the
Database Footprint. TPCx-HCI Table row(s) can only be added in a Frame where the word “Add” is
specified.

Application

The term Application or Application Program refers to code that is not part of the commercially available
components of the SUT, but used specifically to implement the Transactions (see Clause 3.3) of this
benchmark. For example, stored procedures, triggers, and referential integrity constraints are considered
part of the Application Program when used to implement any portion of the Transactions, but are not
considered part of the Application Program when solely used to enforce integrity rules (see Clause 10.4)
or transparency requirements (see Clause 10.5) independently of any Transaction.

Application Recovery

Application Recovery is the process of recovering the business application after a Single Point of Failure
and reaching a point where the business meets certain operational criteria.

Application Recovery Time

Application Recovery Time is the elapsed time between the start of Application Recovery and the end
of Application Recovery (see Clause 6.5.5.5).

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 16 of 271

Arbitrary Transaction

An Arbitrary Transaction is a Database Transaction that executes arbitrary operations against the
database at a minimum isolation level of L0 (see Clause 6.4.1.3).

Attestation Letter

If an independent, TPC-Certified Auditor has audited the Result, the TPC-Certified, independent
Auditor’s opinion regarding the compliance of a Result must be consigned in an Attestation Letter
delivered directly to the Sponsor.

Audit Tools

A set of Java applications included in the Benchmark Kit that are run by the Test Sponsor to produce
reports that facilitate the independent audit process.

Auditor

The term Auditor is used as a generic term in this specification, referring to either an independent, TPC-
Certified Auditor. or a Pre-Publication Board, either of whom can review and certify a Result for
publication.

Availability Date
The date when all products necessary to achieve the stated performance will be available (stated as a
single date on the Executive Summary Statement). This is known as the Availability Date.

B ___________________________

BALANCE_T

BALANCE_T is defined as SENUM(12,2) and is used for holding aggregate account and transaction
related values such as account balances, total commissions, etc.

Benchmark Kit

The TPCx-HCI Benchmark Kit is an Express benchmarking kit that conforms to the TPC policies, which
describe the requirements for Express Benchmarks. The Benchmark Kit is a complete application that
builds the schema, populates the database, runs the transactions, records complete run time data, post-
processes the logged records to generate performance results, and validates the results against this
specification. Test Sponsors are required to use the TPCx-HCI Benchmark Kit for reporting TPCx-HCI
results.

Although the same Benchmark Kit may be used for both TPCx-HCI and TPCx-V benchmarks, the results
of the TPCx-HCI and TPCx-V benchmarks may not be compared against each other.

BLOB(n)

BLOB(n) is a data type capable of holding a variable length binary object of n bytes.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 17 of 271

BLOB_REF

BLOB_REF is a data type capable of referencing a BLOB(n) object that is stored outside the table on the
SUT.

BOOLEAN

BOOLEAN is a data type capable of holding at least two distinct values that represent FALSE and TRUE.

Brokerage Initiated

Brokerage Initiated Transactions simulate broker interactions with the system and are initiated by the
Customer Emulator component of the benchmark Driver.

Broker Tables

Broker Tables include 9 tables that contain information about the brokerage firm and broker related data.

Business Day

Business Day is a period of eight hours of transaction processing activity.

Business Recovery

Business Recovery is the process of recovering from a Single Point of Failure and reaching a point
where the business meets certain operational criteria.

Business Recovery Time

Business Recovery Time is the elapsed period of time between start of Business Recovery and end of
Business Recovery (see Clause 6.5.5.9).

C ___________________________

Catastrophic

Catastrophic is a type of failure where processing is interrupted without any foreknowledge given to the SUT.
Subsequent to this interruption, only in the failed database instance are all contexts for all active
applications lost and all memory cleared.

CE

See Customer Emulator.

CHAR(n)

CHAR(n) means a character string that can hold up to n single-byte characters. Strings may be padded
with spaces to the maximum length. CHAR(n) must be implemented using a Native Data Type.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 18 of 271

Cluster

A TPCx-HCI Cluster consists of at least 2 Nodes, each running a single instance of the VMMS. The HCI
software provides one or more storage abstractions that are distributed across the Nodes and uniformly
accessible from all the Nodes in the Cluster, such that any running database can be migrated “live” to
any host without a “Data Copy”. In other word, it is expected that all the nodes in a TPCx-HCI Cluster
present what is commonly known as “Shared Storage”.

All physical storage must be locally attached to the individual Nodes, and no external SAN (Storage Area
Network) or NAS (Network Attached Storage) nor any other physical means of providing external
shared storage among the Nodes of the Cluster may be used in the SUT. Regardless of the number of
Nodes (n) in a TPCx-HCI Cluster, every storage abstraction must provide redundancy to meet the
TPCx-HCI Data Accessibility test. A TPCx-HCI Cluster of n Nodes must be capable of demonstrating
uninterrupted Data Accessibility of all storage abstractions and Durability of all committed transactions
on (n-1) Nodes in the event of unmanaged loss of power to any single Node.

Commit / Committed

Commit is a control operation that:
• Is initiated by a unit of work (a Transaction)
• Is implemented by the DBMS
• Signifies that the unit of work has completed successfully and all tentatively modified data are

to persist (until modified by some other operation or unit of work)

Upon successful completion of this control operation both the Transaction and the data are said to be
Committed.

Configured Customers

Configured Customers means the number of customers (with corresponding rows in the associated
TPCx-HCI tables) configured at database generation.

Customer Emulator

One key piece of a compliant TPCx-HCI Driver is the Customer Emulator (CE). The CE is responsible
for emulating customers, requesting a service of the brokerage house, providing the necessary input for
the requested service, etc. Therefore, the CE is responsible for the following.
• Deciding which Customer Initiated or Brokerage Initiated Transaction to perform next (Broker-

Volume, Customer-Position, Market-Watch, Security-Detail, Trade-Lookup, Trade-Order, Trade-
Update and Trade-Status).

• Generating compliant data to be used as inputs for the selected Transaction.
• Sending the Transaction request and associated input data to the SUT.
• Receiving the Transaction response and associated output data from the SUT.
• Measuring the Transaction's Response Time.

Comment: The CE may optionally perform additional operations as well, such as statistical accounting,
data logging, etc.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 19 of 271

Customer Initiated

Customer Initiated Transactions simulate customer interactions with the system and are initiated by the
Customer Emulator component of the benchmark Driver.

Customer Tables

Customer Tables include 9 tables that contain information about the customers of the brokerage firm.

D ___________________________

Data Accessibility

Date Accessibility is the ability to maintain database operations with full data access after the permanent
irrecoverable failure of any single Durable Medium containing database tables, recovery log data, or
Database Metadata, or the loss of a Node in an HCI Cluster.

Data-Maintenance Generator

Another key piece of a compliant TPCx-HCI Driver is the single instance of the Data-Maintenance
Generator (DM). The DM is responsible for:
• Generating compliant data to be used as inputs for the Data-Maintenance Transaction
• Sending the Transaction’s request and associated input data to the SUT
• Receiving the Transaction’s response and associated output data from the SUT and measuring the

Transaction’s Response Time.

Database Footprint

The Database Footprint of a Transaction is the set of required database interactions to be executed by
that Transaction.

Database Interface

Database Interface is a commercially available product used by the Frame Implementation to
communicate with the Database Server. It is possible that the Database Interface may communicate with
the Database Server over a Network, but this is not a requirement.

Database Logic

Database Logic is TPC provided Frame implementation logic (e.g. stored SQL procedure).

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 20 of 271

Database Management System

A Database Management System (DBMS) is a collection of programs that enable you to store, modify,
and extract information from a database. There are many different types of DBMSs, ranging from small
systems that run on personal computers to huge systems that run on mainframes. From a technical
standpoint, DBMSs can differ widely. The terms relational, network, flat, and hierarchical all refer to the
way a DBMS organizes information internally. The internal organization can affect how quickly and
flexibly you can extract information. Requests for information from a database are made in the form of a
query, which is a stylized question. The set of rules for constructing queries is known as a query language.
The information from a database can be presented in a variety of formats. Most DBMSs include a report
writer program that enables you to output data in the form of a report.

Database Metadata

Database Metadata is information managed by the DBMS and stored in the database to define, manage
and use the database objects, e.g. tables, views, synonyms, value ranges, indexes, users, etc.

Database Recovery

Database Recovery is the process of recovering the database from a Single Point of Failure system
failure.

Database Recovery Time

Database Recovery Time is the duration from the start of Database Recovery to the point when database
files complete recovery.

Database Server

A Database Server is a commercially available product(s). TPC provided logic may run in the context of
the Database Server (e.g. a stored SQL procedure). An example of a Database Server is:

• commercially available DBMS running on a
• commercially available Operating System running on a
• commercially available hardware system utilizing
• commercially available storage

Database Session
To work with a database instance, to make queries or to manage the database instance, you have to open
a Database Session. This can happen as follows: The user logs on to the database with a user name and
password, thus opening a Database Session. Later, the Database Session is terminated explicitly by the
user or closed implicitly when the timeout value is exceeded. A database tool implicitly opens a Database
Session and then closes it again.

Database Transaction

A Database Transaction is an ACID unit of work.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 21 of 271

Data Growth

Data Growth is the space needed in the DBMS data files to accommodate the increase in the Growing
Tables resulting from executing the Transaction Mix at the Reported Throughput during the period of
required Sustainable performance.

DATE

DATE represents the data type of date with a granularity of a day and must be able to support the range
of January 1, 1800 to December 31, 2199, inclusive. DATE must be implemented using a Native Data
Type.

Comment: A time component is not required but may be implemented.

DATETIME

DATETIME represents the data type for a date value that includes a time component. The date
component must meet all requirements of the DATE data type. The time component must be capable of
representing the range of time values from 00:00:00 to 23:59:59. Fractional seconds may be implemented,
but are not required. DATETIME must be implemented using a Native Data Type.

DBMS

See Database Management System

Digit

Digit means decimal digit.

Dimension Tables

Dimension Tables include 4 dimension tables that contain common information such as addresses and
zip codes.

DM

See Data-Maintenance Generator.

Driver

To measure the performance of the OLTP system, a simple Driver generates Transactions and their
inputs, submits them to the System Under Test, and measures the rate of completed Transactions being
returned. To simplify the benchmark and focus on the core transactional performance, all application
functions related to user interface and display functions have been excluded from the benchmark. The
System Under Test is focused on portraying the components found on the server side of a transaction
monitor or application server.

Durability

See Durable.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 22 of 271

Durable / Durability

In general, state that persists across failures is said to be Durable and an implementation that ensures
state persists across failures is said to provide Durability. In the context of the benchmark, Durability
is more tightly defined as the SUT’s ability to ensure all Committed data persist across any Single Point
of Failure.

Durable Medium

Durable Medium is a data storage medium that is inherently non-volatile such as a magnetic disk or
tape. Durable Media is the plural of Durable Medium.

E ___________________________

Elasticity Phase

Elasticity Phase is any one of the ten 12-minute load variation periods defined in Clause 5.2.

ENUM

ENUM(m[,n]) or SENUM(m[,n]) means an exact numeric value (unsigned or signed, respectively).
ENUM and SENUM are identical to NUM and SNUM, respectively, except that they must be
implemented using a Native Data Type that provides exact representation of at least n Digits of precision
after the decimal place.

Executive Summary Statement

The term Executive Summary Statement refers to the Adobe Acrobat PDF file in the
ExecutiveSummaryStatement folder in the FDR. The contents of the Executive Summary Statement are
defined in Clause 9.

F ___________________________

FDR

The FDR is a zip file of a directory structure containing the following:
• A Report in Adobe Acrobat PDF format,
• An Executive Summary Statement in Adobe Acrobat PDF format,
• The Supporting Files consisting of various source files, scripts, and listing files. Requirements for

the FDR file directory structure are described below.

Comment: The purpose of the FDR is to document how a benchmark Result was implemented and
executed in sufficient detail so that the Result can be reproduced given the appropriate hardware and
software products.

FIN_AGG_T

FIN_AGG_T is defined as SENUM(15,2) and is used for holding aggregated financial data such as
revenue figures, valuations, and asset values.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 23 of 271

Fixed Space

Fixed Space is any other space used to store static information and indices. It includes all database
storage space allocated to the test database that does not qualify as either Free Space or Growing Space.

Fixed Tables

Fixed Tables are tables that always have the same number of rows regardless of the database size and
transaction throughput. For example, TRADE_TYPE has five rows.

Foreign Key

A Foreign Key (FK) is a column or combination of columns used to establish and enforce a link between
the data in two tables. A link is created between two tables by adding the column or columns that hold
one table's Primary Key values to the other table. This column becomes a Foreign Key in the second
table.

Frame

A Frame is the TPC-provided Transaction logic, which is invoked as a unit of execution by the
VGenTxnHarness. The database interactions of a Transaction are all initiated from within its Frames.

Frame Implementation

Frame Implementation is TPC provided functionality that accepts inputs from, and provides outputs to,
VGenTxnHarness through a TPC Defined Interface. The Frame Implementation and all down-stream
functional components are responsible for providing the appropriate functionality outlined in the
Transaction Profiles (Clause 3.3).

Free Space

Free Space is any space allocated to the test database and available for future use. It includes all database
storage space not already used to store a database entity (e.g., a row, an index, Database Metadata) or
not already used as formatting overhead by the DBMS.

Full Disclosure Report (FDR)

See FDR.

G ___________________________

Group

Each Tile has four Groups, with Groups 1, 2, 3, and 4 contributing an average of 10%, 20%, 30%, and
40% of the total throughput of the Tile, respectively. Each Group consists of one Tier A Virtual Machine
and two transaction-specific Tier B Virtual Machines.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 24 of 271

Growing Space

Growing Space is any space used to store initially-loaded rows from the Growing Tables and their
associated User-Defined Objects. It also includes all database storage space that is added to the test
database as a result of inserting a new row in the Growing Tables, such as row data, index data and
other overheads such as index overhead, page overhead, block overhead, and table overhead.

Growing Tables

Growing Tables each have an initial cardinality that has a defined relationship to the cardinality of the
CUSTOMER table. However, the cardinality increases with new growth during the benchmark run at a
rate that is proportional to transaction throughput rates.

H ___________________________

Hyper-Converged Infrastructure

For the purposes of this specification, Hyper-Converged Infrastructure (HCI) is a software-defined IT
infrastructure that integrates virtualized compute, storage, storage networking, and data networking
resources into a single architecture by means of a hypervisor and VMMS. The SUT must be a Hyper-
converged infrastructure system that uses commercially available hardware and software. The platform
must support:

• A distributed storage system presenting virtualized storage abstractions that can be used by all
Virtual Machines in the Cluster and are that is uniformly visible from all the Nodes

• Virtual Machine migration between Nodes
• Scaling to at least 4 nodes regardless of how many Nodes are in the tested configuration

The Test Sponsor is required to provide publically available documentation to support the above. Every
Node must be capable of running any instance of VM1, VM2, and VM3.

Comment: An HCI Cluster is different from a simple aggregation of Nodes into a Cluster in that the
resources of an HCI Cluster, in particular storage, are shared and uniformly accessible from all the Nodes
in the infrastructure.

I ___________________________

IDENT_T

IDENT_T is defined as NUM(11) and is used to hold non-trade identifiers.

Initial Database Size

Initial Database Size is any space allocated to the test database that is used to store the initial population,
Database Metadata, User-Defined Objects, and any space used as formatting overhead by the DBMS.
Initial Database Size is measured after the database is initially loaded with the data generated by
VGenLoader.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 25 of 271

Initial Trade Days

The Initial Trade Days (ITD) is the number of Business Days used to populate the database. This
population is made of trade data that would be generated by the SUT when running at the Nominal
Throughput for the specified number of Business Days. The number of Initial Trade Days is 125.

ITD

See Initial Trade Days.

J ___________________________

K __________________________

L __________________________

Load Unit

The size of the CUSTOMER table can be increased in increments of 1000 customers. A set of 1000
customers is known as a Load Unit.

Log Growth

Log Growth is the space needed in the DBMS log files to accommodate the Undo/Redo Log resulting
from executing the Transaction Mix at the Reported Throughput during the period of required
Sustainable performance.

M ___________________________

Market Exchange Emulator

A key piece of a compliant TPCx-HCI Driver is the Market Exchange Emulator (MEE). The MEE is
responsible for emulating the stock exchanges: providing services to the brokerage house, performing
requested trades, providing market activity updates, etc. Therefore, the MEE is responsible for the
following:
• Receiving trade requests and their associated data from the SUT.
• Initiating Trade-Result Transactions, sending the associated data to the SUT and measuring the

Transaction’s Response Time.
• Initiating Market-Feed Transactions, sending the associated data to the SUT and measuring the

Transaction’s Response Time.

Comment: The MEE may optionally perform additional operations as well; such as statistical accounting,
data logging, etc.

Market Tables

Market Tables include 11 tables that contain information about companies, markets, exchanges, and
industry sectors.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 26 of 271

Market Triggered

Market Triggered Transactions simulate the behavior of the market and are triggered by the Market
Exchange Emulator component of the benchmark Driver.

May

The word “may” in the specification means that an item is truly optional.

Measured Configuration

See System Under Test.

Measured Throughput

The Measured Throughput is computed as the total number of Valid Trade-Result Transactions within
the Measurement Interval divided by the duration of the Measurement Interval in seconds.

Measurement Interval

Measurement Interval is the period of time during Steady State chosen by the Test Sponsor to compute
the Reported Throughput.

MEE

See Market Exchange Emulator

Modify

The word “Modify” indicates that the content of a TPCx-HCI table column is modified within the Frame.
The content of the table column can only be changed in a Frame where the word “Modify” is specified.
When the original content of the table column must also be referenced or returned before it is modified,
a “Reference” or a “Return” access method is also specified.

Must

The word “must” or the terms “required”, “requires”, “requirement” or “shall” in the specification,
means that compliance is mandatory.

Must not

The phrase “must not” or the term “shall not” in the specification, means that this is an absolute
prohibition of the specification.

N ___________________________

Native Data Type

A Native Data Type is a built-in data type of the DBMS whose documented purpose is to store data of
a particular type described in the specification. For example, DATETIME must be implemented with a
built-in data type of the DBMS designed to store date-time information.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 27 of 271

Network

A Network is defined as Sponsor-provided functionality that must support communication through an
industry standard communications protocol using a physical or (in the case of TPCx-HCI) a virtual
means. One outstanding feature of the ConnectoróNetworkóConnector communication is that it
follows the relevant standards and must imply more than just an application package. It must be possible
to have concurrent use of the means by other applications. Physical transport of the data is required and
the underlying means of this transport must be capable of operating over arbitrary globally geographic
distances.

 TPC/IP over a physical or virtual local area network is an example of an acceptable Network
implementation.

Node

A Node is a single physical computing system with a single local memory address space that runs a
single instance of the VMMS.

Nominal Throughput

Nominal Throughput is defined to be 2.00 Transactions-Per-Second-HCI for every 1000 customer rows
in the Active Customers.

Non-catastrophic

The term Non-catastrophic as applied to a single failure is one where processing is not interrupted, but
throughput may be degraded and the SUT may no longer be in a durable state until the SUT has
recovered from the failure.

NUM(m[,n])

NUM(m[,n]) means an unsigned numeric value with at least m total Digits, of which n Digits are to the
right (after) the decimal point. The data type must be able to hold all possible values that can be expressed
as NUM(m[,n]). Omitting n, as in NUM(m), indicates the same as NUM(m,0). NUM must be
implemented using a Native Data Type.

O ___________________________

On-Line

A storage device is considered On-Line if it is capable of providing an access time to data, for random
read or update, of one second or less by the Operating System.

Comment: Examples of On-Line storage may include magnetic disks, optical disks, solid-state storage,
virtual disk, or any combination of these, provided that the above mentioned access criteria is met.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 28 of 271

Operating System/OS

The term Operating System refers to a commercially available program that, after being initially loaded
into the computer by a boot program, manages all the other programs in a computer, or in a VM. The
Operating System provides a software platform on top of which all other programs run. Without the
Operating System and the core services that it provides no other programs can run and the computer
would be non-functional. Other programs make use of the Operating System by making requests for
services through a defined application program interface (API). All major computer platforms require an
Operating System. The functions and services supplied by an Operating System include but are not
limited to the following:
• Manages a dedicated set of processor and memory resources.
• Maintains and manages a file system.
• Loads applications into memory.
• Ensures that the resources allocated to one application are not used by another application in an

unauthorized manner.
• Determines which applications should run in what order, and how much time should be allowed to

run the application before giving another application a turn to use the systems resources.
• Manages the sharing of internal memory among multiple applications.
• Handles input and output to and from attached hardware devices such as hard disks, network

interface cards etc.

Some examples of Operating Systems are listed below:
• Windows
• Unixes (Solaris, AIX)
• Linux
• MS-DOS
• Mac OS
• VMS
• Netware

P ___________________________

Part Number

See the definition of Part Number in the TPC Pricing Specification.

Performance Metric

The TPCx-HCI Reported Throughput is expressed in tpsHCI.

Pre-Publication Board

The Pre-Publication Board, which is comprised of TPC-V subcommittee members, is a peer review
committee that can certify a TPCx-V Result for publication.

Priced Configuration

Priced Configuration comprises the components to be priced defined in the benchmark specification,
including all hardware, software and maintenance.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 29 of 271

Price/Performance Metric

The TPCx-HCI Total Price divided by the Reported Throughput is Total Price/tpsHCI. This is also
known as the Price/Performance Metric..

Primary Key

A Primary Key is a single column or combination of columns that uniquely identifies a row. None of the
columns that are part of the Primary Key may be nullable. A table must have no more than one Primary
Key.

Profile

A Profile is the characteristics of a Transaction, as defined by the Pseudo-code and summarized by the
Database Footprint.

Pseudo-code

Pseudo-code is a description of an algorithm that uses the structural conventions of programming
languages, but omits language-specific syntax.

Q ___________________________

R ___________________________

Ramp-down

Ramp-down is the period of time from the end of Steady State to the end of the Test Run.

Ramp-up

Ramp-up is the period of time from the start of the Test Run to the start of Steady State. To ensure that
the Measurement Interval begins after Steady State has been achieved, Ramp-up is required to be at
least 12 minutes, equal to the length of a TPCx-HCI Phase.

Redundancy Level One

Redundancy Level One (Durable Media Redundancy) guarantees access to the data on Durable Media
when a single Durable Media failure occurs.

Redundancy Level Two

Redundancy Level Two (Durable Media Controller Redundancy) includes Redundancy Level One and
guarantees access to the data on Durable Media when a single failure occurs in the storage controller
used to satisfy the redundancy level or in the communication media between the storage controller and
the Durable Media.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 30 of 271

Redundancy Level Three

Redundancy Level Three (Full Redundancy) includes Redundancy Level Two and guarantees access
to the data on Durable Media when a single failure occurs within the Durable Media system, including
the failure of a single Node of the Cluster, or failure of communications between Nodes of the Cluster.

A TPCx-HCI system must satisfy the requirements for Redundancy Level Three.

Reference

The word “Reference” indicates that the TPCx-HCI table column is identified in the database and the
content is accessed within the Frame without passing the content of the table column to the
VGenTxnHarness.

Referential Integrity

Referential Integrity preserves the relationship of data between tables, by restricting actions performed
on Primary Keys and Foreign Keys in a table.

Remove

The word “Remove” indicates that a number of rows are removed from the TPCx-HCI table specified
by the Database Footprint. Table row(s) can only be removed in a Frame where the word “Remove” is
specified. The number of rows that are removed is specified in the second column of the Database
Footprint with either “# row” for a fixed number of rows or “row(s)” for an unspecified number of rows.

Report

The term Report refers to the Adobe Acrobat PDF file in the Report folder in the FDR. The contents of
the Report are defined in Clause 9.

Reported

The term Reported refers to an item that is part of the FDR.

Reported Throughput
The Performance Metric reported by TPCx-HCI is the Reported Throughput. The name of the metric
used for the Reported Throughput of the SUT is tpsHCI. The value of this metric is based on the
Measured Throughput and is bound by the limits defined in Clause 5.7.1.2.

Response Time

The Response Time (RT) is defined by:

RTn = eTn - sTn
where:

sTn and eTn are measured at the Driver;
sTn = time measured before the first byte of input data of the Transaction is sent by the Driver
to the SUT; and

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 31 of 271

eTn = time measured after the last byte of output data from the Transaction is received by the
Driver from the SUT.

Comment: The resolution of the time stamps used for measuring Response Time must be at least 0.01
seconds.

Results

TPCx-HCI Results are the Performance Metric, Price/Performance Metric.

Return

The word “Return” indicates that the TPCx-HCI table column is referenced and that its content is
retrieved from the database and passed to the VGenTxnHarness. The table column must be referenced
in the same Frame where the word “Return” is specified. The content of the table column can only be
passed to subsequent Frames via the input and output parameters specified in the Frame parameters.

Rollback

The word “Rollback” indicates that the specified Frame contains a control operation that rolls back the
Database Transaction. The explicit rolling back of a Database Transaction can only occur in a Frame
where the word “Rollback” is specified.

RT

See Response Time.

S ___________________________

S_COUNT_T

S_COUNT_T is defined as NUM(12) and is used for holding the aggregate count of shares used in many
tables.

S_PRICE_T

S_PRICE_T is defined as ENUM(8,2) and is used for holding the value of a share price.

S_QTY_T

S_QTY_T is defined as SNUM(6) and is used for holding the quantity of shares per individual trade.

Scale Factor

The Scale Factor is the number of required customer rows per single Transactions-Per-Second-HCI. The
Scale Factor for Nominal Throughput is 500.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 32 of 271

Scaling Tables

Scaling Tables each have a defined cardinality that has a constant relationship to the cardinality of the
CUSTOMER table. Transactions may update rows from these tables, but the table sizes remain constant.

SENUM

ENUM(m[,n]) or SENUM(m[,n]) means an exact numeric value (unsigned or signed, respectively).
ENUM and SENUM are identical to NUM and SNUM, respectively, except that they must be
implemented using a Native Data Type that provides exact representation of at least n Digits of precision
after the decimal place.

Session

See Database Session.

SF

See Scale Factor.

Should

The word “should” or the adjective “recommended”, mean that there might exist valid reasons in
particular circumstances to ignore a particular item, but the full implication must be understood and
weighed before choosing a different course.

Should not
The phrase “should not”, or the phrase “not recommended”, means that there might exist valid reasons
in particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed before implementing any behavior
described with this label.

SNUM

SNUM(m[,n]) is identical to NUM(m[,n]) except that it can represent both positive and negative values.
SNUM must be implemented using a Native Data Type.

Comment: A SNUM data type may be used (at the Sponsor’s discretion) anywhere a NUM data type is
specified.

Sponsor

See Test Sponsor.

Start

The word “Start” indicates that the specified Frame contains a control operation that starts a Database
Transaction. The start of a Database Transaction can only occur in a Frame where the word “Start” is
specified.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 33 of 271

Steady State

Steady State is the period of time from the end of the Ramp-up to the start of the Ramp-down.

Substitution

Substitution is defined as a deliberate act to replace components of the Priced Configuration by the Test
Sponsor as a result of failing the availability requirements of the TPC Pricing Specification or when the
Part Number for a component changes.

Supporting Files

Supporting Files refers to the contents of the SupportingFiles folder in the FDR. The contents of this
folder, consisting of various source files, scripts, and listing files, are defined in Clause 9.

Sustainable
Performance over a given period of time (computed as the average throughput over that time) is
considered Sustainable if it shows no significant variations.

SUT

See System Under Test.

System Under Test

System Under Test (SUT) is the total collection of all hardware and software components in all Tiles, to
include their Tier A and Tier B Virtual Machines.

T ___________________________

Test Run

A Test Run is the entire period of time during which Drivers submit and the SUT completes
Transactions other than Trade-Cleanup.

Test Run Graph

A graph of the one-minute average tpsHCI versus elapsed wall clock time measured in minutes must be
reported for the entire Test Run. The x-axis represents the elapsed time from the Test Run start. The y-
axis represents the one-minute average throughput in tpsHCI(computed as the total number of Trade-
Result Transactions that complete within each one-minute interval divided by 60). A plot interval size
of 1 minute must be used. The Ramp-up, Steady State, Measurement Interval, and Ramp-down must
be identified on the graph. The Test Run Graph must be reported in the Report.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 34 of 271

Test Sponsor

The Test Sponsor is the company officially submitting the Result with the FDR and will be charged the
filing fee. Although multiple companies may sponsor a Result together, for the purposes of the TPC’s
processes the Test Sponsor must be a single company. A Test Sponsor need not be a TPC member. The
Test Sponsor is responsible for maintaining the FDR with any necessary updates or corrections. The Test
Sponsor is also the name used to identify the Result.

Tier A

Tier A consists of all hardware and software needed to implement the down-stream Connector,
VGenTxnHarness, Frame Implementation and Database Interface functional components. The VM that
implements Tier A is referred to as VM1.

Tier B

Tier B consists of all hardware and software needed to implement the Database Server functional
components, encapsulated within two transaction-specific Virtual Machines, contained within the same
Group. This includes data storage media sufficient to satisfy the initial database population requirements
of Clause 2.4.1 and the Business Day growth requirements of Clause 5.6.6.4 and Clause 5.6.6.5. Tier B is
implemented in two VMs: VM2 receives the two Decision Support-type queries, and VM3 receives the
7 remaining OLTP transactions.

Tile

Tile is the unit of replication of TPCx-HCI configuration and load distribution. Each Tile consists of 4
Groups. A valid TPCx-HCI configuration has 1 or more Tiles per Node, with all Tiles contributing
identical proportions of the total load. The number of Tiles and the number of Load Units configured in
the initial populations of the databases in each Group are dependent on the Nominal Throughput, and
are determined by a formula defined in Clause 4.3.4.

TPC-Certified Auditor

The term TPC-Certified Auditor is used to indicate that the TPC has reviewed the qualification of the
Auditor and has certified his/her ability to verify that benchmark Results are in compliance with this
specification. (Additional details regarding the Auditor certification process and the audit process can
be found in Section 9 of the TPC Policy document.)

TPCx-HCI

TPCx-HCI is the short name for the TPC Express Benchmark HCI.

TPC Defined Interface

A TPC Defined Interface is a C++ class member that is designed to exchange data (and transfer execution
control) between various components of the TPC provided Benchmark Kit.

TRADE_T

TRADE_T is defined as NUM(15) and is used to hold trade identifiers.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 35 of 271

Transaction(s)

The TPCx-HCI Transactions are at the heart of the workload. The core of each Transaction runs on the
Database Server, but the logic of the Transaction interacts with several components of the benchmark
environment.

A Transaction is composed of Harness-code and of the invocation of one or more Frames. The Trade-
Cleanup Transaction is an exception. Sponsors may but do not have to run the Trade-Cleanup
Transaction from VGenTxnHarness.

Transaction Mix

The Transaction Mix is composed of all Customer Initiated, Brokerage Initiated and Market Triggered
Transactions.

Tunable Parameters

Tunable Parameters are parameters, switches or flags that can be changed to modify the behavior of the
product. Tunable Parameters apply to both hardware and software and are not limited to those
parameters intended for use by customers.

U ___________________________

U*x

U*x is used in this specification to refer to various UNIX and Linux flavors (e.g. UNIX, Linux, AIX,
Solaris).

Undo/Redo Log

The Undo/Redo Log records all changes made in data files. The Undo/Redo Log makes it possible to
replay all the actions executed by the Database Management System. If something happens to one of
the data files, a backed up data file can be restored and the Undo/Redo Log that was written since the
backup can be played and applied which brings the data file to the state it had before it became
unavailable.

User-Defined Object

Any object defined in the database is considered a User-Defined Object, except for the following:
• a TPCx-HCI Table (see clause 2.2.3)
• a required Primary Key (see clause 2.2.3.1)
• a required Foreign Key (see clause 2.2.3.2)
• a required constraint (see clause 2.2.3.3)
• Database Metadata

V ___________________________

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 36 of 271

Valid Transaction

The term Valid Transaction refers to any Transaction for which input data has been sent in full by the
Driver, whose processing has been successfully completed on the SUT and whose correct output data
has been received in full by the Driver.

VALUE_T

VALUE_T is defined as SENUM(10,2) and is used for holding non-aggregated transaction and security
related values such as cost, dividend, etc.

VGen

VGen is a TPC provided software environment that is used in the TPC provided Benchmark Kit
implementation of the TPCx-HCI benchmark. The software environment is logically divided into three
packages: VGenProjectFiles, VGenInputFiles, and VGenSourceFiles. The software packages provide
functionality to use: VGenLoader to generate the data used to populate the database, VGenDriver to
generate transactional data and VGenTxnHarness to control frame invocation.

VGenDriver

VGenDriver comprises the following parts:

• VGenDriverCE provides the core functionality necessary to implement a Customer
Emulator.

• VGenDriverMEE provides the core functionality necessary to implement a Market
Exchange Emulator.

• VGenDriverDM provides the core functionality necessary to implement the Data-
Maintenance Generator.

VGenDriver provides core transactional functionality (e.g. Transaction Mix and input generation)
necessary to implement a Driver.

VGenDriverCE

VGenDriverCE is any and/or all instantiations of the CCE class (see VGenSourceFiles CE.h and
CE.cpp).

VGenDriverDM

VGenDriverDM is the single instantiation of the CDM class (see VGenSourceFiles DM.h and DM.cpp).

VGenDriverMEE

VGenDriverMEE is any and/or all instantiations of the CMEE class (see VGenSourceFiles MEE.h and
MEE.cpp).

VGenInputFiles

VGenInputFiles is a set of TPC provided text files containing rows of tab-separated data, which are used
by various VGen packages as “raw” material for data generation.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 37 of 271

VGenLoader

VGenLoader is a binary executable, generated by using the methods described in VGenProjectFiles with
source code from VGenSourceFiles. When executed, VGenLoader uses VGenInputFiles to produce a
set of data that represents the initial state of the TPCx-HCI database.

VGenLogger

VGenLogger logs the initial configuration and any re-configuration of VGenDriver and VGenLoader,
and compares current configuration with the TPCx-HCI prescribed defaults.

VGenProjectFiles

VGenProjectFiles is a set of TPC provided files used to facilitate building the VGen packages in a Test
Sponsor's environments.

VGenSourceFiles

VGenSourceFiles is the collection of TPC provided C++ source and header files.

VGenTables

VGenSourceFiles contain class definitions that provide abstractions of the TPCx-HCI tables. These table
classes are known collectively as VGenTables and they encapsulate the functionality needed to generate
the data for each of the TPCx-HCI tables.

VGenTxnHarness

VGenTxnHarness defines a set of interfaces that are used to control the execution of, and communication
of inputs and outputs, of Transactions and Frames.

Virtual Machine (VM)

A Virtual Machine (VM) is a self-contained operating environment, managed by the VMMS, and that
behaves as if it were a separate computer (as defined in Clause 10.1.1.3). TPCx-HCI requires that there
shall be three VMs per Group: one Tier A VM and two transactional specific Tier B VMs.

Virtual Machine Management Software (VMMS)

Commonly referred to as a Hypervisor, Virtual Machine Management Software (VMMS) is a
commercially available framework or methodology of dividing the resources of a system into multiple
computing environments. Each of these computing environments allows a completely isolated software
stack including an operating system to run in complete isolation from anything else running on the
system. The VMMS allows for the creation of multiple computing environments on the same system.

A VMMS cannot be implemented by the static partitioning of a system at boot time or by any static
partitioning that may take place through operator intervention. A VMMS cannot act as the Operating
System that manages the Application(s) running inside a VM.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 38 of 271

All I/O devices must be virtualized by the VMMS or by the I/O controller managing the I/O devices.
The same I/O virtualization technology must work with a large number of VMs (number of VMs greater
than number of controllers).

A Virtualization Environment consists of one physical Node managed by one VMMS. In a valid
implementation of the multi-Node TPCx-HCI benchmark, all database data must reside on storage
abstractions which are distributed across all Nodes and uniformly accessible from all Nodes.

VM1

A Virtual Machine (VM) that implement the Tier A functionality of a Group.

VM2

A Virtual Machine (VM) that is a component of the Tier B of a Group, and executes the two Decision
Support queries.

VM3

A Virtual Machine (VM) that is a component of the Tier B of a Group, and executes the 7 OLTP
transactions.

W ___________________________

X ___________________________

Y ___________________________

Z ___________________________

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 39 of 271

1.2 Business and Application Environment
TPC Express Benchmark HCI is composed of a set of transactional operations designed to exercise system
functionalities in a manner representative of complex OLTP application environments. These
transactional operations have been given a life-like context to help users relate intuitively to the
components of the benchmark.
A typical business requires multiple applications to manage a variety of operations. Often these
applications have been located on separate systems. With advances in virtualization technologies and in
the strength of computing resources, it is now possible to co-locate these applications on the same system.
While it may be possible to install and use multiple applications in a single system image, there can be
advantages to maintaining the applications in distinct virtual machines (VMs):
• Duplicate applications may require separation of data to serve multiple regions or customer sets;
• Dissimilar applications may have some duplicate naming challenges where separation is desirable;
• It may be desirable to restrict the user group of one application from accessing data used by another

application;
• There may be accounting reasons for identifying the amount of computing resources required by

each application;
• There may be a desire to isolate maintenance operations of each application, so as not to disrupt

service on other applications;
• There may be a need to separate the application interface to end users from the interface to the

database, as is found in many 3-tiered application environments.
In short, depending on the size of the business and the size of the system used, the business model of
TPCx-HCI may be viewed as a “Cloud in a Box”, with a wide variety of applications, including both
database tiers and application-management tiers all residing on logically distinct VMs within a single
computer system. The following diagram illustrates the potential complexity of the business model
portrayed in the benchmark.

Business Model: Data Center in a Box
However, the complexities of the modeled environment do not lend itself well for a measureable,
repeatable performance benchmark. Consequently, the TPCx-HCI benchmark application is a simplified
view of this complex environment – retaining most of the key features of the business model, while
enhancing the ability to provide meaningful and comparable benchmark results.
The following diagram represents this simplified view:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 40 of 271

Simplified VM Components
The benchmark has been reduced to simplified form of the virtualized environment. Each group of
Application Interface, Update-Intensive and Read-Intensive VMs is a distinct “Group”. A Tile comprises
four Groups, with 1 or more identical Tiles per configuration. The total load on the system determines
the size of each Tile and the number of Tiles. Tiles are logically distinct from each other from an
application perspective, although the benchmark driver may coordinate the amount of work being
required of each Tile.
Note: To provide a meaningful application environment with database components and transactions that
are relevant and understandable, the application environment defined for the TPC-E benchmark is
employed. TPC-E is altered to provide the desired read-intensive and update-intensive environments,
shown above. While TPC-E uses a business model of a brokerage house with transactions driven from
multiple sources, the deployment of the adjusted application in TPCx-HCI is intended to represent a
wide variety of OLTP-based applications that could be employed in a virtualized computing
environment.
There is one other critical aspect to the business model for a virtualized environment. This is the concept
of workload dynamics. Performance benchmarks are typically measured in “steady state”, where the
flow of work requests is adjusted to meet the capabilities of the system. For a single application, this can
provide a satisfactory answer, but not for a virtualized environment.
The following diagram illustrates the existence of workload dynamics in the business model for
TPCx-HCI. Each application may vary between the minimum and maximum requirements, depending
on such things as time zone, time of day, time of year or introduction of a new product. To accommodate
each of the four applications represented on separate systems, the total compute power required is
represented by the “Total Separate” bar. However, in the chosen business model, the peak workload
demands for each application are not simultaneous. One workload may be at a peak when another is at
a valley, allowing computer resources to be shifted from the low-use application to the high-use one for
some period of time, and shifting the resources to another high-demand application at a subsequent
point. This allows the total configured capacity to be more like the bar marked “Virtualized.”

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 41 of 271

Demands by workload
In the environment modeled by the benchmark, the dynamic nature of each workload could be dictated
by a wide variety of influences that result in an unpredictable shifting of resources and an equally
unpredictable amount of overall system output. As with the complexity of the modeled application
environment, this level of workload dynamics is not easily repeated to deliver comparable
measurements. Since the primary requirement of the virtualized environment for this situation is the
ability to dynamically allocate resources to the VMs that are in high demand, it is sufficient to define a
workflow time line that shifts workload demands among the VMs in a predictable manner, as illustrated,
below. 0 is for demonstration purposes. Clause 5.2 specifies the actual number and properties of the
Elasticity Phases.

Elasticity Phases

TPCx-HCI models the activity of brokerage firm that must manage customer accounts, execute customer
trade orders, and be responsible for the interactions of customers with financial markets. TPCx-HCI does
not attempt to be a model of how to build an actual application. The following diagram illustrates the
transaction flow of the business model portrayed in the benchmark:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 42 of 271

Business Model Transaction Flow
The purpose of a benchmark is to reduce the diversity of operations found in a production application,
while retaining the application's essential performance characteristics so that the workload can be
representative of a production system. A large number of functions have to be performed to manage a
production brokerage system. Many of these functions are not of primary interest for performance
analysis, since they are proportionally small in terms of system resource utilization or in terms of
frequency of execution. Although these functions are vital for a production system, they merely create
excessive diversity in the context of a standard benchmark and have been omitted in TPCx-HCI.
The Company portrayed by the benchmark is a brokerage firm with customers who generate transactions
related to trades, account inquiries, and market research. The brokerage firm in turn interacts with
financial markets to execute orders on behalf of the customers and updates relevant account information.
The number of customers defined for the brokerage firm can be varied to represent the workloads of
different size businesses.

The TPCx-HCI benchmark is composed of a set of transactions that are executed against three sets of
database tables that represent market data, customer data, and broker data. A fourth set of tables
contains generic dimension data such as zip codes. The following diagram illustrates the key
components of the environment:

Customer

Brokerage

Market

Customer
Initiated

Transactions

Market
Triggered

Transactions

Customer

Brokerage

Market

Customer
Initiated

Transactions

Market
Triggered

Transactions

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 43 of 271

Application Components
The benchmark has been reduced to simplified form of the application environment. To measure the
performance of the OLTP system, a simple Driver generates Transactions and their inputs, submits them
to the System Under Test, and measures the rate of completed Transactions being returned. To simplify
the benchmark and focus on the core transactional performance, all application functions related to user
interface and display functions have been excluded from the benchmark. The System Under Test is
focused on portraying the components found on the server side of a transaction monitor or application
server.

1.3 Transaction Summary

1.3.1 Broker-Volume

The Broker-Volume Transaction is designed to emulate a brokerage house’s “up-to-the-minute” internal
business processing. An example of a Broker-Volume Transaction would be a manager generating a
report on the current performance potential of various brokers.

1.3.2 Customer-Position

The Customer-Position Transaction is designed to emulate the process of retrieving the customer’s
profile and summarizing their overall standing based on current market values for all assets. This is
representative of the work performed when a customer asks the question “What am I worth today?”

1.3.3 Market-Feed

The Market-Feed Transaction is designed to emulate the process of tracking the current market activity.
This is representative of the brokerage house processing the “ticker-tape” from the market exchange.

Customers Brokers Market

READ-WRITE
•Market-Feed
•Trade-Order
•Trade-Result
•Trade-Update

•Security-Detail
•Trade-Lookup
•Trade-Status

READ-ONLY
•Broker-Volume
•Customer-Position
•Market-Watch

Invoke the following transactions …

… against the following data

Customer Data Brokerage Data Market Data

Customers Brokers Market

READ-WRITE
•Market-Feed
•Trade-Order
•Trade-Result
•Trade-Update

•Security-Detail
•Trade-Lookup
•Trade-Status

READ-ONLY
•Broker-Volume
•Customer-Position
•Market-Watch

READ-WRITE
•Market-Feed
•Trade-Order
•Trade-Result
•Trade-Update

•Security-Detail
•Trade-Lookup
•Trade-Status

READ-ONLY
•Broker-Volume
•Customer-Position
•Market-Watch

Invoke the following transactions …

… against the following data

Customer Data Brokerage Data Market Data

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 44 of 271

1.3.4 Market-Watch

The Market-Watch Transaction is designed to emulate the process of monitoring the overall performance
of the market by allowing a customer to track the current daily trend (up or down) of a collection of
securities. The collection of securities being monitored may be based upon a customer’s current holdings,
a customer’s watch list of prospective securities, or a particular industry.

1.3.5 Security-Detail

The Security-Detail Transaction is designed to emulate the process of accessing detailed information on
a particular security. This is representative of a customer doing research on a security prior to making a
decision about whether or not to execute a trade.

1.3.6 Trade-Lookup

The Trade-Lookup Transaction is designed to emulate information retrieval by either a customer or a
broker to satisfy their questions regarding a set of trades. The various sets of trades are chosen such that
the work is representative of:
• performing general market analysis
• reviewing trades for a period of time prior to the most recent account statement
• analyzing past performance of a particular security
• analyzing the history of a particular customer holding

1.3.7 Trade-Order

The Trade Order Transaction is designed to emulate the process of buying or selling a security by a
Customer, Broker, or authorized third-party. If the person executing the trade order is not the account
owner, the Transaction will verify that the person has the appropriate authorization to perform the trade
order. The Transaction allows the person trading to execute buys at the current market price, sells at the
current market price, or limit buys and sells at a requested price. The Transaction also provides an
estimate of the financial impact of the proposed trade by providing profit/loss data, tax implications,
and anticipated commission fees. This allows the trader to evaluate the desirability of the proposed
security trade before either submitting or canceling the trade.

1.3.8 Trade-Result

The Trade-Result Transaction is designed to emulate the process of completing a stock market trade.
This is representative of a brokerage house receiving from the market exchange the final confirmation
and price for the trade. The customer’s holdings are updated to reflect that the trade has completed.
Estimates generated when the trade was ordered for the broker commission and other similar quantities
are replaced with the actual numbers and historical information about the trade is recorded for later
reference.

1.3.9 Trade-Status

The Trade-Status Transaction is designed to emulate the process of providing an update on the status of
a particular set of trades. It is representative of a customer reviewing a summary of the recent trading
activity for one of their accounts.

1.3.10 Trade-Update

The Trade-Update Transaction is designed to emulate the process of making minor corrections or
updates to a set of trades. This is analogous to a customer or broker reviewing a set of trades, and
discovering that some minor editorial corrections are required. The various sets of trades are chosen such
that the work is representative of:
• reviewing general market trends
• reviewing trades for a period of time prior to the most recent account statement
• reviewing past performance of a particular security

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 45 of 271

1.3.11 Data-Maintenance

The Data-Maintenance Transaction is designed to emulate the periodic modifications to data that is
mainly static and used for reference. This is analogous to updating data that seldom changes.

1.3.12 Trade-Cleanup

The Trade-Cleanup Transaction is used to cancel any pending or submitted trades from the database.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 46 of 271

1.4 Model Description

1.4.1 Entity Relationships

1.4.1.1 Trading in TPCx-HCI is done by Accounts. Accounts belong to Customers. Customers are serviced by
Brokers. Accounts trade Securities that are issued by Companies.

1.4.1.2 The total set of Securities that can be traded is 6,850 and the total set of Companies is 5,000. For each
Company, there is one common share, plus 0-4 preferred shares.

1.4.1.3 All Companies belong to one of the 102 Industries. Each Industry belongs to one of the 12 market
Sectors.

1.4.1.4 Each Account picks its average of ten Securities to trade from across the entire range of Securities.

1.4.1.5 Securities to be traded can be identified by the security symbol or by the company name and security
issue.

1.4.2 Differences between Customer Tiers

1.4.2.1 The basic scaling unit of a TPCx-HCI database is a set of 1,000 Customers. 20% of each 1,000 Customers
belong to Tier 1, 60% to Tier 2, and 20% to Tier 3. Tier 2 Customers trade twice as often as Tier 1
Customers. Tier 3 Customers trade three times as often as Tier 1 Customers. In general, customer
trading is non-uniform by tier within each set of 1,000 Customers.

1.4.2.2 Tier 1 Customers have 1 to 4 Accounts (average 2.5). Tier 2 Customers have 2 to 8 Accounts (average
5.0). Tier 3 Customers have 5 to 10 Accounts (average 7.5). Overall, there is an average of five Accounts
per Customer.

1.4.2.3 The minimum and maximum number of Securities that are traded by each Account varies by Customer
Tier and by the number of Accounts for each Customer. The average number of Securities traded per
Account is ten (so the average number of Securities traded per Customer is fifty). For each Account, the
same set of Securities is traded for both the initial database population and for any Test Run.

1.4.3 Trade Types

1.4.3.1 Trade requests come in two basic flavors: Buy (50%) and Sell (50%). Those are further broken down into
Trade Types, depending on whether the request was a Market Order (60%) or a Limit Order (40%).

1.4.3.2 For Market Orders, the two trade types are Market-Buy (30%) and Market-Sell (30%). For Limit Orders,
the three trade types are Limit-Buy (20%), Limit-Sell (10%) and Stop-Loss (10%).

1.4.3.3 Market-Buy and Market-Sell are trade requests to buy and sell immediately at the current market price,
whatever price that may be. Limit-Buy is a request to buy only when the market price is at or below the
specified limit price. Limit-Sell is a request to sell only when the market price is at or above the
specified limit price. Stop-Loss is a request to sell only when (or if) the market price drops to or below
the specified limit price.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 47 of 271

1.4.3.4 If the specified limit price has not been reached when the Limit Order is requested, it is considered an
Out-of-the-Money request and remains “Pending” until the specified limit price is reached. Reaching
the limit price is guaranteed to occur within 6 minutes based on VGenDriverMEE implementation
details. The act of noticing that a “Pending” limit request has reached or exceeded its specified limit
price and submitting it to the market exchange to be traded is known as triggering of the pending limit
order.

1.4.4 Effects of Trading on Holdings

1.4.4.1 For a given account and security, holdings will be either all long (positive quantities) or all short
(negative quantities).

1.4.4.2 Long positions represent shares of the security that were bought (purchased and paid for) by the
customer for the account. The customer owns the shares of the security and may sell them at a later
time (hopefully, for a higher price).

1.4.4.3 Short positions represent shares of the security that were borrowed from the broker (or Brokerage) and
were sold by the customer for the account. In the short sale case, the customer has received the funds
from that sell, but still has to cover the sell by later purchasing an equal number of shares (hopefully at
a lower price) from the market and returning those shares to the broker.

1.4.4.4 Before VGenLoader runs, there are no trades and no positions in any security for any account.
VGenLoader simulates running the benchmark for 125 Business Days of initial trading, so that the
initial database will be ready for benchmark execution.

1.4.4.5 If the first trade for a security in an account is a buy, a long position will be established (positive
quantity in HOLDING row). Subsequent buys in the same account for the same security will add
holding rows with positive quantities. Subsequent sells will reduce holding quantities or delete holding
rows to satisfy the sell trade. All holdings may be eliminated, in which case the position becomes
empty. If the sell quantity still is not satisfied, the position changes from long to short (see below).

1.4.4.6 If the first trade for a security in an account is a sell, a short position will be established (negative
quantity in HOLDING row). Subsequent sells in the same account for the same security will add
holding rows with negative quantities. Subsequent buys will reduce holding quantities (toward zero)
or delete holding rows to satisfy the buy trade. All holdings may be eliminated, in which case the
position becomes empty. If the buy quantity still is not satisfied, the position changes from short to
long.

1.5 TPCx-HCI Benchmark Kit

1.5.1 Kit Contents

The TPCx-HCI kit contains the following components:

• The TPCx-HCI User’s Guide

• Java and C++ code to implement the driver, the database access code in Tier A, an Executive
Summary Statement producer, and auditing tools

• DML (stored procedures) to implement the body of transactions

• DDL (including shell scripts) to create the schema and populate the database

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 48 of 271

• Various bash scripts, which invoke the above application programs to run a test, produce the
Executive Summary Statement, validate the results, and perform basic tasks outlines in Clause
9 . The scripts also collect statistics to assist the Test Sponsor in tuning the configuration.

1.5.2 DBMS

PostgreSQL is the database used by the TPCx-HCI Benchmark Kit. The benchmark was originally
developed on version 9.3 of PostgreSQL. The Test Sponsor may choose to use newer, supported versions
of PostgreSQL when they become available.

1.5.3 Kit Usage

To submit a compliant TPCx-HCI benchmark result, the Test Sponsor is required to use the TPCx-HCI
kit as provided, except for modifications explicitly listed in 1.5.5 and 1.5.6.

The kit must be used as outlined in the TPCx-HCI User’s Guide.

The output of the TPCx-HCI kit is called the run report, which includes the following

1. Executive Summary

2. Validation and audit files
3. Supporting files

1.5.4 If there is a conflict between the TPCx-HCI specification and the TPC provided code, the TPC provided
code prevails.

1.5.5 Configuration Files

The TPCx-HCI Benchmark Kit reads the VM network (NetBIOS) names, port numbers, database sizes,
Measurement Interval Length, etc. from the configuration file vcfg.properties. The file testbed.properties
has the SUT information used in producing the Executive Summary Statement at the completion of a
Test Run.

The contents of vcfg.properties and testbed.properties that are included in the Benchmark Kit are generic,
and need to be changed by the Test Sponsor to conform to the actual System Under Test. The kit
includes a bash script, activate_load_balancing.sh, which must issue the vendor-specific calls to activate
the Cluster load balancing functionality during rampup. These three files are the only parts of the
Benchmark Kit that the Test Sponsor is permitted to modify.
The runtime.properties file is a configuration file produced by the benchmark that reports the
configuration actually used during a benchmark run, whereas the vcfg.properties and testbed.properties
files are input files that are used to configure a benchmark run or create a report.

1.5.6 Addressing Errors in the TPCx-HCI Benchmark Kit

If a Test Sponsor must correct an error in the TPCx-HCI Benchmark Kit in order to publish a Result,
the following steps must be performed:
1. The error must be reported to the TPC, following the method described in clause 1.5.7, no later than

the time when the Result is submitted.

4. The error and the modification used to correct the error must be reported in the FDR, as described in
clause 8.4.4.1.

5. The modification used to correct the error must be reviewed by a TPC-Certified Auditor or the Pre-
Publication Board.

Furthermore, the modification and any consequences of the modification may be used as the basis for a
non-compliance challenge.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 49 of 271

1.5.7 Process for Reporting Issues with the TPCx-HCI Benchmark Kit

The TPCx-HCI Benchmark Kit has been tested on a variety of platforms. None-the-less, it is impossible
to guarantee that the TPCx-HCI Benchmark Kit is functionally correct in all aspects or will run correctly
on all platforms. It is the Test Sponsor's responsibility to ensure the TPCx-HCI Benchmark Kit runs
correctly in their environment(s).

1.5.7.1 Portability Issues

If a Sponsor believes there is a portability issue with the TPCx-HCI Benchmark Kit, the Sponsor must:
• Document the exact nature of the portability issue.
• Document the exact nature of the proposed fix.
• Contact the TPC Administrator with the above specified documentation (hard or soft copy is

acceptable) and clearly state that this is a TPCx-HCI Benchmark Kit portability issue. The Sponsor
must provide return contact information (e.g. Name, Address, Phone number, Email).

The TPC will provide an initial response to the Sponsor within 7 days of receiving notification of the
portability issue. This does not guarantee resolution of the issue within 7 days.

If the TPC approves the request, the Sponsor will be contacted with detailed instructions on how to
proceed. Possible methods of resolution include:
• The TPC releasing an updated specification and the TPCx-HCI Benchmark Kit update
• The TPC issuing a formal waiver documenting the allowed changes to the TPCx-HCI Benchmark

Kit. In the event a waiver is issued and used by the Sponsor, certain documentation policies apply
(see Clause 8.4.4.1).

If the TPC does not approve the request, the TPC will provide an explanation to the Sponsor of why the
request was not approved. The TPC may also provide an alternative solution that would be deemed
acceptable by the TPC.

1.5.7.2 Other Issues

For any other issues with the TPCx-HCI Benchmark Kit, the Sponsor must:
1. Document the exact nature of the issue.
2. Document the exact nature of the proposed fix.
3. Contact the TPC Administrator with the above specified documentation (hard or soft copy is

acceptable) and clearly state that this is a TPCx-HCI Benchmark Kit issue not related to portability.
The Sponsor must provide return contact information (e.g. Name, Address, Phone number, Email).

1.5.8 Submitting TPCx-HCI Benchmark Kit Enhancement Suggestions

As a result of using the TPCx-HCI Benchmark Kit, Test Sponsors may have suggestions for
enhancements. To submit a suggestion the Sponsor must:
1. Document the exact nature of the proposed enhancement
6. Document any proposed implementation for the enhancement
7. Contact the TPC Administrator with the above specified documentation (hard or soft copy is

acceptable) and clearly state that this is a TPCx-HCI Benchmark Kit enhancement suggestion. The
Sponsor must provide return contact information (e.g. Name, Address, Phone number, Email).

The TPC does not guarantee acceptance of any submitted suggestion. However, all constructive
suggestions will be reviewed by the TPC, and a response will be provided to the Test Sponsor.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 50 of 271

1.5.9 Future Kit Releases

If a Test Sponsor would like a future release of the TPCx-HCI Benchmark Kit to include new scripts or
changes to existing script, then the Test Sponsor can donate the scripts or script code changes to the TPC,
and work with the TPC to incorporate them in the next release.

If a Test Sponsor would like to see changes made to the Java or C++ code of the kit, then the changes
should be provided to the TPC for potential inclusion in the next release of the TPCx-HCI Benchmark
Kit.
Comment: It is the intention of the TPC to encourage contribution of code that fixes bugs or allows the
benchmark to run in new environments, and the Council will strive to release such changes with an
accelerated release schedule. Java and C++ code changes that alter the characteristics of the kit will need
to go through a rigorous testing and prototyping phase before approval by the Council.

1.5.10 Common kit with TPCx-V

The two benchmarks TPCx-HC and TPCx-V share the same Benchmark Kit. Although the same
Benchmark Kit may be used for both TPCx-HCI and TPCx-V benchmarks, the results of the TPCx-HCI
and TPCx-V benchmarks may not be compared against each other.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 51 of 271

CLAUSE 2 DATABASE DESIGN, SCALING & POPULATION

2.1 Introduction
The TPCx-HCI database is defined to consist of 33 separate and individual tables. Each VM in a Group
shall contain all of these tables even though some tables may not be referenced by the transactions that
are executed on that VM. The tables shall be scaled according to the contribution of that Group to the
overall throughput as defined in Clause 2.6. Each VM has a schema independent of other VMs. The
database schema is organized into four sets of tables:
• Customer Tables include 9 tables that contain information about the customers of the brokerage

firm.
• Broker Tables include 9 tables that contain information about the brokerage firm and broker related

data.
• Market Tables include 11 tables that contain information about companies, markets, exchanges, and

industry sectors.
• Dimension Tables include 4 dimension tables that contain common information such as addresses

and zip codes.
The relationship between the tables and the requirements governing their use are outlined in the
remaining sections of Clause 2.

2.1.1 Definitions

2.1.1.1 A Primary Key is a single column or combination of columns that uniquely identifies a row. None of
the columns that are part of the Primary Key may be nullable. A table must have no more than one
Primary Key.

2.1.1.2 A Foreign Key (FK) is a column or combination of columns used to establish and enforce a link
between the data in two tables. A link is created between two tables by adding the column or columns
that hold one table's Primary Key values to the other table. This column becomes a Foreign Key in the
second table.

2.2 TPCx-HCI Database Schema and Table Definitions
Details of the TPCx-HCI database schema, the data type requirements, the required structure of each
individual table, the entity relationship between tables and the individual column restrictions are defined
in this clause.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 52 of 271

2.2.1 Data Type Definitions

2.2.1.1 A Native Data Type is a built-in data type of the DBMS whose documented purpose is to store data of
a particular type described in the specification. For example, DATETIME must be implemented with a
built-in data type of the DBMS designed to store date-time information.

2.2.1.2 CHAR(n) means a character string that can hold up to n single-byte characters. Strings may be padded
with spaces to the maximum length. CHAR(n) must be implemented using a Native Data Type.

2.2.1.3 NUM(m[,n]) means an unsigned numeric value with at least m total Digits, of which n Digits are to the
right (after) the decimal point. The data type must be able to hold all possible values that can be
expressed as NUM(m[,n]). Omitting n, as in NUM(m), indicates the same as NUM(m,0). NUM must be
implemented using a Native Data Type.

2.2.1.4 SNUM(m[,n]) is identical to NUM(m[,n]) except that it can represent both positive and negative values.
SNUM must be implemented using a Native Data Type.

2.2.1.5 Comment: A SNUM data type may be used (at the Sponsor’s discretion) anywhere a NUM data type is
specified.

2.2.1.6 ENUM(m[,n]) or SENUM(m[,n]) means an exact numeric value (unsigned or signed, respectively).
ENUM and SENUM are identical to NUM and SNUM, respectively, except that they must be
implemented using a Native Data Type that provides exact representation of at least n Digits of
precision after the decimal place.

Comment: A numeric data type provides either exact or approximate representation of numeric values.
For example, INTEGER and DECIMAL are exact numeric data types and REAL and FLOAT are
approximate numeric data types (based on ANSI SQL definitions).

2.2.1.7 BOOLEAN is a data type capable of holding at least two distinct values that represent FALSE and
TRUE.

Comment: The convention in this document, as well as the implementation of VGen, is that the value zero
(0) denotes FALSE and the value one (1) denotes TRUE.

2.2.1.8 DATE represents the data type of date with a granularity of a day and must be able to support the
range of January 1, 1800 to December 31, 2199, inclusive. DATE must be implemented using a Native
Data Type.

Comment: A time component is not required but may be implemented.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 53 of 271

2.2.1.9 DATETIME represents the data type for a date value that includes a time component. The date
component must meet all requirements of the DATE data type. The time component must be capable of
representing the range of time values from 00:00:00 to 23:59:59. Fractional seconds may be
implemented, but are not required. DATETIME must be implemented using a Native Data Type.

2.2.1.10 BLOB(n) is a data type capable of holding a variable length binary object of n bytes.

2.2.1.11 BLOB_REF is a data type capable of referencing a BLOB(n) object that is stored outside the table on the
SUT.

2.2.2 Meta-type Definitions
The following meta-types are defined for ease of notation. These meta-types may be implemented using
the underlying data type on which each is defined. There is no requirement to implement the meta-types
as user-defined types in the DBMS. A meta-type may be implemented using a user-defined type in the
DBMS as long as the user-defined type incorporates a Native Data Type where required and inherits
the properties of that Native Data Type.

2.2.2.1 IDENT_T is defined as NUM(11) and is used to hold non-trade identifiers.

2.2.2.2 TRADE_T is defined as NUM(15) and is used to hold trade identifiers.

Trade identifiers have the following characteristics:
• They must be unique.
• They may be sparse.
• At load time they are generated by VGenLoader.
• At run time they are generated by Sponsor provided code.
• The VGenLoader code will not associate trade identifiers with Date/time or customer identifier or

account identifiers. No assumptions may be made about trade identifier sequencing.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 54 of 271

2.2.2.3 FIN_AGG_T is defined as SENUM(15,2) and is used for holding aggregated financial data such as
revenue figures, valuations, and asset values.

2.2.2.4 S_PRICE_T is defined as ENUM(8,2) and is used for holding the value of a share price.

2.2.2.5 S_COUNT_T is defined as NUM(12) and is used for holding the aggregate count of shares used in
many tables.

2.2.2.6 S_QTY_T is defined as SNUM(6) and is used for holding the quantity of shares per individual trade.

2.2.2.7 BALANCE_T is defined as SENUM(12,2) and is used for holding aggregate account and transaction
related values such as account balances, total commissions, etc.

2.2.2.8 VALUE_T is defined as SENUM(10,2) and is used for holding non-aggregated transaction and security
related values such as cost, dividend, etc.

2.2.3 General Schema Items

The following table lists the category, prefix and the name for all TPCx-HCI required tables in the
benchmark.

Category Table Name Table Prefix Definition

CUSTOMER

ACCOUNT_PERMISSION AP_ Clause 2.2.4.1

CUSTOMER C_ Clause 2.2.4.2

CUSTOMER_ACCOUNT CA_ Clause 2.2.4.3

CUSTOMER_TAXRATE CX_ Clause 2.2.4.4

HOLDING H_ Clause 2.2.4.5

HOLDING_HISTORY HH_ Clause 2.2.4.6

HOLDING_SUMMARY HS_ Clause 2.2.4.7

WATCH_ITEM WI_ Clause 2.2.4.8

WATCH_LIST WL_ Clause 2.2.4.9

BROKER

BROKER B_ Clause 2.2.5.1

CASH_TRANSACTION CT_ Clause 2.2.5.2

CHARGE CH_ Clause 2.2.5.3

COMMISSION_RATE CR_ Clause 2.2.5.4

SETTLEMENT SE_ Clause 2.2.5.5

TRADE T_ Clause 2.2.5.6

TRADE_HISTORY TH_ Clause 2.2.5.7

TRADE_REQUEST TR_ Clause 2.2.5.8

TRADE_TYPE TT_ Clause 2.2.5.9

MARKET

COMPANY CO_ Clause 2.2.6.1

COMPANY_COMPETITOR CP_ Clause 2.2.6.2

DAILY_MARKET DM_ Clause 2.2.6.3

EXCHANGE EX_ Clause 2.2.6.4

FINANCIAL FI_ Clause 2.2.6.5

INDUSTRY IN_ Clause 2.2.6.6

LAST_TRADE LT_ Clause 2.2.6.7

NEWS_ITEM NI_ Clause 2.2.6.8

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 55 of 271

Category Table Name Table Prefix Definition

NEWS_XREF NX_ Clause 2.2.6.9

SECTOR SC_ Clause 2.2.6.10

SECURITY S_ Clause 2.2.6.11

DIMENSION

ADDRESS AD_ Clause 2.2.7.1

STATUS_TYPE ST_ Clause 2.2.7.2

TAXRATE TX_ Clause 2.2.7.3

ZIP_CODE ZC_ Clause 2.2.7.4

2.2.3.1 The Primary Key references defined in this section must be maintained by the database during a Test
Run. The Primary Keys are marked with PK or PK+ in the Relations field for each table definition. PK
indicates that the column is the table’s Primary Key while PK+ indicates that the column is part of a
composite (multi-column) Primary Key.

2.2.3.2 The Foreign Key references defined in this section must be maintained by the database during a Test
Run. The Foreign Keys are marked with FK () or FK+ () in the Relations field for each table definition.
FK () indicates a single-column Foreign Key while FK+ () indicates that the column is part of a
composite (multi-column) Foreign Key. The table prefix enclosed in the parenthesis indicates the
target table for the Foreign Key reference.

2.2.3.3 The constraints defined in this section must be enforced by the database during a Test Run. The
constraints are listed in the Constraints column for each table definition.

Comment: Unless a Not Null constraint is present, a column must allow Null.

2.2.3.4 For each TPCx-HCI required table, the columns can be implemented in any order, using any physical
representation available from the tested system that satisfies the schema data type requirements.

2.2.4 Customer Tables
These groups of tables contain information about customer related data.

2.2.4.1 ACCOUNT_PERMISSION

This table contains information about the access the customer or an individual other than the customer
has to a given customer account. Customer accounts may have trades executed on them by more than
one person.
Table Prefix: AP_

Column Name Data Type Constraints Relations Description

AP_CA_ID IDENT_T Not Null
PK+
FK (CA_)

Customer account identifier.

AP_ACL CHAR(4) Not Null
Access Control List defining the
permissions the person has on the
customer account.

AP_TAX_ID CHAR(20) Not Null PK+ Tax identifier of the person with access
to the customer account.

AP_L_NAME CHAR(25) Not Null Last name of the person with access to
the customer account.

AP_F_NAME CHAR(20) Not Null First name of the person with access to
the customer account.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 56 of 271

2.2.4.2 CUSTOMER

This table contains information about the customers of the brokerage firm.
Table Prefix: C_

Column Name Data Type Constraints Relations Description

C_ID IDENT_T Not Null PK Customer identifier, used internally to link
customer information.

C_TAX_ID CHAR(20) Not Null
Customer’s tax identifier, used externally
on communication to the customer. Is
alphanumeric.

C_ST_ID CHAR(4) Not Null FK (ST_) Customer status type identifier. Identifies
if this customer is active or not.

C_L_NAME CHAR(25) Not Null Primary Customer's last name.

C_F_NAME CHAR(20) Not Null Primary Customer's first name.

C_M_NAME CHAR(1) Primary Customer's middle name initial

C_GNDR CHAR(1) Gender of the primary customer. Valid
values ‘M’ for male or ‘F’ for Female.

C_TIER NUM(1)
Not Null
 in 1,2,3

Customer tier: tier 1 accounts are charged
highest fees, tier 2 accounts are charged
medium fees, and tier 3 accounts have the
lowest fees.

C_DOB DATE Not Null Customer’s date of birth.

C_AD_ID IDENT_T Not Null FK (AD_) Address identifier of the customer's
address.

C_CTRY_1 CHAR(3) Country code for Customer's phone 1.

C_AREA_1 CHAR(3) Area code for customer’s phone 1.

C_LOCAL_1 CHAR(10) Local number for customer’s phone 1.

C_EXT_1 CHAR(5) Extension number for Customer’s phone 1.

C_CTRY_2 CHAR(3) Country code for Customer's phone 2.

C_AREA_2 CHAR(3) Area code for Customer’s phone 2.

C_LOCAL_2 CHAR(10) Local number for Customer’s phone 2.

C_EXT_2 CHAR(5) Extension number for Customer’s phone 2.

C_CTRY_3 CHAR(3) Country code for Customer's phone 3.

C_AREA_3 CHAR(3) Area code for Customer’s phone 3.

C_LOCAL_3 CHAR(10) Local number for Customer’s phone 3.

C_EXT_3 CHAR(5) Extension number for Customer’s phone 3.

C_EMAIL_1 CHAR(50) Customer's e-mail address 1.

C_EMAIL_2 CHAR(50) Customer's e-mail address 2.

2.2.4.3 CUSTOMER_ACCOUNT

The CUSTOMER_ACCOUNT table contains account information related to accounts of each customer.
Table Prefix: CA_

Column Name Data Type Constraints Relations Description

CA_ID IDENT_T Not Null PK Customer account identifier.

CA_B_ID IDENT_T Not Null FK (B_) Broker identifier of the broker who
manages this customer account.

CA_C_ID IDENT_T Not Null FK (C_) Customer identifier of the customer who
owns this account.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 57 of 271

Column Name Data Type Constraints Relations Description

CA_NAME CHAR(50) Name of customer account. Example,
"Trish Hogan 401(k)".

CA_TAX_ST NUM(1)
Not Null
in 0,1,2

Tax status of this account: 0 means this
account is not taxable, 1 means this
account is taxable and tax must be
withheld, 2 means this account is taxable
and tax does not have to be withheld.

CA_BAL BALANCE_T Not Null Account’s cash balance.

2.2.4.4 CUSTOMER_TAXRATE

The table contains two references per customer into the TAXRATE table. One reference is for
state/province tax; the other one is for national tax. The TAXRATE table contains the actual tax rates.
Table Prefix: CX_

Column Name Data Type Constraints Relations Description

CX_TX_ID CHAR(4) Not Null
PK+
FK (TX_)

Tax rate identifier.

CX_C_ID IDENT_T Not Null
PK+
FK (C_)

Customer identifier of a customer that
must pay this tax rate.

2.2.4.5 HOLDING

The table contains information about the customer account’s security holdings.
Table Prefix: H_

Column Name Data Type Constraints Relations Description

H_T_ID TRADE_T Not Null
PK
FK (T_)

Trade Identifier of the trade.

H_CA_ID IDENT_T Not Null FK+ (HS_) Customer account identifier.

H_S_SYMB CHAR(15) Not Null FK+ (HS_) Symbol for the security held.

H_DTS DATETIME Not Null Date this security was purchased or sold.

H_PRICE S_PRICE_T
Not Null
> 0

 Unit purchase price of this security.

H_QTY S_QTY_T Not Null Quantity of this security held.

2.2.4.6 HOLDING_HISTORY

The table contains information about holding positions that were inserted, updated or deleted and which
trades made each change.
Table Prefix: HH_

Column Name Data Type Constraints Relations Description

HH_H_T_ID TRADE_T Not Null
PK+
FK (T_)

Trade Identifier of the trade that
originally created the holding row. This
is a Foreign Key to the TRADE table
rather than the HOLDING table because
the HOLDING row could be deleted.

HH_T_ID TRADE_T Not Null
PK+
FK (T_)

Trade Identifier of the current trade (the
one that last inserted, updated or deleted
the holding identified by HH_H_T_ID).

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 58 of 271

Column Name Data Type Constraints Relations Description

HH_ BEFORE_QTY S_QTY_T Not Null
Quantity of this security held before the
modifying trade. On initial insertion,
HH_BEFORE_QTY is 0.

HH_ AFTER_QTY S_QTY_T Not Null
Quantity of this security held after the
modifying trade. If the HOLDING row
gets deleted by the modifying trade,
then HH_AFTER_QTY is 0.

2.2.4.7 HOLDING_SUMMARY

The table contains aggregate information about the customer account’s security holdings.
Table Prefix: HS_

Column Name Data Type Constraints Relations Description

HS_CA_ID IDENT_T Not Null
PK+
FK (CA_)

Customer account identifier.

HS_S_SYMB CHAR(15) Not Null
PK+
FK (S_)

Symbol for the security held.

HS_ QTY S_QTY_T Not Null Total quantity of this security held.

Comment: HOLDING_SUMMARY may be implemented as a view on HOLDING, in which case the
HOLDING Foreign Key references to HOLDING_SUMMARY are automatically met. However, the
HOLDING_SUMMARY Foreign Key references to CA_ and S_ must then be adopted and met by
HOLDING.

2.2.4.8 WATCH_ITEM

The table contains list of securities to watch for a watch list.
Table Prefix: WI_

Column Name Data Type Constraints Relations Description

WI_WL_ID IDENT_T Not Null
PK+
FK (WL_)

Watch list identifier.

WI_S_SYMB CHAR(15) Not Null
PK+
FK (S_)

Symbol of the security to watch.

2.2.4.9 WATCH_LIST

The table contains information about the customer who created this watch list.
Table Prefix: WL_

Column Name Data Type Constraints Relations Description

WL_ID IDENT_T Not Null PK Watch list identifier.

WL_C_ID IDENT_T Not Null FK (C_) Identifier of customer who created this
watch list.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 59 of 271

2.2.5 Broker Tables
This group of tables contains data related to the brokerage firm and brokers.

2.2.5.1 BROKER

The table contains information about brokers.
Table Prefix: B_

Column Name Data Type Constraints Relations Description

B_ID IDENT_T Not Null PK Broker identifier.

B_ST_ID CHAR(4) Not Null FK (ST_) Broker status type identifier; identifies if
this broker is active or not.

B_NAME CHAR(49) Not Null Broker's name.

B_NUM_TRADES NUM(9) Not Null Number of trades this broker has
executed so far.

B_COMM_TOTAL BALANCE_T Not Null Amount of commission this broker has
earned so far.

2.2.5.2 CASH_TRANSACTION

The table contains information about cash transactions.
Table Prefix: CT_

Column Name Data Type Constraints Relations Description

CT_T_ID TRADE_T Not Null
PK
FK (T_)

Trade identifier.

CT_DTS DATETIME Not Null Date and time stamp of when the
transaction took place.

CT_AMT VALUE_T Not Null Amount of the cash transaction.

CT_NAME CHAR(100)
Transaction name, or description: e.g.
“Buy Keebler Cookies”, “Cash from sale
of DuPont stock”.

2.2.5.3 CHARGE

The table contains information about charges for placing a trade request. Charges are based on the
customer’s tier and the trade type.
Table Prefix: CH_

Column Name Data Type Constraints Relations Description

CH_TT_ID CHAR(3) Not Null
PK+
FK (TT_)

Trade type identifier.

CH_C_TIER NUM(1)
Not Null
in 1,2,3

PK+ Customer’s tier.

CH_CHRG VALUE_T Not Null
>= 0 Charge for placing a trade request.

2.2.5.4 COMMISSION_RATE

The commission rate depends on several factors: the tier the customer is in, the type of trade, the quantity
of securities traded, and the exchange that executes the trade.

Table Prefix: CR_

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 60 of 271

Column Name Data Type Constraints Relations Description

CR_C_TIER NUM(1)
Not Null
 in 1,2,3

PK+ Customer’s tier. Valid values 1, 2 or 3.

CR_TT_ID CHAR(3) Not Null
PK+
FK (TT_)

Trade Type identifier. Identifies the type
of trade.

CR_EX_ID CHAR(6) Not Null
PK+
FK (EX_)

Exchange identifier. Identifies the
exchange the trade is against.

CR_FROM_QTY S_QTY_T
Not Null
>= 0

PK+ Lower bound of quantity being traded to
match this commission rate.

CR_TO_QTY S_QTY_T

Not Null
>
CR_FROM_
QTY

 Upper bound of quantity being traded to
match this commission rate.

CR_RATE NUM(5,2)
Not Null
>= 0

 Commission rate. Ranges from 0.00 to
100.00. Example: 10% is 10.00.

2.2.5.5 SETTLEMENT

The table contains information about how trades are settled: specifically whether the settlement is on
margin or in cash and when the settlement is due.
Table Prefix: SE_

Column Name Data Type Constraints Relations Description

SE_T_ID TRADE_T Not Null
PK
FK (T_)

Trade identifier.

SE_CASH_TYPE CHAR(40) Not Null
Type of cash settlement involved:
possible values “Margin”, “Cash
Account”.

SE_CASH_DUE_DATE DATE Not Null
Date by which customer or brokerage
must receive the cash; date of trade plus
two days.

SE_AMT VALUE_T Not Null Cash amount of settlement.

2.2.5.6 TRADE

The table contains information about trades.
Table Prefix: T_

Column Name Data Type Constraints Relations Description

T_ID TRADE_T Not Null PK Trade identifier.

T_DTS DATETIME Not Null Date and time of trade.

T_ST_ID CHAR(4) Not Null FK (ST_) Status type identifier; identifies the
status of this trade.

T_TT_ID CHAR(3) Not Null FK (TT_) Trade type identifier; identifies the type
of his trade.

T_IS_CASH BOOLEAN
Not Null
in 0, 1

 Is this trade a cash (1) or margin (0)
trade?

T_S_SYMB CHAR(15) Not Null FK (S_) Security symbol of the security that was
traded.

T_QTY S_QTY_T
Not Null
>0

 Quantity of securities traded.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 61 of 271

Column Name Data Type Constraints Relations Description

T_BID_PRICE S_PRICE_T
Not Null
> 0

 The requested unit price.

T_CA_ID IDENT_T Not Null FK (CA_) Customer account identifier.

T_EXEC_NAME CHAR(49) Not Null Name of the person executing the trade.

T_TRADE_PRICE S_PRICE_T Unit price at which the security was
traded.

T_CHRG VALUE_T
Not Null
>= 0

 Fee charged for placing this trade
request.

T_COMM VALUE_T
Not Null
>= 0

 Commission earned on this trade; may
be zero.

T_TAX VALUE_T
Not Null
>= 0

Amount of tax due on this trade; can be
zero. Whether the tax is withheld from
the settlement amount depends on the
customer account tax status.

T_LIFO BOOLEAN
Not Null
in 0, 1

If this trade is closing an existing position,
is it executed against the newest-to-
oldest account holdings of this security
(1=LIFO) or against the oldest-to-newest
account holdings (0=FIFO).

2.2.5.7 TRADE_HISTORY

The table contains the history of each trade transaction through the various states.
Table Prefix: TH_

Column Name Data Type Constraints Relations Description

TH_T_ID TRADE_T Not Null
PK+
FK (T_)

Trade identifier. This value will be used
for the corresponding T_ID in the
TRADE and SE_T_ID in the
SETTLEMENT table if this trade request
results in a trade.

TH_DTS DATETIME Not Null Timestamp of when the trade history
was updated.

TH_ST_ID CHAR(4) Not Null
PK+
FK (ST_)

Status type identifier.

2.2.5.8 TRADE_REQUEST

The table contains information about pending limit trades that are waiting for a certain security price
before the trades are submitted to the market.
Table Prefix: TR_

Column Name Data Type Constraints Relations Description

TR_T_ID TRADE_T Not Null
PK
FK (T_)

Trade request identifier. This value will
be used for processing the pending limit
order when it is subsequently triggered.

TR_TT_ID CHAR(3) Not Null FK (TT_) Trade request type identifier; identifies
the type of trade.

TR_S_SYMB CHAR(15) Not Null FK (S_) Security symbol of the security the
customer wants to trade.

TR_QTY S_QTY_T
Not Null
 > 0

 Quantity of security the customer had
requested to trade.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 62 of 271

Column Name Data Type Constraints Relations Description

TR_BID_PRICE S_PRICE_T
Not Null
> 0

Price the customer wants per unit of
security that they want to trade. Value of
zero implies the customer wants to trade
now at the market price

TR_B_ID IDENT_T Not Null FK (B_) Identifies the broker handling the trade.

2.2.5.9 TRADE_TYPE

The table contains a list of valid trade types.
Table Prefix: TT_

Column Name Data Type Constraints Relations Description

TT_ID CHAR(3) Not Null PK Trade type identifier: Values are: “TMB”,
“TMS”, “TSL”, “TLS”, and “TLB”.

TT_NAME CHAR(12) Not Null
Trade type name. Examples “Limit
Buy", "Limit Sell", "Market Buy", "Market
Sell", “Stop Loss”.

TT_IS_SELL BOOLEAN
Not Null
in 0, 1

 1 if this is a “Sell” type transaction. 0 if
this is a “Buy” type transaction.

TT_IS_MRKT BOOLEAN
Not Null
in 0, 1

1 if this is a market transaction that is
submitted to the market exchange
emulator immediately. 0 if this is a limit
transaction.

The contents of the TRADE_TYPE table are shown below for readability, since the TT_ID values are used
elsewhere in the specification.

TT_ID TT_NAME TT_IS_SELL TT_IS_MRKT

TLB Limit-Buy 0 0

TLS Limit-Sell 1 0

TMB Market-Buy 0 1

TMS Market-Sell 1 1

TSL Stop-Loss 1 0

2.2.6 Market Tables
This group of tables contains information related to the exchanges, companies, and securities that create
the Market.

2.2.6.1 COMPANY

The table contains information about all companies with publicly traded securities.

Table Prefix: CO_

Column Name Data Type Constraints Relations Description

CO_ID IDENT_T Not Null PK Company identifier.

CO_ST_ID CHAR(4) Not Null FK (ST_)
Company status type identifier.
Identifies if this company is active or
not.

CO_NAME CHAR(60) Not Null Company name.

CO_IN_ID CHAR(2) Not Null FK (IN_) Industry identifier of the industry the
company is in.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 63 of 271

Column Name Data Type Constraints Relations Description

CO_SP_RATE CHAR(4) Not Null Company's credit rating from Standard
& Poor.

CO_CEO CHAR(46) Not Null Name of Company's Chief Executive
Officer.

CO_AD_ID IDENT_T Not Null FK (AD_) Address identifier.

CO_DESC CHAR(150) Not Null Company description.

CO_OPEN_DATE DATE Not Null Date the company was founded.

2.2.6.2 COMPANY_COMPETITOR

This table contains information for the competitors of a given company and the industry in which the
company competes.
Table Prefix: CP_

Column Name Data Type Constraints Relations Description

CP_CO_ID IDENT_T Not Null
PK+
FK (CO_)

Company identifier.

CP_COMP_CO_ID IDENT_T Not Null
PK+
FK (CO_)

Company identifier of the competitor
company for the specified industry.

CP_IN_ID CHAR(2) Not Null
PK+
FK (IN_)

Industry identifier of the industry in
which the CP_CO_ID company
considers that the CP_COMP_CO_ID
company competes with it. This may not
be either company’s primary industry.

2.2.6.3 DAILY_MARKET

The table contains daily market statistics for each security, using the closing market data from the last
completed trading day. VGenLoader will load this table with data for each security for the period
starting 3 January 2000 and ending 31 December 2004.
Table Prefix: DM_

Column Name Data Type Constraints Relations Description

DM_DATE DATE Not Null PK+ Date of last completed trading day.

DM_S_SYMB CHAR(15) Not Null
PK+
FK (S_)

Security symbol of this security.

DM_CLOSE S_PRICE_T Not Null Closing price for this security.

DM_HIGH S_PRICE_T Not Null Day's High price for this security.

DM_LOW S_PRICE_T Not Null Day's Low price for this security.

DM_VOL S_COUNT_T Not Null Day's volume for this security.

2.2.6.4 EXCHANGE

The table contains information about financial exchanges.
Table Prefix: EX_

Column Name Data Type Constraints Relations Description

EX_ID CHAR(6) Not Null PK Exchange identifier. Values are, "NYSE",
"NASDAQ", "AMEX", ”PCX”.

EX_NAME CHAR(100) Not Null Exchange name.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 64 of 271

Column Name Data Type Constraints Relations Description

EX_NUM_SYMB NUM(6) Not Null Number of securities traded on this
exchange.

EX_OPEN NUM(4) Not Null Exchange Daily start time expressed in
GMT.

EX_CLOSE NUM(4) Not Null Exchange Daily stop time, expressed in
GMT.

EX_DESC CHAR(150) Description of the exchange.

EX_AD_ID IDENT_T Not Null FK (AD_) Mailing address of exchange.

2.2.6.5 FINANCIAL

The table contains information about a company's quarterly financial reports. VGenLoader will load this
table with financial information for each company for the Quarters starting 1 January 2000 and ending
with the quarter that starts 1 October 2004.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 65 of 271

Table Prefix: FI_

Column Name Data Type Constraints Relations Description

FI_CO_ID IDENT_T Not Null
PK+
FK (CO_)

Company identifier.

FI_YEAR NUM(4) Not Null PK+ Year of the quarter end.

FI_QTR NUM(1)
Not Null
in 1,2,3,4

PK+
Quarter number that the financial
information is for: valid values 1, 2, 3,
4.

FI_QTR_START_DATE DATE Not Null Start date of quarter.

FI_REVENUE FIN_AGG_T Not Null Reported revenue for the quarter.

FI_NET_EARN FIN_AGG_T Not Null Net earnings reported for the quarter.

FI_BASIC_EPS VALUE_T Not Null Basic earnings per share reported for
the quarter.

FI_DILUT_EPS VALUE_T Not Null Diluted earnings per share reported
for the quarter.

FI_MARGIN VALUE_T Not Null Profit divided by revenues for the
quarter.

FI_INVENTORY FIN_AGG_T Not Null Value of inventory on hand at the end
of the quarter.

FI_ASSETS FIN_AGG_T Not Null Value of total assets at the end of the
quarter.

FI_LIABILITY FIN_AGG_T Not Null Value of total liabilities at the end of
the quarter.

FI_OUT_BASIC S_COUNT_T Not Null Average number of common shares
outstanding (basic).

FI_OUT_DILUT S_COUNT_T Not Null Average number of common shares
outstanding (diluted).

2.2.6.6 INDUSTRY

The table contains information about industries. Used to categorize which industries a company is in.
Table Prefix: IN_

Column Name Data Type Constraints Relations Description

IN_ID CHAR(2) Not Null PK Industry identifier.

IN_NAME CHAR(50) Not Null
Industry name. Examples: "Air Travel",
"Air Cargo", "Software", "Consumer
Banking", "Merchant Banking", etc.

IN_SC_ID CHAR(2) Not Null FK (SC_) Sector identifier of the sector the
industry is in.

2.2.6.7 LAST_TRADE

The table contains one row for each security with the latest trade price and volume for each security.
Table Prefix: LT_

Column Name Data Type Constraints Relations Description

LT_S_SYMB CHAR(15) Not Null
PK
FK (S_)

Security symbol.

LT_DTS DATETIME Not Null Date and timestamp of when this row
was last updated.

LT_PRICE S_PRICE_T Not Null Latest trade price for this security.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 66 of 271

Column Name Data Type Constraints Relations Description

LT_OPEN_PRICE S_PRICE_T Not Null Price the security opened at today.

LT_VOL S_COUNT_T Not Null
Volume of trading on the market for this
security so far today. Value initialized to
0.

2.2.6.8 NEWS_ITEM

The table contains information about news items of interest.
Table Prefix: NI_

Column Name Data Type Constraints Relations Description

NI_ID IDENT_T Not Null PK News item identifier.

NI_HEADLINE CHAR(80) Not Null News item headline.

NI_SUMMARY CHAR(255) Not Null News item summary.

NI_ITEM BLOB(100000)
or BLOB_REF Not Null Large object containing the news item or

links to the story.

NI_DTS DATETIME Not Null Date and time the news item was
published.

NI_SOURCE CHAR(30) Not Null Source of the news item.

NI_AUTHOR CHAR(30) Author of the news item. May be null if
the news item came off a wire service.

2.2.6.9 NEWS_XREF

The table contains a cross-reference of news items to companies that are mentioned in the news item.
Table Prefix: NX_

Column Name Data Type Constraints Relations Description

NX_NI_ID IDENT_T Not Null
PK+
FK (NI_)

News item identifier.

NX_CO_ID IDENT_T Not Null
PK+
FK (CO_)

Company identifier of the company (or
one of the companies) mentioned in the
news item.

2.2.6.10 SECTOR

The table contains information about market sectors.
Table Prefix: SC_

Column Name Data Type Constraints Relations Description

SC_ID CHAR(2) Not Null PK Sector identifier.

SC_NAME CHAR(30) Not Null
Sector name. Examples: “Energy”,
“Materials”, “Industrials”, “Health Care,
etc.

2.2.6.11 SECURITY

This table contains information about each security traded on any of the exchanges.
Table Prefix: S_

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 67 of 271

Column Name Data Type Constraints Relations Description

S_SYMB CHAR(15) Not Null PK Security symbol used to identify the
security on "ticker".

S_ISSUE CHAR(6) Not Null
Security issue type. Example:
"COMMON", "PERF_A", "PERF_B",
etc.

S_ST_ID CHAR(4) Not Null FK (ST_)
Security status type identifier.
Identifies if this security is active or
not.

S_NAME CHAR(70) Not Null Security name.

S_EX_ID CHAR(6) Not Null FK (EX_) Exchange identifier of the exchange
the security is traded on.

S_CO_ID IDENT_T Not Null FK (CO_) Company identifier of the company
this security is issued by.

S_NUM_OUT S_COUNT_T Not Null Number of shares outstanding for this
security.

S_START_DATE DATE Not Null Date security first started trading.

S_EXCH_DATE DATE Not Null Date security first started trading on
this exchange.

S_PE VALUE_T Not Null Current share price to earnings per
share ratio.

S_52WK_HIGH S_PRICE_T Not Null Security share price 52-week high.

S_52WK_HIGH_DATE DATE Not Null Date of security share price 52-week
high.

S_52WK_LOW S_PRICE_T Not Null Security share price 52-week low.

S_52WK_LOW_DATE DATE Not Null Date of security share price 52-week
low.

S_DIVIDEND VALUE_T Not Null
Annual Dividend per share amount.
May be zero, is not allowed to be
negative.

S_YIELD NUM(5,2) Not Null Dividend to share price ratio. Value is
in percent. Example 10.00 is 10%

2.2.7 Dimension Tables
This group of tables includes 4 dimension tables that contain common information such as addresses and
zip codes.

2.2.7.1 ADDRESS

This table contains address information.
Table Prefix: AD_

Column Name Data Type Constraints Relations Description

AD_ID IDENT_T Not Null PK Address identifier.

AD_LINE1 CHAR(80) Address Line 1.

AD_LINE2 CHAR(80) Address Line 2.

AD_ZC_CODE CHAR(12) Not Null FK (ZC_) Zip or postal code.

AD_CTRY CHAR(80) Country.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 68 of 271

2.2.7.2 STATUS_TYPE

This table contains all status values for several different status usages. Multiple tables reference this table
to obtain their status values.
Table Prefix: ST_

Column Name Data Type Constraints Relations Description

ST_ID CHAR(4) Not Null PK Status type identifier.

ST_NAME CHAR(10) Not Null
Status value. Examples: "Active",
"Completed", "Pending", “Canceled” and
"Submitted”.

The contents of the STATUS_TYPE table are shown below for readability, since the ST_ID values are used
elsewhere in the specification.

ST_ID ST_NAME

ACTV Active

CMPT Completed

CNCL Canceled

PNDG Pending

SBMT Submitted

2.2.7.3 TAXRATE

The table contains information about tax rates.
Table Prefix: TX_

Column Name Data Type Constraints Relations Description

TX_ID CHAR(4) Not Null PK
Tax rate identifier. Format - two letters
followed by one digit. Examples: ‘US1’,
‘CA1’.

TX_NAME CHAR(50) Not Null Tax rate name.

TX_RATE NUM(6,5)
Not Null
>= 0

 Tax rate, between 0.00000 and 1.00000,
inclusive.

2.2.7.4 ZIP_CODE

The table contains zip and postal codes, towns, and divisions that go with them.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 69 of 271

Table Prefix: ZC_

Column Name Data Type Constraints Relations Description

ZC_CODE CHAR(12) Not Null PK Postal code.

ZC_TOWN CHAR(80) Not Null Town.

ZC_DIV CHAR(80) Not Null State or province or county.

2.3 Implementation Rules
The Data Definition Language (DDL) statements contained in the TPCx-HCI Benchmark Kit create the
schema to conform to this specification. After creating disk space to hold the data, the Test Sponsor must
run the VDb/pgsql/scripts/linux/setup.sh shell script, which creates and populates the schema on the
provided disk space. This section describes what rules are followed by the DDL that implements the
schema. The only changes allowed to the implementation rules are those defined in Clauses 1.5.6 and
1.5.7.
For full details of the Implementation Rules, see Appendix 10.1.

2.4 TPCx-HCI Database Size and Table Cardinality
The transaction load generated to service customer accounts and to interact with financial markets drives
the throughput of the TPCx-HCI benchmark. To increase the throughput, more customers and their
associated data must be configured. The cardinality of the CUSTOMER table is the basis of the TPCx-HCI
database size and scaling. CUSTOMER table cardinality is determined based on the transaction
throughput metric requirements defined in Clause 5.6.7.

Configured Customers means the number of customers (with corresponding rows in the associated
TPCx-HCI tables) configured at database generation.

Active Customers means the number of customers (with corresponding rows in the associated
TPCx-HCI tables) that are accessed during the Test Run. Active Customers may be a subset of
Configured Customers that were loaded at database generation.

The TPCx-HCI benchmark has three types of sizing requirements for its tables:
• Fixed Tables are tables that always have the same number of rows regardless of the database size

and transaction throughput. For example, TRADE_TYPE has five rows.
• Scaling Tables each have a defined cardinality that has a constant relationship to the cardinality of

the CUSTOMER table. Transactions may update rows from these tables, but the table sizes remain
constant.

• Growing Tables each have an initial cardinality that has a defined relationship to the cardinality of
the CUSTOMER table. However, the cardinality increases with new growth during the benchmark
run at a rate that is proportional to transaction throughput rates.

Comment: The HOLDING and HOLDING_SUMMARY tables are considered Growing Tables. Rows are
added to and deleted from the HOLDING and HOLDING_SUMMARY tables during the benchmark
execution, but the average size of the tables continues to grow at an insignificant rate during Steady
State. The TRADE_REQUEST table is also considered a Growing Table because it is initially empty and
at runtime grows to an average size that is a fixed relationship to the transaction throughput rates and
not to the cardinality of the CUSTOMER table.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 70 of 271

2.4.1 Initial Database Size Requirements

2.4.1.1 The test database must be initially populated using data generated by VGenLoader. By definition, the
TPC provided VGenLoader produces the correct number of rows for each table. The test database must
be built including the initial database population and User-Defined Objects present immediately prior
to the first Test Run.

2.4.1.2 The initial database population is based on the number of customers. The benchmark Sponsor selects
the CUSTOMER table cardinality, based on the desired transaction throughput. Clause 5.6.8.4 defines
the Nominal Throughput for a given number of rows in the CUSTOMER table. The minimum number
of rows for the CUSTOMER table in each database is 5000. The size of the CUSTOMER table can be
increased in increments of 1000 customers. A set of 1000 customers is known as a Load Unit.

2.4.1.3 The overall Load Unit count, based on Clause 5.6.8.4, shall be proportioned among the Groups and
Tiles as specified in Clause 4.3.4.2. Each of VM2 and VM3 in a Group must be initially populated with
the same number of Load Units. The initial database populations of all Group 1 databases in all Tiles
are required to be equal. The number of Load Units in the initial database population in a database in
Groups 2, 3, and 4 must be 2, 3, and 4 times the number of Load Units in a Group 1 database,
respectively. The minimum aggregate number of Load Units is (50 X Tile count) with Tile count
calculated from formulas in Clause 4.3.4.1. Since the size of the CUSTOMER table in a Group 1
database may be increased only in increments of 1,000 customers, the aggregate number of Load Units
may only be increased in increments of (10 X Tile count) Load Units.

2.4.1.4 The Growing Tables are populated with an initial set of rows sufficient to enable all benchmark
Transactions to run.

2.4.1.5 The Scale Factor is the number of required customer rows per single Transactions-Per-Second-HCI.
The Scale Factor for Nominal Throughput is 500.

2.4.1.6 The Initial Trade Days (ITD) is the number of Business Days used to populate the database. This
population is made of trade data that would be generated by the SUT when running at the Nominal
Throughput for the specified number of Business Days. The number of Initial Trade Days is 125.

2.4.1.7 The number of Load Units configured in each database must be equal to the number of Load Units
actually accessed during the Test Run.

2.4.1.8 The following variables are used as an aid in defining TPCx-HCI table cardinalities:

Variable Table Description

customers CUSTOMER Number of rows in the CUSTOMER table.

accounts CUSTOMER_ACCOUNT
Number of rows in the CUSTOMER_ACCOUNT table. Equal to 5 *
customers.

trades TRADE
Number of trade rows in the TRADE table. The trades number is
equal to 7200 * customers (125 days of initial population at SF =
500).

settled SETTLEMENT
Number of settled trade rows in the SETTLEMENT table. The settled
number is equal to trades.

companies COMPANY Number of rows in the COMPANY table. There are a fixed 5,000
companies.

securities SECURITY Number of rows in the SECURITY table. There are a fixed 6,850
securities.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 71 of 271

2.4.1.9 The following rules are used by VGenLoader to calculate the cardinalities of the Scaling Tables and
Growing Tables. The VGen package uses random number generators to set the number of rows for
relationships such as securities per account and, as a result, the cardinality of some TPCx-HCI tables
can only be approximated.

Table Variable Used Rule

ACCOUNT_PERMISSION accounts
60% have just the customer as the executor
38% have the customer and 1 other executor
2% have the customer and 2 other executors
Avg. is ~1.42 * accounts

ADDRESS customers companies(5,000) + EXCHANGE(4) + customers

BROKER customers 0.01 * customers (or 1 broker per 100 customers)

CASH_TRANSACTION settled ~0.92 * settled (84% of buys and 100% of sells are cash)

COMPANY companies 1 * companies

COMPANY_COMPETITOR companies 3 * companies

CUSTOMER_ACCOUNT customers 5 * customers

CUSTOMER_TAXRATE customers 2 * customers

DAILY_MARKET securities securities * 1,305 (5 years of 5-day work weeks with
two leap years)

FINANCIAL companies companies * 20 quarters (5 years)

HOLDING settled ~0.07955 * settled (assumes ITD = 125 and SF = 500)

HOLDING_HISTORY settled ~1.3331 * settled (assumes ITD = 125 and SF = 500)

HOLDING_SUMMARY accounts ~ 9.9234 * accounts (assumes ITD = 125 and SF = 500)

LAST_TRADE securities 1 * securities

NEWS_ITEM companies 2 * companies

NEWS_XREF companies 2 * companies

SECURITY customers 1 * Securities

SETTLEMENT settled 1 * settled

TRADE customers 7200 * customers = ((ITD * 8 * 3600) / SF) *
customers

TRADE_HISTORY settled
~((2 rows per market trade) * 0.6)
 +
 ((3 rows per limit trade) * 0.4)
Average is (2.4 * settled)

TRADE_REQUEST 0

WATCH_LIST customers Each customer has one watch list (1 * customers)

WATCH_ITEM customers Average=100 items per watch list * customers

2.4.1.10 The following list contains the cardinality of Fixed Tables.

Fixed Tables Cardinality Cardinality Formula

CHARGE 15 5 trade types * 3 customer tiers

COMMISSION_RATE 240 4 rates * 4 exchanges * 5 trade types * 3 customer tiers

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 72 of 271

COMPANY 5,000 5,000 companies

COMPANY_COMPETITOR 15,000 3 * companies

DAILY_MARKET 8,939,250 1,305 days (5 years) * securities

EXCHANGE 4 4 exchanges

FINANCIAL 100,000 companies * 20

INDUSTRY 102 102 industries

LAST_TRADE 6,850 securities * 1

NEWS_ITEM 10,000 companies * 2

NEWS_REF 10,000 companies * 2

SECTOR 12 12 sectors

SECURITY 6,850 securities * 1

STATUS_TYPE 5 5 status types

TAXRATE 320 320 tax rates

TRADE_TYPE 5 5 trade types

ZIP_CODE 14,741 14,741 zip codes

2.4.1.11 The following list contains the cardinality of the Scaling Tables for the minimum of 5,000 customers

Scaling Tables Cardinality Cardinality Formula

CUSTOMER 5,000 Scaled based on transaction rate

CUSTOMER_TAXRATE 10,000 customers * 2

CUSTOMER_ACCOUNT 25,000 accounts = (5 * customers)

ACCOUNT_PERMISSION ~35,500 accounts * (Average of ~1.42 permissions per account)

ADDRESS 10,004 companies (5,000) + EXCHANGE (4) + customers

BROKER 50 customers * 0.01

WATCH_LIST 5,000 customers * 1

WATCH_ITEM ~ 500,000 customers * (Average of ~100 securities per watch list)

2.4.1.12 The following list shows the initial cardinality of the Growing Tables for the minimum of 5,000
customers, ITD-125, and SF=500.

Growing Tables Cardinality Cardinality Formula

CASH_TRANSACTION ~33,120,000 ~0.92 * settled (84% of buys & 100% of sells are cash)

HOLDING ~2,844,000 ~0.07955 * settled (assumes ITD = 125 and SF = 500)

HOLDING_HISTORY ~47,916,000 ~1.3331 * settled (assumes ITD = 125 and SF = 500)

HOLDING_SUMMARY ~248,900 ~9.9234 * accounts

SETTLEMENT 36,000,000 1 * settled

TRADE 36,000,000 ((ITD * 8hr/day * 3600sec/hr * customers) /SF)

TRADE_HISTORY ~86,400,000 ~(2.4 * trades)

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 73 of 271

TRADE_REQUEST 0 0

2.4.2 Test Run Database Size Requirements

2.4.2.1 The following list shows the increase in rows per second for the Growing Tables (except for
TRADE_REQUEST) during a Test Run. The rate of growth may decline after running for a large
number of days.

Table Name Cardinality Formula

CASH_TRANSACTION ~0.92 * (customers/SF)

HOLDING ~0.040 * (customers/SF)

HOLDING_HISTORY ~1.344 * (customers/SF)

SETTLEMENT 1 * (customers/SF)

TRADE 1 * (customers/SF)

TRADE_HISTORY ~2.4 * (customers/SF)

The TRADE_REQUEST table is empty at the start of a Test Run and does grow at first during runtime,
but it soon reaches a cardinality that is dependent on recent performance and not on the length of the
Test Run. The approximate cardinality of TRADE_REQUEST during the Steady State portion of a Test
Run can be estimated as ~24 rows * Measured Throughput (see Clause 5.6.8.1). Considerable variation
in this cardinality is possible both while running and at the end of a Test Run.

2.4.2.2 The test database must be built to sustain the Reported Throughput during a Business Day. This
means that test database must have a Business Day’s worth of additional space for data, index and log
online. This excludes performing on the database any operation that does not occur during the
Measurement Interval.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 74 of 271

CLAUSE 3 TRANSACTIONS

3.1 Introduction
The core of each TPCx-HCI Transaction runs on the Database Server, but the logic of the Transaction
interacts with several components of the benchmark environment. This section defines all aspects of the
Transactions, including side effects on other components of the benchmark environment.

3.1.1 Definitions

3.1.1.1 A Transaction is composed of VGenTxnHarness and of the invocation of one or more Frames. The
Trade-Cleanup Transaction is an exception. Sponsors may but do not have to run the Trade-Cleanup
Transaction from VGenTxnHarness.

3.1.1.2 The VGenTxnHarness is the TPC provided transaction logic, which the Sponsor is not allowed to alter.
The VGenTxnHarness is implemented in a manner that precludes the consolidation of multiple
Frames within a Transaction.

3.1.1.3 A Frame is the TPC-provided Transaction logic, which is invoked as a unit of execution by the
VGenTxnHarness. The database interactions of a Transaction are all initiated from within its Frames.

Frames Interfacing with the Harness and the Database

3.1.1.4 A Database Transaction is an ACID unit of work.

3.1.2 Database Footprint Definition

This Clause describes the format used to specify the Database Footprint of each Transaction in this
benchmark.

DBMS

Frame N

Frame 1

EGenTxnHarness
TPC - E Logic

TPC - E Logic

TPC - E Logic

Frame Call

Frame Return

Frame Call

Frame Return

TPC - E Logic

Input from Driver

Output to Driver

Legend
TPC Provided

Sponsor Provided
Commercial Product

DBMS

Frame N

Frame 1

VGenTxnHarness
TPC - E Logic

TPC - E Logic

TPC - E Logic

Frame Call

Frame Return

Frame Call

Frame Return

TPC - E Logic

Input from Driver

Output to Driver

DBMS

Frame N

Frame 1

VGenTxnHarness
TPCx-HCI Logic

TPCx-HCI Logic

TPCx-HCI Logic

Frame Call

Frame Return

Frame Call

Frame Return

TPCx-HCI Logic

Input from Driver

Output to Driver

Legend
TPC Provided

Sponsor Provided
Commercial Product

Legend Legend
TPC Provided

Commercial Product

TPC Provided

Commercial Product

TPCx-HCI Transactions

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 75 of 271

3.1.2.1 The Database Footprint of a Transaction is the set of required database interactions to be executed by
that Transaction.

3.1.2.2 Each Database Footprint is presented in a tabular format where the columns specify the following:

• The first column denotes either one of the database tables defined in Clause 2.2 or the words
“Transaction Control” that denotes the entire Transaction. The last row defines the overall
Transaction.

• The second column denotes one of the following:
o A specific column name of a database table as defined in Clause 2.2.

o The string “# rows” that specifies the exact number of rows containing all columns of a
database table. For example, “2 rows” indicates two complete rows of a database table.

o The string “Row(s)” that specifies a variable number of rows containing all columns of a
database table.

• The remaining columns correspond with each of the Frames of the Transaction and contain the
database interactions or Transaction control operations required to be executed in that Frame.

3.1.2.3 The following table is an example of the Database Footprint of a Transaction.

Example Database Footprint

Table Column
Frame

1 2* 3*

CUSTOMER_ACCOUNT

CA_BAL Reference

CA_C_ID Return

CA_TAX_ST Return

HOLDING

H_PRICE Return

H_QTY Modify

Row(s) Remove *

1 row Add *

TRADE_HISTORY 1 row Add

Transaction Control Start Rollback * Commit

• For the last row of the Database Footprint where the words “Transaction Control” appears, each

column corresponds to one of the transaction Frames. The content of the columns denote which
Transaction control operations occur in that Frame. The possible Transaction control operations are
as follows:

o The word “Start” indicates that the specified Frame contains a control operation that starts a
Database Transaction. The start of a Database Transaction can only occur in a Frame where
the word “Start” is specified.

o The word “Rollback” indicates that the specified Frame contains a control operation that
rolls back the Database Transaction. The explicit rolling back of a Database Transaction can
only occur in a Frame where the word “Rollback” is specified.

The word “Commit” indicates that the specified Frame contains a control operation that commits a
Database Transaction. Commit is a control operation that:

• Is initiated by a unit of work (a Transaction)
• Is implemented by the DBMS

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 76 of 271

• Signifies that the unit of work has completed successfully and all tentatively modified data are
to persist (until modified by some other operation or unit of work)

o Upon successful completion of this control operation both the Transaction and the data are
said to be Committed. The explicit committing of a Database Transaction can only occur in a
Frame where the word “Commit” is specified.

Comment: Multiple Transaction control operations may occur within the same Frame. For example,
a Transaction that consists of a single Frame would have both “Start” and “Commit” in its Database
Footprint column corresponding with Frame 1.

• For remaining rows of the Database Footprint the column corresponding to each Frame contains the
access method required for the table column listed in that row. The possible access methods are as
follows:

o The word “Reference” indicates that the TPCx-HCI table column is identified in the database
and the content is accessed within the Frame without passing the content of the table column
to the VGenTxnHarness.

o The word “Return” indicates that the TPCx-HCI table column is referenced and that its
content is retrieved from the database and passed to the VGenTxnHarness. The table
column must be referenced in the same Frame where the word “Return” is specified. The
content of the table column can only be passed to subsequent Frames via the input and
output parameters specified in the Frame parameters.

o The word “Modify” indicates that the content of a TPCx-HCI table column is modified
within the Frame. The content of the table column can only be changed in a Frame where the
word “Modify” is specified. When the original content of the table column must also be
referenced or returned before it is modified, a “Reference” or a “Return” access method is
also specified.

o The word “Add” indicates that a number of rows are added to the TPCx-HCI table specified
by the Database Footprint. TPCx-HCI Table row(s) can only be added in a Frame where the
word “Add” is specified. The number of rows that are added is specified in the second
column of the Database Footprint with either “# row” for a fixed number of rows or “row(s)”
for an unspecified number of rows.

o The word “Remove” indicates that a number of rows are removed from the TPCx-HCI table
specified by the Database Footprint. Table row(s) can only be removed in a Frame where the
word “Remove” is specified. The number of rows that are removed is specified in the second
column of the Database Footprint with either “# row” for a fixed number of rows or “row(s)”
for an unspecified number of rows.

Comment 1: An asterisk following any item in the column of a given Frame denotes that the
transaction control, the database interactions, or the execution of the entire Frame is conditional. The
VGenTxnHarness defines under which conditions the Frame will be executed.
Comment 2: In the example Database Footprint above, the Database Transaction is started in Frame
1. If Frame 2 is executed the Database Transaction may be rolled back. If Frame 3 is executed the
Database Transaction must be Committed. For the table CUSTOMER_ACCOUNT, the table column
CA_BAL is referenced and the table columns CA_C_ID and CA_TAX_ST are returned in Frame 1.
For the HOLDING table, the column H_PRICE is returned and H_QTY is modified if Frame 2 is
executed. Additionally, if Frame 2 is executed, a number of rows are conditionally removed from
the HOLDING table and 1 row is conditionally added to the HOLDING table. For the
TRADE_HISTORY table, a row is added if Frame 3 is executed.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 77 of 271

Comment 3: The programming semantics used to implement the required access methods for a given
table column is not restricted from performing operations typically associated with a different access
method, as long as the implementation of the Frame is functionally equivalent to the specified
Pseudo-code. For example, “select for update” and “select with UPDLOCK” are compliant
implementations of a Reference access method.

3.2 Transaction Implementation Rules

3.2.1 Frame Implementation

3.2.1.1 The implementation of a Frame is not allowed to assume any prior knowledge of VGen’s data
generation methods or values for data elements defined in the database schema for the benchmark,
except for the VGen constants listed in the table below.

Comment 1: The intent of this clause is to prevent the Frames from using constant values, or other means,
to circumvent database references to static or infrequently changing data elements. In general, using any
private knowledge specific to the benchmark, but which is not explicitly furnished to the Transaction or
the Frame, via Transaction inputs or Transaction Pseudo-code, is prohibited.

3.2.1.2 The following table shows VGen constants used as limits when generating the number of values for
Transaction inputs or when accepting Transaction outputs. These constant limits are provided in the
specification for explicit usage in the corresponding Clause 3.3 Frame Implementations.

Description Constant Value VGen Filename

Broker-Volume

Minimum number of input broker
names min_broker_list_len 20 TxnHarnessStructs.h

Maximum number of input broker
names max_broker_list_len 40 TxnHarnessStructs.h

Customer-Position

Maximum customer accounts per
customer max_acct_len 10 TxnHarnessStructs.h

Maximum number of TRADE_HISTORY
rows to return max_hist_len 30 TxnHarnessStructs.h

Market-Feed

Maximum number of items on the ticker max_feed_len 25 TxnHarnessStructs.h

Security-Detail

Minimum number of DAILY_MARKET
rows to return min_day_len 5 TxnHarnessStructs.h

Maximum number of DAILY_MARKET
rows to return max_day_len 20 TxnHarnessStructs.h

Maximum number of FINANCIAL rows
to return max_fin_len 20 TxnHarnessStructs.h

Maximum number of NEWS_ITEM rows
to return max_news_len 2 TxnHarnessStructs.h

Maximum number of
COMPANY_COMPETITOR rows to
return

max_comp_len 3 TxnHarnessStructs.h

Trade-Lookup

Maximum number of TRADE rows to
return for Transaction TradeLookupMaxRows 20 MiscConsts.h

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 78 of 271

Maximum number of TRADE rows to
return for Frame 1 TradeLookupFrame1MaxRows 20 MiscConsts.h

Maximum number of TRADE rows to
return for Frame 2 TradeLookupFrame2MaxRows 20 MiscConsts.h

Maximum number of TRADE rows to
return for Frame 3 TradeLookupFrame3MaxRows 20 MiscConsts.h

Maximum number of TRADE
_HISTORY rows to return TradeLookupMaxTradeHistoryRowsReturned 3 MiscConsts.h

Trade-Status

Maximum number of trade status rows
to return max_trade_status_len 50 TxnHarnessStructs.h

Trade-Update

Maximum number of TRADE rows to
return for Transaction TradeUpdateMaxRows 20 MiscConsts.h

Maximum number of TRADE rows to
return for Frame 1 TradeUpdateFrame1MaxRows 20 MiscConsts.h

Maximum number of TRADE rows to
return for Frame 2 TradeUpdateFrame2MaxRows 20 MiscConsts.h

Maximum number of TRADE rows to
return for Frame 3 TradeUpdateFrame3MaxRows 20 MiscConsts.h

Maximum number of TRADE
_HISTORY rows to return TradeUpdateMaxTradeHistoryRowsReturned 3 MiscConsts.h

3.2.1.3 All data exchanges between Frames must be done by the VGenTxnHarness through its use of input
and output parameters passed in and out of the Frames.

Comment 1: The intent of this clause is to prevent the Frames from using global variables, or other means,
for storing and retrieving information across multiple invocations of the same or different Frames in
order to avoid work intended to be done during each individual invocation.

Comment 2: The Test Sponsor may augment each Frame with code to unpack the input parameters
received from the VGenTxnHarness and to pack the output parameters returned to the
VGenTxnHarness.

3.2.1.4 The Frame Implementation must perform each database interaction specified in the Transaction’s
Database Footprint, using the specified access method.

3.2.1.5 The Frame Implementation must access any column that is marked as Reference. It is also free to
access other columns that are not marked as Reference. For the other database interactions, the Frame
Implementation must perform all the required operations and/or return all the specified column
values.

3.2.1.6 The implementation of each Frame must be functionally equivalent to the Pseudo-code provided for
that Frame in Clause 3.3. Functional equivalence is satisfied when:

• For a given set of inputs the implementation produces the same outputs and causes the same
change in database state as the Pseudo-code. A change in database state is a change to a
TPCx-HCI Table or TPCx-HCI Table column, resulting from any Modify, Add or Remove access
method defined by the Transaction’s Database Footprint.

• All access methods in the Database Footprint are performed.
• No additional Add/Modify/Remove access methods against any TPCx-HCI Table are

performed.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 79 of 271

Comment: Additional Reference access methods against any TPCx-HCI Table may be performed.
Additional access methods against any User-Defined Object may be performed.

3.2.1.7 The minimum decimal precision for any computation performed as part of the Frame must be the
maximum decimal precision of all the individual items in that calculation.

3.2.1.8 Each Frame and Transaction has a status output parameter used to indicate the execution status of the
Frame or Transaction. A status value of 0 indicates success. A negative status value indicates an error
that would invalidate a Test Run. A positive non-zero integer value for status indicates a warning.
Warnings mean that an unexpected result was generated and the Test Sponsor and Auditor should
investigate the unexpected result. The unexpected result may be due to a rare but legal condition or it
may be because of an incorrect implementation or run-time problem. If the latter is the cause of the
warning, it must be treated as an error that invalidates the Test Run.

The following table shows the positive warning numbers and where they may happen in VGen.

Transaction Frame Warning
Status Reason for Warning

Trade-Lookup 2 +621 num_found == 0

Trade-Lookup 3 +631 num_found == 0

Trade-Lookup 4 +641 num_trades_found == 0

Trade-Update 2 +1021 num_updated == 0

Trade-Update 3 +1031 num_found == 0

3.2.1.9 If a transaction processing monitor (hereinafter referred to as TM) is used it must be commercially
available software which provides the following features/functionality:

Operation - The TM must allow for:
• request/service prioritization
• multiplexing/de multiplexing of requests/services
• automatic load balancing
• reception, queuing, and execution of multiple requests/services concurrently
Security - The TM must allow for:
• the ability to validate and authorize execution of each service at the time the service is requested.
• the restriction of administrative functions to authorized users.
Administration/Maintenance - The TM must have the predefined capability to perform centralized, non
programmatic (i.e., must be implemented in the standard product and not require programming) and
dynamic configuration management of TM resources including hardware, network, services (single or
group), queue management prioritization rules, etc.
Recovery - The TM must have the capability to:
• post error codes to an application
• detect and terminate long-running transactions based on predefined time-out intervals
Application Transparency - The message context(s) that exist between the client and server application
programs must be managed solely by the TM. The client and server application programs must not have
any knowledge of the message context or the underlying communication mechanisms that support that
context.
Comment 1: The following are examples of implementations that are non-compliant with the Application
Transparency requirement.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 80 of 271

8. Client and server application programs use the same identifier (e.g., handle or pointer) to maintain
the message context for multiple transactions.

9. Change and/or recompilation of the client and/or server application programs is required when the
number of queues or equivalent data structures used by the TM to maintain the message context
between the client and server application programs is changed by TM administration.

Comment 2: The intent of this clause is to encourage the use of general purpose, commercially available
transaction monitors, and to exclude special purpose software developed for benchmarking or other
limited use. It is recognized that implementations of features and functionality described above vary
across vendors' architectures. Such differences do not preclude compliance with the requirements of this
clause.

3.3 The Transactions
The TPCx-HCI benchmark consists of eleven Transactions, and one cleanup Transaction. To generate a
reasonably balanced workload that resembles real production environments, the Transactions have to
cover a wide variety of system functions. Nine of the Transactions follow a specific mix to generate the
desired workload while keeping the benchmark environment simple, repeatable and easy to execute.
Two additional Transactions are not part of the Transaction Mix, but are executed at fixed intervals. The
tenth Transaction, called “Market-Feed”, simulates a market ticker feed of recent stock trades. The
eleventh Transaction, called “Data-Maintenance”, simulates administrative updates to tables that are not
otherwise modified by the Transactions in the mix.

An additional cleanup Transaction, called “Trade-Cleanup”, is provided to clean up pending and
submitted trades that may exist from an earlier run.
One of the key performance characteristics of database systems is the ratio of reads and writes generated
by the workload. To emulate such a ratio, TPCx-HCI has defined Transactions with read-only
characteristics as well as Transactions with read-write characteristics. In addition, the Transactions
apply varying loads on the processor.

The variety of processor, IO, and execution frequency requirements for the Transactions allows the
benchmark to emulate a real environment with heavy processor utilization while maintaining a
reasonable IO load in a simple benchmark configuration.

The Transactions can be grouped into three categories:
• Customer Initiated Transactions simulate customer interactions with the system and are initiated

by the Customer Emulator component of the benchmark Driver.
• Brokerage Initiated Transactions simulate broker interactions with the system and are initiated by

the Customer Emulator component of the benchmark Driver.
• Market Triggered Transactions simulate the behavior of the market and are triggered by the Market

Exchange Emulator component of the benchmark Driver.

Nine Transactions are in the mix, and in addition, the benchmark defines two time triggered
Transactions, the Market-Feed Transaction and the Data-Maintenance Transaction, which are initiated
at fixed time intervals as defined in Clause 5.3.3. Also defined is a Trade-Cleanup transaction (see clause
5.3.4), which may not be executed within a Test Run, but must be executed once before a Test Run if the
database is not in its initially populated state (i.e., if any prior runs have been performed on the database).

The following summary table lists the basic characteristics of the transactions. See Clause 10.6 for full
implementation details of the transactions, including pseudo-code

Transaction Weight Access Category Frames Definition

Broker-Volume Mid to Heavy Read-only Brokerage Initiated 1 Clause 10.6.1

Customer-Position Mid to Heavy Read-only Customer Initiated 3 Clause 10.6.2.1

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 81 of 271

Market-Feed Light Read-write Market Time Triggered 1 Clause 10.6.3

Market-Watch Medium Read-only Customer Initiated 1 Clause 10.6.4

Security-Detail Medium Read-only Customer Initiated 1 Clause 10.6.5

Trade-Lookup Medium Read-only

Brokerage Initiated for
Frames 1 & 3
Customer Initiated for
Frames 2 & 4

4 Clause 10.6.6

Trade-Order Heavy Read-write Customer Initiated 6 Clause 10.6.7

Trade-Result Heavy Read-write Market Triggered 7 Clause 10.6.8

Trade-Status Light Read-only Customer Initiated 1 Clause 10.6.9

Trade-Update Medium Read-write

Brokerage Initiated for
Frames 1& 3
Customer Initiated for
Frame 2

3 Clause 10.6.10

Data-Maintenance Light Read-write Brokerage Time Triggered 1 Clause 10.6.11

Trade-Cleanup Medium Read-write Run once before Test Run 1 Clause 10.6.12

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 82 of 271

CLAUSE 4 DESCRIPTION OF SUT, DRIVER, AND NETWORK

4.1 Overview
TPCx-HCI is a distillation of an abstraction of multiple virtualized “real-world” OLTP environment. In
order to understand what TPCx-HCI tests and, as a consequence, what TPCx-HCI does not test, it is
necessary to understand the base “real-world” environment, the abstraction of that base environment ,
and the distillation of that abstraction. For a complete description of the SUT, Driver, and Network, see
Clause 10.1

4.2 Example Test Configuration Implementations

4.2.1 The following figure shows the physical and virtual components that could be assembled to implement
a Node in a hypothetical test configuration. In this simple example, the Node is depicted with only 1
Tile.

Figure 4.a - Sample Component of Physical Test Configuration

Driver

System Under Test

Tier A & B

Tile 1, Group 1
Tier A
VM1

TPCx-HCI
VM2 TPCx-HCI

VM3 Data Data

TL
RU
DM

TO
TR
MF

TS
MW
SD

BV
CP
DM

Tile 1, Group 2
Tier A
VM1

TPCx-HCI
VM2

TPCx-HCI
VM3 Data Data

TO
TR
MF

TS
MW
SD

BV
CP
DM

Tier A
VM1

TPCx-HCI
VM2

TPCx-HCI
VM3 Data Data

TO
TR
MF

TS
MW
SD

BV
CP
DM

Tile 1, Group 4
Tier A
VM1

TPCx-HCI
VM2

TPCx-HCI
VM3 Data Data

TO
TR
MF

TS
MW
SD

BV
CP
DM

Tile 1, Group 3

TL
RU
DM

TL
RU
DM

TL
RU
DM

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 83 of 271

4.3 Further Requirements for SUT and Driver Implementations

4.3.1 Disclosure of Network Configuration

The Test Sponsor shall describe completely the Network configurations of both the tested services and
the proposed real (target) services that are being represented.

4.3.2 Synchronization of Time

All of the systems used for the Driver and SUT must have system clocks that are synchronized to within
a tolerance of 10 seconds across all systems. The synchronization must be verified once before and once
after the Test Run.

This clause covers the constraints and regulations governing the use of Benchmark Kit. For detailed
information on Benchmark Kit, what features and functionality it provides and how a Test Sponsor is
to use those features and functionality see Clause 10 .

4.3.3 SUT Implementation Limits on Operator Intervention

Systems must be able to run normal operations for at least a Business Day without requiring any operator
intervention to sustain the Reported Throughput.
Comment: Operator intervention is defined as any activity that requires an operator or an individual to
perform a function to enable the SUT to continue processing Transactions.

4.3.4 Valid Configurations

A TPCx-HCI configuration is made up of several identical Tiles, with each Tile having 4 Groups. A Tile
in a valid configuration will have Groups 1, 2, 3, and 4 contributing an average of 10%, 20%, 30%, and
40% of the total throughput of the Tile, respectively.

A valid TPCx-HCI configuration must have at least 2 Nodes. If there are less than 4 Nodes in the
Measured Configuration, the Test Sponsor must provide publically available documentation that
verifies cluster sizes of at least 4 Nodes are supported by all the software and hardware components used
in the Measured Configuration.

4.3.4.1 Calculation of the number of Tiles

4.3.4.1.1 Deriving the per-Node Tile count from the overall LU count

The number of Tiles in a valid TPCx-HCI configuration is calculated on a per-Node basis. Starting from
the definition in Clause 2.4.1.5 which requires 1 LU per each 2 tpsHCI, the target tpsHCI is used to
calculate the overall number of Load Units for the Cluster. The overall LU count is then divided by the
number of Nodes. That per-Node LU count is used to index into the table below, and look up a Tile
count, which is then multiplied by the number of Nodes, and further incremented by a factor of 1.10 (to
avoid the trivial case of the Tile count being an integral multiplier of the Node count) rounded up to
arrive at the overall valid Tile count for the Measured Configuration.

So, for example, if the target tpsHCI is 30,000 and there are 6 Nodes in the Measured Configuration, the
per-Node LU value to use in the table is 15,000/6=2,500 LUs, which corresponds to either 4 or 5 Tiles.
The Test Sponsor can use either ceiling(6 X 4 X 1.1) = 27 or ceiling(6 X 5 X 1.1) = 33 Tiles. If the target
tpsHCI is 2,000 with 4 Nodes, the 1,000/4=250 LUs value selects 1 Tile, which then gives us ceiling(4 X
1 X 1.1)=5 Tiles for the Cluster.

Comment: the per-Node Tile count is an intermediate calculation to derive the eventual total Tile count,
and otherwise is not used in the benchmark.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 84 of 271

The Tile counts for various Load Unit ranges are listed in the table below, and depicted in Figure 4.f.

Comment: The ranges are overlapping. So when a sponsor chooses the number of Load Units based on
the corresponding Nominal Throughput, the table gives the sponsor either two choices for the number
of Tiles (for example, at 500 LUs), or a single choice (for example, at 2,000 LUs).

Aggregate LU range Number of
Tiles

Aggregate LU
increment size From To

 50 1,000 1 10
 800 1,400 2 20

 1,110 1,980 3 30
 1,600 2,800 4 40
 2,250 4,000 5 50
 3,180 5,640 6 60
 4,480 7,980 7 70
 6,400 11,280 8 80
 9,000 15,930 9 90

 12,800 22,600 10 100
 18,040 31,900 11 110
 25,560 45,240 12 120
 36,140 63,960 13 130
 51,100 90,440 14 140
 72,300 127,950 15 150

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 85 of 271

Figure 4.b – Valid number of Tiles versus aggregate LUs

The formulas below were used in the calculation of the values in the table above. The mix and max LU
counts in each range are adjusted to be integral multiples of the valid LU increment count for the range.

• A configuration with 1 Tile may be used for per-Node Load Unit counts between 50 and 1000.
• The minimum LU count in a range is 80% of the max LU count of the previous range
• The Maximum LU count in a range is the max LU count of the previous range multiplied by

SQRT(2).
• The Tile count for the range is calculated from the max LU count of the range as:

FLOOR((LOG(max_LU_count/1000,SQRT(2))),1)+1

4.3.4.2 Calculation of the number of Load Units in each Group

The overall number of Load Units is determined by Clause 5.6.8.4. The number of Load Units in each
Group 1 in a configuration with n Tiles equals (overall number of Load Units / n) * 10%. The number
of Load Units in each Group 2-4 is similarly calculated by substituting 20%, 30%, and 40%,
respectively, in the formula above.

0

1

2

3

4

5

6

7

8

50 500 5000

N
um

be
r	o

f	T
ile
s

Aggregate Load	Units

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 86 of 271

All Groups must be populated in accordance with the requirements in Clauses 2.4.1.2 and 2.4.1.3.
Clause 2.4.1.3 specifies the minimum number of Load Units and the minimum Load Unit increment
value.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 87 of 271

CLAUSE 5 EXECUTION RULES & METRICS

5.1 Introduction
This clause defines the execution rules and the methods for calculating the benchmark metric.

5.1.1 Definition of Terms

5.1.1.1 The term Reported refers to an item that is part of the FDR (see Clause 8 for detailed requirements).

5.1.1.2 The term Valid Transaction refers to any Transaction for which input data has been sent in full by the
Driver, whose processing has been successfully completed on the SUT and whose correct output data
has been received in full by the Driver.

Comment 1: Transaction errors are not allowed during the Test Run. A Transaction that never completes
is considered an error.

Comment 2: A Trade-Order Transaction that requires a rollback that runs successfully and produces the
correct output is considered a Valid Transaction.

Comment 3: A Transaction that aborts and is retried by the SUT and ultimately completes successfully
and produces the correct output is considered a Valid Transaction. A Transaction may not be retried by
the Driver.

5.2 Dynamic Workload Variation
One of the unique features of TPCx-HCI is that the load of each Group rises or falls at every Phase change
of the Measurement Interval. This is intended to represent the elastic nature of workloads present in
virtual systems and the resource allocation policies required to handle such elasticity. The overall load
presented to the System Under Test, as well as the total load presented to each Tile, remains constant
throughout the Measurement Interval, but the contribution from each Group within a Tile varies by as
much as a factor of 7X between two consecutive Elasticity Phases (the rise of the contribution of Group 1
from 5% to 35% in Elasticity Phase 7, followed by the dropping back to 5% in Elasticity Phase 8). In each
Phase, all Group 1s of all Tiles vary to the same degree; and the same applies to Groups 2-4. The table
and chart below show how much each Group contributes to the overall throughput of a Tile in each 12-
minute Elasticity Phase.

The difference between the highest and lowest percentage of load presented to a Group across all 10
Elasticity Phases can be as much as 16X (the 80% of Elasticity Phase 4 of Group 4 to the 5% of Elasticity
Phase 9 of that Group).

The Max-to-Min load variation for Group 1 is from 35% to 5%.

The Max-to-Min load variation for Group 2 is from 65% to 5%.

The Max-to-Min load variation for Group 3 is from 70% to 5%.

The Max-to-Min load variation for Group 4 is from 80% to 5%.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 88 of 271

Elasticity
Phase Group 1 Group 2

Group
3

Group
4

1 10% 20% 30% 40%

2 5% 10% 25% 60%

3 10% 5% 20% 65%

4 5% 10% 5% 80%

5 10% 5% 30% 55%

6 5% 35% 20% 40%

7 35% 25% 15% 25%

8 5% 65% 20% 10%

9 10% 15% 70% 5%

10 5% 10% 65% 20%

Average 10% 20% 30% 40%

Figure 5.a - Dynamic load variation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Group 4
Group 3
Group 2
Group 1

Phase

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 89 of 271

5.3 Transaction Mix
The TPCx-HCI workload is made up of a number of Transactions executing against multiple databases
following a specified Transaction Mix. During the Test Run, the CCE code controls the generation of
Brokerage Initiated and Customer Initiated Transaction types via a card deck methodology designed
to satisfy the specified mix (see CETxnMixGenerator.cpp). The Market Triggered Transactions are not
generated by the CE but arise from asynchronous actions in the MEE.

Since deviations from the specified mix are still possible, it is the Test Sponsor's responsibility to make
sure that the following criteria were indeed met for the Measurement Interval in order for the
Measurement Interval to be valid. For the purposes of verifying that these criteria are met any and all
Valid Transactions whose sTn and eTn are both within the Measurement Interval are to be counted.

5.3.1 Mix Requirements

The following table shows the target mix percentages for the two Tier B Virtual Machines of each Group.
The Test Sponsor must show that the actual percentage obtained for each Transaction type over the
entire Measurement Interval is within the specified Required Range.

VM in Group Transaction Target Pct Required Range Comment

VM2 Trade-Lookup 9% 8.955%-9.045%
VM2 Trade-Update 1% 0.995%-1.005%
VM3 Broker-Volume 3.9% 3.881%-3.920%
VM3 Customer-

Position 15% 14.910%-15.090%
VM3 Market-Watch 17% 16.905%-17.095%
VM3 Security-Detail 16% 15.905%-16.095%
VM3

Trade-Order 10.1% 10.049% – 10.151%
~1% of Trade Orders rollback (see Clause 5.4.1,
rollback is 1 out of each 101 Trade Orders.). 99%
of 10.1% is the 10% for Trade Result.

VM3
Trade-Result 10% 9.950% - 10.050%

There is one Trade-Result per Trade-Order
completed by the MEE, but ~1% of Trade-Order
Transactions rollback at time of initial processing.

VM3 Trade-Status 18% 17.900%-18.100%
 Total 100%

Comment 1: The number of completed Trade-Results is one per non-rolled-back Trade-Order. However,
pending limit orders are delayed until their trigger price is reached. Therefore mix percentages may vary
over short periods of time.

Comment 2: Only the first MEE instance issues Market-Feed Transactions, which shall be at the rate of 2
per second for each VM3 database. A Phase being 12 minutes, the expected number of Market-Feed
Transactions for each VM3 database in each Phase is 1,440. The valid range is 1,426-1,454. Over a full 10-
Phase Test Run, the the expected number of Market-Feed Transactions for each VM3 database is 14,400.
The valid range is 14,328-14,472.

5.3.2 Required Precision for Mix Percentage Reporting

The Transaction Mix percentages must be reported to the thousandths (xx.yyy). See the Required Range
column in the table in Clause 5.3.1.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 90 of 271

Computing the mix frequencies actually obtained during the Measurement Interval must be done with
at least four decimal places and must be rounded to the nearest three decimal places when reported. For
example, 7.2344 must be reported as 7.234 and 7.2345 must be reported as 7.235

5.3.3 Data-Maintenance

For each of the two Tier B Virtual Machines in each Group, a single Data-Maintenance Transaction must
be invoked every sixty seconds. The Data-Maintenance transaction submitted to each VM conforms to
the table cardinalities of the database in that VM. The actual interval between the executions of two
consecutive Transactions must be no less than 58 seconds and no more than 62 seconds. Each Data-
Maintenance Transaction must successfully complete in 55 seconds or less.

5.3.4 Trade-Cleanup

The special Trade-Cleanup Transaction is not part of the Transaction Mix. There are no Response Time
criteria for the Trade-Cleanup Transaction, except that the Transaction must be invoked and finish
before any other type of Transaction can be executed.

5.4 Transaction Parameters
Each Transaction type has variable inputs. Some of the Transactions have specified percentages (see
DriverParamSettings.h) for the possible values of these inputs. During the Test Run, the VGenDriver
code controls the generation of the values for theses inputs using a random number generator in a
manner designed to satisfy the specified percentage (see CETxnInputGenerator.cpp). However since
deviations from the specified percentage are still possible, it is the Test Sponsor's responsibility to make
sure that the following criteria were indeed met for the Measurement Interval in order for the
Measurement Interval to be valid. For the purposes of verifying that these criteria are met, inputs for
any and all Valid Transactions, whose sTn and eTn are both within the Measurement Interval, are to be
counted.

5.4.1 Input Value Mix Requirements

The following table shows the target input value percentages. The Test Sponsor must show that the
actual percentage obtained for each input type over the entire Measurement Interval is within the
specified Required Range.

Input Parameter Value Target Pct Required Range

Customer-Position

by_tax_id 1 50% 48% to 52%

get_history 1 50% 48% to 52%

Market-Watch

Securities chosen by

Watch list 60% 57% to 63%

Account ID 35% 33% to 37%

Industry 5% 4.5% to 5.5%

Security-Detail

access_lob 1 1% 0.9% to 1.1%

Trade-Lookup

frame_to_execute

1 40% 38%-42%

2 30% 28.5% to 31.5%

3 20% 19%-21%

4 10% 9.5% to 10.5%

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 91 of 271

Input Parameter Value Target Pct Required Range

Trade-Order

Transactions requested by a third party 10% 9.5% to 10.5%

Security chosen by company name and issue 40% 38% to 42%

type_is_margin 1 8% 7.5% to 8.5%

roll_it_back 1 ~1% 0.94% to 1.04% (*)

is_lifo 1 35% 33% to 37%

trade_qty

100 25% 24% to 26%

200 25% 24% to 26%

400 25% 24% to 26%

800 25% 24% to 26%

trade_type

TMB 30% 29.7% to 30.3%

TMS 30% 29.7% to 30.3%

TLB 20% 19.8% to 20.2%

TLS 10% 9.9% to 10.1%

TSL 10% 9.9% to 10.1%

Trade-Update

frame_to_execute

1 45% 43%-47%

2 33% 31% to 35%

3 22% 20%-24%

(*) Comment: The ratio of rolled-back trades to completed trades is 1/100 or 1%, so the ratio of rolled-back
trades to all trades is 1/101 or only ~1%. The actual expected percentage is closer to 0.99%, which is why
the range of acceptable values is 0.94% to 1.04% (not 0.95% to 1.05%), since this range is centered on the
expected 0.99% value.

5.5 Response Time

5.5.1 Response Time

5.5.1.1 The Response Time (RT) is defined by:

RTn = eTn - sTn
where:

sTn and eTn are measured at the Driver;
sTn = time measured before the first byte of input data of the Transaction is sent by the Driver
to the SUT; and
eTn = time measured after the last byte of output data from the Transaction is received by the
Driver from the SUT.
Comment: The resolution of the time stamps used for measuring Response Time must be at least
0.01 seconds.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 92 of 271

5.5.1.2 During the Measurement Interval, at least 90% of each Transaction type must have a Response Time
less than or equal to the constraint specified in the table below. For Market-Feed, 99% of transactions
must have a Response Time less than or equal to 2 seconds.

Transaction 90% Response Time
Constraint

Broker-Volume 3 sec.

Customer-Position 3 sec.

Market-Feed 2 sec.

Market-Watch 3 sec.

Security-Detail 3 sec.

Trade-Lookup 3 sec.

Trade-Order 2 sec.

Trade-Result 2 sec.

Trade-Status 1 sec.

Trade-Update 3 sec.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 93 of 271

5.5.1.3 The following diagram illustrates where Response Times are measured for each type of Transaction.
Time stamps are taken on the Driver.

Figure 5.b - Measuring Response Time

System Under Test (SUT) Driver

Brokerage
House

Market
Exchange
Emulator

Customer
Emulator

TO

TR

MF

sT

eT

TO
sT

eT

Orders

TR
ACK

eT Ticker

MF

ACK
eT

Ticker
sT

sT
Trade

Confirmation

CP

MW

TS
TU

TL
SD

Limit
Orders

BV

CP

SD

TS

TU
TL

BV MW

Data
Maintenance DM DM

sT

eT

Limit
Order

Market
Order

Asynch . Send
To Market
Interface

Triggered
Limit Orders Process

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 94 of 271

5.5.1.4 Over the Measurement Interval, the average Response Time for each type of Transaction that is part
of the Transaction Mix must not be longer than the 90th percentile Response Time for that Transaction.

5.5.1.5 Market-Feed is not a part of the Transaction Mix, it is a constant-rate, low-volume transaction. There is
no requirement for the average Response Time of Market-Feed Transactions being lower than the 90th
percentile Response Time. The passing percentile is set at 99%.

5.5.1.6 The Data-Maintenance Transaction does not have average and 90th percentile Response Time
requirements. Instead, each Data-Maintenance Transaction must successfully complete in 55 seconds
or less.

5.5.1.7 There are no Response Time criteria for the Trade-Cleanup Transaction. It must complete successfully
before a Test Run can start and before any other type of Transaction can be executed.

5.6 Test Run

5.6.1 Definition of Terms

5.6.1.1 The term Test Run refers to the entire period of time during which Drivers submit and the SUT
completes Transactions other than Trade-Cleanup. A Test Run is subdivided into the three consecutive
and non-overlapping time periods of Ramp-up, Steady State and Ramp-down.

5.6.1.2 The term Ramp-up refers to is the period of time from the start of the Test Run to the start of Steady
State.

5.6.1.3 The term Steady State refers to the period of time from the end of the Ramp-up to the start of the
Ramp-down.

5.6.1.4 The term Ramp-down refers to the period of time from the end of Steady State to the end of the Test
Run.

5.6.1.5 The term Measurement Interval refers to the period of time during Steady State chosen by the Test
Sponsor to compute the Reported Throughput.

5.6.1.6 The term Business Day refers to a period of eight hours of transaction processing activity.

5.6.1.7 Performance over a given period of time (computed as the average throughput over that time) is
considered Sustainable if it shows no significant variations as defined in Clause 5.6.3.

5.6.2 Database Content

5.6.2.1 Prior to the first Test Run, the initial database for each VM must satisfy Clause 2.4.1. Prior to any Test
Run, the database must satisfy Clause 10.4 and Clause 2.4.2.

Comment: Clause 2.4.2 defines cardinality changes as Transactions are executed against the database. If
no Transactions have been executed, then initial cardinalities of Clause 2.4.1 apply.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 95 of 271

5.6.2.2 At the start of a Test Run each database must not contain any pending or submitted trades. This must
be accomplished either by using a database in its initially populated state or by executing the Trade-
Cleanup Transaction prior to the start of the Test Run.

5.6.2.3 The only changes (unless otherwise directed by an Auditor) that can be made to the content of the
TPCx-HCI database tables between the initial population and a valid Test Run must be performed by
the running of Valid Transactions, as defined in this specification.

5.6.3 Sustainable Performance

5.6.3.1 During Steady State the throughput of the SUT must be Sustainable for the remainder of a Business
Day started at the beginning of the Steady State.

5.6.3.2 Some aspects of the benchmark implementation can result in rather insignificant but frequent
variations in throughput when computed over somewhat shorter periods of time. To meet the
Sustainable throughput requirement, the cumulative effect of these variations over one Business Day
must not exceed 4% of the Reported Throughput.

Comment: This requirement is met when the aggregate throughput computed over any period of one
hour, sliding over the Steady State by increments of twelve minutes, varies from the Reported
Throughput by no more than 4%.

5.6.3.3 Some aspects of the benchmark implementation can result in rather significant but sporadic variations
in throughput when computed over some much shorter periods of time. To meet the Sustainable
throughput requirement, the cumulative effect of these variations over one Business Day must not
exceed 20% of the Reported Throughput.

Comment: This requirement is met when the aggregate throughput level computed over any period of
twelve minutes, sliding over the Steady State by increments of one minute, varies from the Reported
Throughput by no more than 20%.

5.6.3.4 Any resources or components required by the SUT to meet the Sustainable performance requirements
must be configured at all time during the Test Run.

Comment 1: An example of a non-compliant configuration would be one where the database log file is
assigned to a heterogeneous device starting with a high performance drive and overflowing on a slower
drive, achieving better performance during the first few hours of Steady State than during the remainder
of the Business Day.
Comment 2: An example of a compliant implementation would be one where the database log file is
assigned to a homogeneous device large enough to hold the log over a complete checkpoint cycle and
configured to be reused over each subsequent checkpoint cycles, achieving a Sustainable throughput
during Steady State and for the remainder of the Business Day.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 96 of 271

5.6.4 Steady State

5.6.4.1 All work or events that must be performed at regular intervals by the SUT during Steady State must
occur in full at least once during Ramp-up, which is the period between the start of Test Run and the
start of Steady State. (For example see Clauses 5.6.5.2 and 5.3.3).

Comment : It should be noted that the duration of the Ramp-up and Ramp-down periods are set in the
vcfg.properties file before a Test Run starts, and cannot be changed after the Test Run starts.
Consequenctly, the duration and starting and ending points of the Steady State priod are similarly
established before the Test Run start.

5.6.4.2 The duration of Steady State is set by the Sponsor and must be sufficient to:

• Include a compliant Measurement Interval,
• Provide sufficient evidence, at the discretion of the Auditor, that the Sustainable performance

requirement is met,

5.6.5 Measurement Interval

5.6.5.1 The Measurement Interval must be two hours and must occur entirely during Steady State. The start
of the Measurement Interval has to coincide with the start of an Elasticity Phase. The Measurement
Interval may start at the beginning of any of the ten Elasticity Phases.

Comment 1: The ten Elasticity Phases (see Clause 5.2) take two hours for one complete cycle, so the
Measurement Interval must cover one repetition of these workload variations.

Comment 2: The Start of a Measurement Interval can be at the beginning of any arbitrary Elasticity
Phase within the Dynamic Workload Variations that meets all of the other requirements. For example,
the Measurement Interval may begin at the start of Elasticity Phase number 7 and end after 10 Phases
at the conclusion of subsequent Elasticity Phase number 6.

Comment 3: It is required that the Measurement Interval contains exactly 10 Elasticity Phases in the
(cyclical) order defined in Clause 5.2. Determining that Start may be done during execution or after the
end of the Test Run (e.g., when post-processing Driver log files).

5.6.5.2 The Test Run must start with all the VMs on all-but-one Nodes, and one Node not running any VMs.
During the Ramp-up period, the Benchmark Kit invokes a balance.sh script to allow the HCI
management software to balance the load on the Nodes by possibly migrating some VMs. The Test
Sponsor may insert instllation-specific commands in the balance.sh script. During the Test Run, at least
N-1 nodes must each run one or more instances of VM1, VM2, or VM3.

5.6.5.3 During the Measurement Interval, the database contents (excluding the transaction log) stored on
Durable Media cannot be more than 12 minutes older than any Committed state of the database.

Comment: This may mean that Database Management Systems implementing traditional checkpoint
algorithms may need to perform checkpoints twice as frequently (i.e. every 6 minutes) in order to
guarantee that the 12-minute requirement is met.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 97 of 271

5.6.5.4 For the purposes of calculating reported Transaction statistics, all Transactions and only those
Transactions whose sTn and eTn are within the Measurement Interval are used.

5.6.5.5 A transaction is considered to have taken place in an Elasticity Phase if its end time eTn is within that
Elasticity Phase, regardless of when the transaction started as long as both sTn and eTn are within the
Measurement Interval.

5.6.6 Database Growth

5.6.6.1 The resources or components configured on the SUT to support executing the Transaction Mix at the
Reported Throughput during the period of required Sustainable performance (see Clause 5.6.3) must
allow for the resulting increase in the size of the DBMS data files (referred to as Data Growth) and the
DBMS log files (referred to as Log Growth).

5.6.6.2 Initial Database Size is any space allocated to the test database that is used to store the initial
population, Database Metadata, User-Defined Objects, and any space used as formatting overhead by
the DBMS. Initial Database Size is measured after the database is initially loaded with the data
generated by VGenLoader.

5.6.6.3 The total storage space in the DBMS data files can be decomposed into the following:

• Free Space, which includes any space allocated to the test database and available for future use. It
includes all database storage space not already used to store a database entity (e.g., a row, an index,
Database Metadata) or not already used as formatting overhead by the DBMS.

• Growing Space, which includes any space used to store initially-loaded rows from the Growing
Tables and their associated User-Defined Objects. It also includes all database storage space that is
added to the test database as a result of inserting a new row in the Growing Tables, such as row
data, index data and other overheads such as index overhead, page overhead, block overhead, and
table overhead.

• Fixed Space, which includes any other space used to store static information and indices. It includes
all database storage space allocated to the test database that does not qualify as either Free Space or
Growing Space.
Comment: While cardinality does not change for non-Growing Tables, it is possible that some Fixed
Space storage could increase for other reasons. If the computed increase for the Business Day for
any such object would be greater than the 5% cardinality increase already imposed on non-Growing
Table objects by Clause 10.3.9, then the larger computed storage increase must be used instead of the
5% increase.

5.6.6.4 To satisfy the Data Growth requirements, it must be shown that after the Test Run is executed in full,
the file system that contains the Database on each Tier B VM has at least 10% free space left.

5.6.6.5 To satisfy the Log Growth requirements, it must be shown that after the Test Run is executed in full,
the file system that contains the Undo/Redo Log on each Tier B VM has at least 10% free space left.

5.6.7 Continuous Operation Requirement

Within the Measured Configuration, there must be sufficient On-Line storage to support:
• The Initial Database Size.
• A Business Day’s Data Growth and Log Growth at the reported tpsHCI. The methods to

calculate the Data Growth and the Log Growth are described in Clauses 5.6.6.3 and 5.6.6.5.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 98 of 271

5.6.8 Performance & Database Size

5.6.8.1 The Measured Throughput is computed as the total number of Valid Trade-Result Transactions
within the Measurement Interval divided by the duration of the Measurement Interval in seconds. It
is bound by the limits defined in Clause 6.7.8.5.

5.6.8.2 The Measured Throughput must be measured, rather than interpolated or extrapolated.

5.6.8.3 To keep throughput proportional to database size, each Measured Throughput must be within a
certain range of performance based on the database size.

5.6.8.4 Nominal Throughput is defined to be 2.00 Transactions-Per-Second-HCI for every 1000 customer rows
in the Active Customers.

5.6.8.5 Another way of expressing the Nominal Throughput is by using a Scale Factor, which is defined as:
The Scale Factor is the number of required customer rows per single Transactions-Per-Second-HCI.
The Scale Factor for Nominal Throughput is 500.

5.6.8.6 The number of Load Units configured per Group must be equal to the number of Load Units actually
accessed per Group during the Test Run.

5.7 Required Reporting

5.7.1 Reported Throughput

5.7.1.1 The Performance Metric reported by TPCx-HCI is the Reported Throughput. The name of the metric
used for the Reported Throughput of the SUT is tpsHCI. The value of this metric is based on the
Measured Throughput and is bound by the limits defined in Clause 5.7.1.2.

5.7.1.2 The Measured Throughput must be between 80% and 102% of the Nominal Throughput. If Measured
Throughput exceeds the Nominal Throughput, but not by more than 2%, the measurement may be
used, but the Reported Throughput must be set to the Nominal Throughput. Otherwise, the Reported
Throughput equals the Measured Throughput. If the Measured Throughput is not within these
bounds, then the measurement is invalid and may not be reported.

5.7.1.3 The Measured Throughput of each Group should be individually calculated and reported. If there are
N Tiles, as per Clause 4.3.4.1, the contribution of each Group to the aggregate Measured Throughput
should be between 98% and 102% of (Measured Throughput * (Group %))/N, with Group % set to
10%, 20%, 30%, and 40% for Group 1, 2, 3, and 4, respectively.

5.7.1.4 The Reported Throughput must be rounded down to the nearest two decimal places. For example,
suppose 105.748 tpsHCI is measured during a Measurement Interval. Then the Reported Throughput
is 105.74 tpsHCI rather than 105.75 or some interpolated value between 105.748 and 117.572.

5.7.2 Test Run Graph

A graph of the one-minute average tpsHCI versus elapsed wall clock time measured in minutes must be
reported for the entire Test Run. The x-axis represents the elapsed time from the Test Run start. The y-
axis represents the one-minute average throughput in tpsHCI(computed as the total number of Trade-
Result Transactions that complete within each one-minute interval divided by 60). A plot interval size
of 1 minute must be used. The Ramp-up, Steady State, Measurement Interval, and Ramp-down must
be identified on the graph. The Test Run Graph must be reported in the Report.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 99 of 271

Figure 5c - Example of the Measured Throughput versus Elapsed Time Graph

5.7.3 Primary Metrics

5.7.3.1 To be compliant with the TPCx-HCI standard and the TPC’s Fair Use Policies and Guidelines, all
public references to TPCx-HCI Results for a configuration must include the following components
which will be known as the Primary Metrics.

• The TPCx-HCI Reported Throughput is expressed in tpsHCI.
• The TPCx-HCI Total Price divided by the Reported Throughput is Total Price/tpsHCI. This is also

known as the Price/Performance Metric.. (See Clause 7).
• The date when all products necessary to achieve the stated performance will be available (stated as

a single date on the Executive Summary Statement). This is known as the Availability Date (See
Clause 8.2.1.1).

1.

Ramp-up Steady State Ramp-down

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225
Elapsed Time in Minutes

0

500

1000

1500

2000

tp
sE

MI Start MI End

Ramp-upRamp-up Steady StateSteady State Ramp-downRamp-down

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225
Elapsed Time in Minutes

0

500

1000

1500

2000

tp
sE

0

500

1000

1500

2000

tp
sE

MI Start MI End

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 100 of 271

CLAUSE 6 TRANSACTION AND SYSTEM PROPERTIES (ACID)

6.1 ACID Properties

6.1.1 The ACID (Atomicity, Consistency, Isolation, and Durability) properties of transaction processing
systems must be supported by the System Under Test during the running of this benchmark.

6.1.2 It is the intent of this section to define the ACID properties informally and to specify a series of tests
that must be performed to demonstrate that these properties are met.

6.1.3 No finite series of tests can prove that the ACID properties are fully supported. Passing the specified
tests is a necessary, but not sufficient, condition of meeting the ACID requirements. However, for
fairness of reporting, only the tests specified here are required and must appear in the Report for this
benchmark.

Comment: These tests are intended to demonstrate that the ACID principles are supported by the SUT
and enabled during the performance Test Run. They are not intended to be an exhaustive quality
assurance test.

6.1.4 The configuration needed to insure full ACID properties must be enabled during the Test Run. This
applies to both the database (including TPCx-HCI tables and User-Defined Objects) and the Database
Session(s) used to execute the ACID tests and the Test Run.
Comment 1: The term “configuration” includes all database properties and characteristics that can be
externally defined; this includes but is not limited to configuration and initialization files, environmental
settings, SQL commands and stored procedures, loadable modules and plug-ins. For example, if the SUT
relies on Undo/Redo Logs, then logging must be enabled for all Transactions, including those that do
not include rollback in the Transaction Profile.

6.1.5 Although the ACID tests do not exercise all Transaction types of this workload, the ACID properties
must be satisfied for all Transactions.

6.1.6 Both databases in the Tier B VMs of each Group of each Tile must meet the ACID property
requirements.

6.1.7 Test Sponsors reporting TPC Results may perform ACID tests on any one system for which Results
have been submitted, provided that they use the same software executables (e.g. Operating System,
database manager, transaction programs). For example, this clause would be applicable when Results
are reported for multiple systems in a product line. All FDRs must identify the systems that were used
to verify ACID requirements and full details of the ACID tests conducted and results obtained.

6.1.8 The TPCx-HCI Express Benchmark Kit performs the Atomicity, Consistency, and Isolation tests
required by this Specification, and reports the results in the Report. The details of these tests are
described in Clauses 6.2, 6.3, and 6.4. The Atomicity, Consistency, and Isolation tests are on all
databases configured on the SUT. Only one VM is tested for Durability, as described in Clause 6.5.

6.2 Atomicity Requirements

6.2.1 Atomicity Property Definition

The System Under Test must guarantee that Database Transactions are atomic; the system will either
perform all individual operations on the data, or will ensure that no partially completed operations leave
any effects on the data.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 101 of 271

6.2.2 Atomicity Tests

Perform a market Trade-Order Transaction with the roll_it_back flag set to 0. Verify that the appropriate
rows have been inserted in the TRADE and TRADE_HISTORY tables.

Perform a market Trade-Order Transaction with the roll_it_back flag set to 1. Verify that no rows
associated with the rolled back Trade-Order have been added to the TRADE and TRADE_HISTORY
tables.

6.3 Consistency Requirements

6.3.1 Consistency Property Definition

Consistency is the property of the Application that requires any execution of a Database Transaction to
take the database from one consistent state to another.

6.3.1.1 A TPCx-HCI database when first populated by VGenLoader must meet these consistency conditions.

6.3.1.2 If data is replicated, as permitted under Clause 10.3.4, each copy must meet the consistency conditions
defined in Clause 6.3.2.

6.3.2 Consistency Conditions
Three consistency conditions are defined in the following clauses. Explicit demonstration that the
conditions are satisfied is required for all three conditions.

6.3.2.1 Consistency condition 1

Entries in the BROKER and TRADE tables must satisfy the relationship:
B_NUM_TRADES = count(*)

For each broker defined by:
(B_ID = CA_B_ID) and (CA_ID = T_CA_ID) and (T_ST_ID = ’CMPT’).

6.3.2.2 Consistency condition 2

Entries in the BROKER and TRADE tables must satisfy the relationship:
B_COMM_TOTAL = sum(T_COMM)

For each broker defined by:
(B_ID = CA_B_ID) and (CA_ID = T_CA_ID) and (T_ST_ID = ’CMPT’).

6.3.2.3 Consistency condition 3

Entries in the HOLDING_SUMMARY and HOLDING tables must satisfy the relationship:
HS_QTY = sum(H_QTY)

For each holding summary defined by:
(HS_CA_ID = H_CA_ID) and (HS_S_SYMB = H_S_SYMB).

6.3.3 Consistency Tests

The three consistency conditions must be tested after initial database population and after any Business
Recovery tests.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 102 of 271

6.4 Isolation Requirements

6.4.1 Isolation Property Definition

6.4.1.1 Given a Transaction T1 and a concurrently executing Transaction T2, the following phenomena (P0 to
P3) are defined as they occur in T1.

• P0 (“Dirty Write”) - Transaction T2 modifies (or inserts) data element R. Then, before T2 performs a
COMMIT, Transaction T1 starts and is able to modify (or delete) data element R and is subsequently
able to perform a COMMIT.
Comment: T2 may execute additional database operations based on the state it left data element R in,
potentially compromising the consistency of the data.

• P1 (“Dirty Read”) - Transaction T2 modifies (or inserts) data element R. Then, before T2 performs a
COMMIT, Transaction T1 starts, reads data element R and is able to obtain the state of the data
element as changed by T2. Subsequently, T2 is able to perform a ROLLBACK.
Comment: T1 may execute additional database operations based on a state of data element R that has
been rolled back and is considered to have never existed, potentially compromising the consistency
of the data.

• P2 (“Non-repeatable Read”) - Transaction T1 reads data element R. Then, before T1 performs a
COMMIT, Transaction T2 starts, modifies (or deletes) data element R and performs a COMMIT.
Subsequently, T1 repeats the read of data element R and is able to obtain the state of the data element
as changed by T2.
Comment: Prior to discovering the modified (or deleted) state of data element R, T1 may have
executed additional database operations based on a state of data element R that is considered to be
no longer correct, potentially compromising the consistency of the data.

• P3 (“Phantom Read”) - Transaction T1 reads a set of data elements that satisfy some <search
condition>. Then, before T1 performs a COMMIT, Transaction T2 starts and inserts (or deletes) one
or more data elements that satisfy the <search condition> used by T1. Subsequently, T1 repeats the
initial read with the same <search condition> and is able to obtain a different set of data elements
than the initial set.
Comment: Prior to discovering the larger (or smaller), set of data elements, T1 may have executed
additional database operations based on a set of data elements that is considered to no longer match
the <search condition>, potentially compromising the consistency of the data.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 103 of 271

6.4.1.2 The isolation property of a Transaction is the level to which it is isolated from the actions of other
concurrently executing Transactions. The table below, arranged from least (L0) to most (L3) restrictive,
defines four isolation levels based on which phenomena must not occur.

 Phenomena

 P0 P1 P2 P3

Is
ol

at
io

n
Le

ve
l L0 Must not occur Is possible Is possible Is possible

L1 Must not occur Must not occur Is possible Is possible

L2 Must not occur Must not occur Must not occur Is possible

L3 Must not occur Must not occur Must not occur Must not occur

6.4.1.3 During the Test Run, each TPCx-HCI Transaction must provide a level of isolation from Arbitrary
Transactions that is at least as restrictive as the level defined in the table below:

6.4.1.4

TPCx-HCI
Transaction

Isolation Level

 L3

Trade-Result
Market-Feed
Trade-Order
Trade-Update

L2

Broker-Volume
Customer-Position
Data-Maintenance
Market-Watch
Security-Detail
Trade-Lookup
Trade-Status

L1

6.4.1.5 During the Test Run the SUT must allow concurrent execution of Arbitrary Transactions.

6.4.1.6 During the Test Run, the data read by each TPCx-HCI Transaction must be no older than the most
recently Committed data at the time the Transaction started.

6.4.1.7 Systems that implement Transaction isolation using a locking and/or versioning scheme must
demonstrate compliance with the isolation requirements by executing the tests described in Clause
6.4.2.

6.4.1.8 Systems that implement Transaction isolation using techniques other than a locking and/or versioning
scheme may require different techniques to demonstrate compliance with the isolation requirements. It
is the responsibility of the Test Sponsor, in collaboration with the Auditor, to define those techniques,
to implement them, to execute them as a demonstration of compliance with the isolation requirements
and to provide sufficient details in the FDR to support the assertion that the isolation requirements
were met.

6.4.2 Isolation Tests
The following isolation tests are designed to verify that the configuration and implementation of the
System Under Test provides the Transactions with the required isolation levels defined in Clause 6.4.1.3.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 104 of 271

6.4.2.1 P2 Test in Read-Write

This test demonstrates that a read-write Trade-Result Transaction is protected against the Non-
repeatable Read phenomenon P2 when executing concurrently with another read-write Trade-Result
Transaction. The second Trade-Result Transaction (Session S4 below) plays the role of an Arbitrary
Transaction that is updating a row in the HOLDING_SUMMARY table which has been read by the first
Trade-Result Transaction (Session S3 below).

For the purpose of this test, the two Trade-Result Transactions must be instrumented to record hs_qty
after returning from Frame 1. In addition, the Trade-Result Transaction executed by S3 must be able to
repeat the execution of Frame 1 and to be able to pause before starting the execution of Frame 2.

Using four Sessions, S1 to S4, the following steps are executed in order:
1. From S1, select an acct_id. Using an ad hoc read-only transaction, find a symbol that has a

corresponding row in the HOLDING_SUMMARY table for the selected acct_id, record the HS_QTY
for that holding and perform a commit.

10. From S1, request and successfully complete a Trade-Order for the acct_id and symbol selected in step
1. Record the trade_id assigned to this new trade.

11. From S2, request and successfully complete another Trade-Order for the acct_id and symbol used in
step 2. Record the trade_id assigned to this new trade.

12. From S3, request a Trade-Result for the trade_id from step 2 and pause between Frame 1 and Frame
2. Record hs_qty and verify that it is equal to HS_QTY from step 1.

13. From S4, request a Trade-Result for the trade_id from step 3. Verify that it completes Frame 1 and
starts execution of Frame 2. Record hs_qty and verify that it is equal to HS_QTY from step 1.
Case A, if S4 stalls in Frame 2, then rolls back, while S3 completes:
6A. From S3, repeat the execution of Frame 1 and pause again between Frame 1 and Frame 2. Record
hs_qty and verify that it is equal to HS_QTY from step 1.
7A. Resume execution of S3 by invoking Frame 2. Verify the successful completion of the remaining
Frames.
8A. Verify that S4 rolled back.
Case B, if S4 completes (perhaps after stall) and S3 rolls back:
6B. Verify that S4 completes the execution of Frame 2 and the remaining Frames.
7B. Verify that S3 rolled back.
Case C, if S4 stalls in Frame 1 (Invalid):
6C. If this case occurs, the test is invalid. To properly test protection against the Non-repeatable Read
phenomenon P2, Session S4 must get to the point in Trade-Result Frame 2 where a row is updated
in HOLDING_SUMMARY. The Trade-Result Transaction used for S4 may need to be modified to
prevent it blocking in Frame 1. For example, it may be executed at the lower isolation level of an
Arbitrary Transaction.

Comment: This test is successful if either Case A or B is followed. It fails if Case C occurs. Other valid
possibilities may exist (e.g., both S3 and S4 could fail), but if both S3 and S4 record the same hs_qty value
from execution of Frame 1, then at most one of these Sessions may complete normally and commit the
Transaction. The intent of this test is to demonstrate that in all circumstances when S3 repeats the read
on the HOLDING_SUMMARY table for the selected acct_id and symbol, the row found and value is the
same as in Step 1.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 105 of 271

6.4.2.2 P1 Test in Read-Write

This test demonstrates that a read-write Trade-Result Transaction is protected against the dirty-read
phenomenon P1 when executing concurrently with another read-write Trade-Result Transaction. For the
purpose of this test the Trade-Result Transaction must be instrumented to record se_amount after
returning from Frame 5 and to be able to pause in Frame 6 just prior to committing.

Using three Sessions, S1 to S3, the following steps are executed in order:

1. From S1, request a Customer-Position for a selected cust_id, complete the Transaction and record the
set of resulting acct_id[] and cash_ball[].

2. From S1, request and successfully complete a Trade-Order from an acct_id selected from the set
recorded in step 1, for a given symbol and with a type_is_margin set to 0. Record the trade_id assigned
to this new trade.

3. From S1, request and successfully complete another Trade-Order for the same acct_id but a different
symbol than that used in step 2, and with a type_is_margin set to 0. Record the trade_id assigned to this
new trade.

14. From S2, request a Trade-Result for the trade_id from step 2. Before invoking Frame 6, record
se_amount, then invoke Frame 6 and pause before committing.

15. From S3, request a Trade-Result for the trade_id from step 3. The Transaction may pause or fail or be
temporarily blocked from fully executing. If it reaches the start of Frame 6, record se_amount, then
invoke Frame 6. If it reaches the end of Frame 6, pause before committing.

16. From S2, proceed with committing and successfully completing the Transaction. Record the resulting
acct_bal.

17. From S3, depending on how the Transaction behaved at the end of step 5:
If it reached the pause in Frame 6, allow it to proceed and verify that it Committed and completed
successfully.
If it was blocked before the end of Frame 5, verify that it was released, completed Frame 5, recorded
se_amount, executed Frame 6, Committed and completed successfully.
If it failed and was forced to rollback, repeat the Trade-Result request with the same trade_id input
parameter. Verify that the Trade-Result executes in full, records se_amount at the start of Frame 6,
commits at the end of Frame 6 and completes successfully.

18. From S3, record the resulting acct_bal and verify that it is equal to cash_bal[] from step 1 (for the acct_id
chosen in step 2) plus the sum of the se_amount outputs for the two Trade-Results.

6.4.2.3 P1 Test in Read-Only

This test demonstrates that the read-only Customer-Position Transaction is protected against the dirty-
read phenomenon P1 when executing concurrently with the read-write Trade-Result Transaction. For
the purpose of this test the Trade-Result Transaction must be instrumented to be able to pause in Frame
6 just prior to committing.

Using four Sessions, S1 to S4, the following steps are executed in order:

1. From S1, request a Customer-Position for a selected cust_id, complete the Transaction and record the
set of resulting acct_id[] and cash_bal[].

2. From S1, request and successfully complete a Trade-Order where the associated acct_id input matches
one of the acct_id[] recorded in step 1 and type_is_margin is 0. Record the trade_id assigned to this new
trade.

19. From S2, request a Trade-Result for the trade_id from step 2 and then pause in Frame 6 before
committing.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 106 of 271

20. From S3, request a Customer-Position for the cust_id selected in step 1. The Transaction may complete
or fail or be temporarily blocked from fully executing.

21. From S2, proceed with committing and successfully completing the Trade-Result Transaction. Record
the resulting acct_bal.

22. From S3, depending on how the Customer-Position Transaction behaved at the end of step 4:
If it completed, record the set of resulting acct_id[] and cash_bal[] and verify that the cash_bal for the
acct_id used in step 2 is unchanged from step 1.
If it was blocked, verify that it has now completed, record the set of resulting acct_id[] and cash_bal[]
and verify that the cash_bal for the acct_id used in step 2 matches the acct_bal from step 5.
If it failed, proceed to the next step.

23. From S4, request a Customer-Position for the cust_id selected in step 1, complete the Transaction,
record the set of resulting acct_id[] and cash_bal[] and verify that the cash_bal for the acct_id used in
step 2 has changed from step 1 and reflects the amount of the trade completed in step 5 (by matching
acct_bal from step 5).

6.5 Durability Requirements
No system provides complete data protection under all possible types and/or combinations of failures.
However, data protection against any Single Point of Failure is commonly expected. Therefore, the intent
of this clause is to ensure that the SUT has no unrecoverable Single Points of Failure. The required data
protection is satisfied by the SUT persisting certain data across certain types of failures.
This clause provides details on:

• Which data must persist
• Which types of failures must be protected against
• Which steps to follow for the testing/demonstration
• Which results must be disclosed

Comment: The limited nature of the tests described in this clause must not be interpreted to allow other
unrecoverable Single Points of Failure.

6.5.1 Definition of Commit
The concept of “commit” has to do with delineating the successful completion of an atomic unit of work.
The following definition will be leveraged to focus the scope of which data must be persisted by the SUT.

Commit is a control operation that:
• Is initiated by a unit of work (a Transaction)
• Is implemented by the DBMS
• Signifies that the unit of work has completed successfully and all tentatively modified data are

to persist (until modified by some other operation or unit of work)

Upon successful completion of this control operation both the Transaction and the data are said to be
Committed.

•

6.5.2 Definition of Single Point(s) of Failure

This clause lists various types of failures that can occur within the SUT. This list will be leveraged to
focus the scope of failures the SUT must protect against.

Any single item covered here is defined to be a Single Point of Failure; when two or more items are
being discussed, the term Single Points of Failure is used.

At present only one type of Single Point of Failure is defined in Clause 6.5.2.1.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 107 of 271

6.5.2.1 Loss of Processing

This failure covers an instantaneous interruption in processing Commit control operations to a Virtual
Machine in a Group (e.g. system crash / system hang) that requires the Virtual Machine to be started
from the file system image of the Virtual Machine. This implies an immediate abnormal system
shutdown where the run-time state and the memory contents of the VM are lost, but the virtual disk
contents are intact although possibly in an unknown state. A recovery requires starting the Virtual
Machine, rebooting the VM operating system, recovering the file systems in the VM, and recovering the
DBMS using the Undo/Redo Log.

6.5.3 Definition of Durable / Durability

The SUT must provide Durability as defined in this clause.

In general, state that persists across failures is said to be Durable and an implementation that ensures
state persists across failures is said to provide Durability. In the context of the benchmark, Durability
is more tightly defined as the SUT’s ability to ensure all Committed data persist across any Single Point
of Failure.

6.5.4 Durability Testing Rules and Guidelines
The intent of this clause is to cover specific rules and special-case guidelines.

6.5.4.1 Durability Throughput Requirements

All Durability tests must meet the following requirements:
• Be performed with the same number of Configured Customers, Active Customers, and Driver

load used for the Measurement Interval. The vcfg.properties file may be changed to have a
shorter run time with a single Phase.

• Be in Steady State.
• Satisfy the Response Time constraints in Clause 5.5.1.2.
• Satisfy the Transaction Mix requirements listed in Clause 5.3.1.
• Be at or above 95% of the Reported Throughput with no errors.
• Match all Driver and SUT configuration settings used during the Measurement Interval.

6.5.4.2 Roll-forward recovery from an archive database copy (e.g., a copy taken prior to the run) using
Undo/Redo Log data is not acceptable as the recovery mechanism in the case of failures listed in Clause
6.5.2.1. Note that “checkpoints”, “control points”, “consistency points”, etc. of the database taken
during a run are not considered to be archives.

6.5.4.3 Instantaneous Failures

Single Points of Failure must be induced instantaneously without any foreknowledge given to the SUT.

Comment: Reactive actions initiated within the SUT as a result of an Instantaneous Failure are not
considered foreknowledge.

6.5.4.4 Simulated Failures

A Single Point of Failure may be simulated if the effects on the SUT are identical to those of the actual
occurrence of the Single Point of Failure. In particular, the loss of processing (e.g., Clause 6.5.2.1) may
be simulated using a VMMS command that instantaneously shuts down the VM.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 108 of 271

6.5.4.5 Multiple Identical Single Points of Failure

If the SUT contains multiple identical Single Points of Failure as defined in Clause 6.5.2 that perform
identical benchmark functions, successful demonstration of Durability for one instance is sufficient;
there is no requirement to repeat the demonstration for all the other instances unless directed to do so by
the Auditor.

Example – Loss of Processing: In configurations where more than one instance of an Operating System
performs an identical benchmark function, Durability for the failure in Clause 6.5.2.1 must be completed
on at least one such instance.

6.5.5 Definition of Recovery Terms

6.5.5.1 Database Recovery

Database Recovery is the process of recovering the database from a Single Point of Failure system
failure.

6.5.5.2 Database Recovery – Start Time

The start of Database Recovery is the time at which database files are first accessed by a process that has
knowledge of the contents of the files and has the intent to recover the database or issue Transactions
against the database.

Comment: Access to files by Operating System processes that check for integrity of file systems or
volumes to repair damaged data structures does not constitute the start of Database Recovery.

6.5.5.3 Database Recovery – End Time

The end of Database Recovery is the time at which database files have been recovered.

Comment: The database will usually report this time in its log files.

6.5.5.4 Database Recovery Time

Database Recovery Time is the duration from the start of Database Recovery to the point when database
files complete recovery.

6.5.5.5 Application Recovery

Application Recovery is the process of recovering the business application after a Single Point of
Failure and reaching a point where the business meets certain operational criteria.

6.5.5.6 Application Recovery – Start Time

The start of Application Recovery is the time when the first Transaction is submitted after the start of
Database Recovery.

6.5.5.7 Application Recovery – End Time

The end of Application Recovery is the first time, T, after the start of Application Recovery at which the
following conditions are met:

• The one-minute average tpsHCI (i.e. average tpsHCI over the interval from T to T + 1 minute) is
greater than or equal to 95% of Reported Throughput

• The 20-minute average tpsHCI (i.e. average tpsHCI over the interval from T to T + 20 minutes)
is greater than or equal to 95% of Reported Throughput.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 109 of 271

Comment: When considering the 20-minute interval, the average tpsHCI for the first minute must be at
or above 95% of Reported Throughput (as required by the first bullet above). However, some number
of the subsequent 19 one-minute average tpsHCI values may drop below 95% of Reported Throughput.
This is acceptable as long as the overall 20-minute average tpsHCI is not less than 95% of Reported
Throughput (as required by the second bullet above).

6.5.5.8 Application Recovery Time

Application Recovery Time is the elapsed time between the start of Application Recovery and the end
of Application Recovery (see Clause 6.5.5.5).

6.5.5.9 Business Recovery

Business Recovery is the process of recovering from a Single Point of Failure and reaching a point
where the business meets certain operational criteria.

6.5.5.10 Business Recovery Time

Business Recovery Time is the elapsed period of time between start of Business Recovery and end of
Business Recovery (see Clause 6.5.5.9).

Comment: Single Points of Failure can be very disruptive to business processing, therefore it is
imperative for businesses to recover from these failures as quickly as possible. There are many database
configuration parameters and practices that directly affect the performance of the DBMS and its recovery
time from a Single Point of Failure. However, while it is recognized that boot times for systems vary
greatly, boot parameters have little to no effect on the performance of the DBMS. For this reason, server
boot times are not included as part of the Business Recovery Time.

6.5.6 Durability Test Procedure for Single Points of Failures
1. Determine the current number of completed trades in the database by running:
 select count(*) as count1 from SETTLEMENT.

2. Start Test Run 1 by submitting Transactions and ramp up to the Durability Throughput
Requirements (as defined in Clause 6.5.4.1) and satisfy those requirements for at least 20 minutes.

3. Induce the Single Points of Failure failure, from Clause 6.5.2 to a VM3 Virtual Machine. Note the
failure time, e.g. by invoking the date(1) command.

4. With the downed VM3 Virtual Machine no longer responding, the flow of transactions will
gradually stop, and you should see a transaction rate of 0 in a short time. Abort the run, e.g. by
hitting CTRL-C. Note that the benchmark kit log files are still in a temporary location and will get
overwritten if you start a new run. Retrieve the log files and perform a preliminary post-processing
of results using the following invocation of the benchmark kit:

runme.sh --report <RUNID> --recover_aborted_run

Later, you will use the time noted in step 3 to invoke:

runme.sh --report <RUNID> --failure_time <time>

to calculate the throughput of the run before the failure to prove that the throughput requirements
of Clause 6.5.4.1 were met.

5. Note the time when Database Recovery starts (see Clause 6.5.5.2), either automatically or manually
by an operator.

6. When Database Recovery ends, note the time. This may occur during the following steps (see Clause
6.5.5.3).

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 110 of 271

7. Start Test Run 2 or continue Test Run 1 submitting Transactions and note this time as the start of
Application Recovery (see Clause 6.5.5.6). Ramp up to 95% of Reported Throughput.

Comment: If there is a time gap between the end of Database Recovery and the start of Application
Recovery and if Drivers and Transactions need to be started again (not just continued), then the
Trade-Cleanup Transaction may be executed during this time gap.

8. Note the end of Application Recovery as defined in Clause 6.5.5.7.

9. Terminate the Driver gracefully.

10. Verify that no errors were reported by the Driver during steps 7 through 10. The intent is to ensure
that an end-user would not see any adverse effects (aside from availability of the application and
potentially reduced performance) due to the SUT failure and subsequent Business Recovery.

11. Retrieve the new number of completed trades in the database by running:
select count(*) as count2 from SETTLEMENT

12. Compare the number of completed Trade-Result Transactions on the Driver to (count2 – count1).
Verify that (count2 - count1) is greater or equal to the aggregate number of successful Trade-Result
Transaction records in the Driver log file for the runs performed in step 2 and step 8. If there is an
inequality, the SETTLEMENT table must contain additional records and the difference must be less
than or equal to the maximum number of Transactions which can be simultaneously in-flight from
the Driver to the SUT. This number is specific to the implementation of the Driver and configuration
settings at the time of the crash.

Comment: This difference must be due only to Transactions which were Committed on the System
Under Test, but for which the output data was not returned to the Driver before the failure.

13. Verify consistency conditions as specified in Clause 6.3.3.

14. Calculate Business Recovery Time as the sum of Application Recovery Time and Database
Recovery Time, if those times do not overlap. If Application Recovery begins before Database
Recovery is complete, Business Recovery Time is the time elapsed between the beginning of
Database Recovery and the end of Application Recovery.

6.5.7 Required Reporting for Durability

6.5.7.1 Business Recovery Time

The Business Recovery Time must be reported on the Executive Summary Statement and in the Report.
All the Business Recovery Times for each test requiring Business Recovery must be reported in the
Report.

6.5.7.2 Business Recovery Time Graph

A graph of the one-minute average tpsHCI versus elapsed time must be reported in the Report for the
run portions of the Business Recovery tests, prepared in accordance with the following conventions:

• The x-axis represents the maximum of the elapsed times for the two runs described in Clause
6.5.6 steps 2 and 8

• The y-axis represents the throughput in tpsHCI (computed as the total number of Trade-Result
Transactions that complete within each one-minute interval divided by 60)

• A plot interval size of 1 minute must be used
• The y-axis data for both runs is to be overlaid on a single graph, with the end times of each run

clearly marked
• For graphing purposes, time 0 is defined as follows:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 111 of 271

• For the run outlined in 6.5.6 step 2, time 0 is defined as the point in time where the first
Transaction is issued to the database

• For the run outlined in 6.5.6 step 8, time 0 is defined as the point in time where Database
Recovery begins

• For graphing purposes, the end of the run is defined as follows:
• For the run outlined in 6.5.6 step 2, the end of the run is the time at which the failure is induced

(see 6.5.6 step 3)
• For the run outlined in 6.5.6 step 8, the end of the run is the time at which the Application

Recovery has ended successfully (see 6.5.6 step 8)
• For the run outlined in 6.5.6 step 8, if any time elapses between the end of Database Recovery

and the start of Application Recovery, this time should be ignored and the two periods should
be presented adjacent on the graph.

• A horizontal line at 95% of the Reported Throughput must also be plotted across the graph

6.6 Data Accessibility Requirements
The System Under Test must be configured to satisfy the requirements for Data Accessibility detailed
in this clause. Date Accessibility is the ability to maintain database operations with full data access after
the permanent irrecoverable failure of any single Durable Medium containing database tables, recovery
log data, or Database Metadata, or the loss of a Node in an HCI Cluster. In a valid TPCx-HCI Cluster
implementation, Data Accessibility tests are conducted by causing a Node failure via unmanaged loss
of power to a single Node of the SUT Cluster. This failure must be an unmanaged, unanticipated loss of
power, not a graceful shutdown. The failures of Clause 6.6.3 test the ability of the SUT to maintain access
to the data. The specific set of single failures addressed in Clause 6.6.3 is defined sufficiently significant
to justify demonstration of Data Accessibility across such failures. However, the limited nature of the
tests listed must not be interpreted to allow other unrecoverable single points of failure.

6.6.1 Definition of Terms

6.6.1.1 Date Accessibility is the ability to maintain database operations with full data access after the
permanent irrecoverable failure of any single Durable Medium containing database tables, recovery
log data, or Database Metadata, or the loss of a Node in an HCI Cluster.

6.6.1.2 Durable Medium is a data storage medium that is inherently non-volatile such as a magnetic disk or
tape. Durable Media is the plural of Durable Medium.

6.6.2 Data Accessibility Throughput Requirements

All Data Accessibility tests must meet the following requirements:
• Be performed with the same number of Configured Customers and Driver load used for the

Measurement Interval. The vcfg.properties file may be changed to have a shorter run time
with a single Phase.

• Be in Steady State
• Satisfy the Response Time constraints in Clause 5.5.1.2.
• Satisfy the Transaction Mix requirements listed in Clause 5.3.1.
• Since the Test Sponsor is required to power down one of the Nodes in the Cluster, the expected

throughput of the Data Accessibility tests needs to be adjusted to running with fewer hardware
resources. Given a Node count of N used in the Measured Configuration, the throughput of the
Data Accessibility test must be at or above ((N-1)/N) * 90% of the Reported Throughput with
no errors before the power loss failure is induced.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 112 of 271

• Match all Driver and SUT configuration settings used during the Measurement Interval

6.6.3 Failure of Durable Media

The failures detailed in this clause affect the access of data from Durable Media. The following
requirements are also known as the Data Accessibility requirements.

6.6.3.1 The SUT must maintain database access to data on Durable Media during and after a permanent and
irrecoverable failure of a single Durable Medium containing database tables, recovery log data, or
Database Metadata, or the loss of a Node in an HCI Cluster. The Test Sponsor must also restore the
Durable Medium environment to its pre-failure condition, while maintaining database access to the
data on Durable Media.

6.6.3.2 Durable Media are inherently non-volatile and are typically magnetic disks using replication (RAID-1
mirroring) or other form of protection (RAID-5, et.al.) to guarantee access to the data during a Durable
Medium failure. Volatile media such as memory can also be used if the volatile media can ensure the
transfer of data automatically, before any data is lost, to an inherently non-volatile medium after the
failure of external power independently of reapplication of external power.

Comment 1: A configured and priced Uninterruptible Power Supply (UPS) is not considered external
power.

Comment 2: Memory can be considered a Durable Medium if it can preserve data long enough to satisfy
the requirements stated above, for example, if it is accompanied by an Uninterruptible Power Supply,
and the contents of memory can be transferred to an inherently non-volatile medium during the failure.
Note that no distinction is made between main memory and memory performing similar permanent or
temporary data storage in other parts of the system (e.g., disk controller caches). If main memory is used
as a Durable Medium, then it must be considered as a potential single point of failure. A sample
mechanism to survive single Durable Medium failure is mirrored Durable Media. If memory is the
Durable Medium and mirroring is the mechanism used to ensure Durability, then the mirrored
memories must be independently powered.

6.6.3.3 The Data Accessibility tests (aka. Non-catastrophic failures) must meet the Data Accessibility
Throughput Requirements of Clause 6.6.2.

6.6.3.4 Redundancy Levels

The redundancy levels refer to the level of guarantee for data access given a single failure among the data
storage components. The SUT must implement one of the following Redundancy Levels:
• Redundancy Level One (Durable Media Redundancy) guarantees access to the data on Durable

Media when a single Durable Media failure occurs.
Comment: The intent of this redundancy level is to test the ability of the Durable Media environment
to survive the failure of a single Durable Medium and continue processing requests from the
Operating System and/or DBMS.
Example: The Sponsor has implemented RAID-1 (mirroring) on the disks within an enclosure. The
Sponsor must maintain access to the data on the remaining disks despite the induced failure of a
single disk.

• Redundancy Level Two (Durable Media Controller Redundancy) includes Redundancy Level One
and guarantees access to the data on Durable Media when a single failure occurs in the storage
controller used to satisfy the redundancy level or in the communication media between the storage
controller and the Durable Media.
Comment: The intent of this redundancy level is to test the ability of the implementation to survive
the failure of a storage controller responsible for implementing Redundancy Level One.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 113 of 271

Example: If Redundancy Level One is satisfied by implementing RAID-5 protection within a disk
enclosure, then Redundancy Level Two would be tested by failing the hardware used to implement
the RAID-5 protection.
If the controller implementing the RAID-5 is contained within the disk enclosure (or similar
externally attached device), then the Sponsor must demonstrate they can still access the data stored
within the enclosure.
If the controller implementing the RAID-5 is separate from the enclosure containing the disks, and
the controller is not being used as a Durable Medium (e.g. mirrored write caches), then it is sufficient
to fail the communications between the controller and the enclosure.

Redundancy Level Three (Full Redundancy) includes Redundancy Level Two and guarantees access
to the data on Durable Media when a single failure occurs within the Durable Media system, including
the failure of a single Node of the Cluster, or failure of communications between Nodes of the Cluster.
• A TPCx-HCI system must satisfy the requirements for Redundancy Level Three.

Comment 1: The Durable Media system includes all components necessary to meet the durability
requirements defined above. This does not include the Tier B system or the system bus, but does
include the adapter on the system bus and any and all components “downstream” from the adapter.
Comment 2: The intent of this clause is to test the ability of the Tier B system to withstand component
failures and continue processing of the Transactions.

Comment: The components being tested by this clause are those that are considered to be Field
Replaceable Units (FRUs). It is not the intent of the clause to require Sponsors to test the durability of a
backplane inside a Durable Media enclosure or similar non-replaceable components. However, testing
the failover properties of storage controllers, including mirrored caches on a controller, and the
corresponding software, is within the intent of this clause.

6.6.3.5 Test Procedure for Data Accessibility

1. Determine the current number of completed trades in the database by running:
select count(*) as count1 from SETTLEMENT

2. Start submitting Transactions and ramp up to the Data Accessibility Throughput Requirements (as
defined in Clause 6.6.2) and satisfy those requirements for at least 20 minutes.
Comment: Once the Data Accessibility Throughput Requirements are met
• no Driver configuration changes are permitted until the conclusion of step 5
• no SUT configuration changes are permitted except those needed to satisfy steps 3 and 4

3. Induce a complete loss of power for one of the Nodes in the Cluster.

Comment: It is expected that the TPCx-HCI Node that will be lost may not run any of the benchmark
load. Hence the reduced Driver load for this test.

4. After the Node has been down for at least 20 minutes, power the Node back up, and begin the
necessary recovery process.

5. Continue running the Driver for at least 20 minutes.
6. Allow the run to complete gracefully.

7. Retrieve the new number of completed trades in the database by running:
select count(*) as count2 from SETTLEMENT

8. Compare the number of executed Trade-Result Transactions on the Driver to
(count2 – count1). Verify that (count2 - count1) is equal to the number of successful Trade-Result
Transaction records in the Driver log file.

9. Allow recovery process to complete as needed.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 114 of 271

6.6.3.6 Requirement for Combinations of Durable Media Technologies

At least one of each combination of durable media technology, bus type, and redundancy level, (e.g.
SSD/RAID-10, SATA/RAID-5, FC/RAID-5) must be tested independently as specified in clause 6.6.3.5.

6.6.4 Required Reporting for Data Accessibility

6.6.4.1 Redundancy Level

The Test Sponsor must report the Redundancy Level and describe the test(s) used to demonstrate
compliance in the Report. A list of all combinations of Durable Media technologies tested in Clause
6.6.3.5 must be reported in the Report

6.6.4.2 Data Accessibility Time Graph

A graph of the Trade-Results per second averaged over one-minute versus elapsed time must be reported
in the Report for the run portions of the Data Accessibility tests, prepared in accordance with the
following conventions:
• The x-axis represents the elapsed time for the runs described in Clause 6.6.3.5, steps 2 through 6
• The y-axis represents the throughput in tpsHCI (computed as the total number of Trade-Result

Transactions that complete within each one-minute interval divided by 60)
• A plot interval size of 1 minute must be used
• Given a Node count of N used in the Measured Configuration, a horizontal line at ((N-1)/N) * 90%

of the Reported Throughput must also be plotted across the graph

Comment: The intent is to show how throughput is affected during recovery.

6.6.4.3 Recovery Time

The time to complete the recovery from the loss of a Node must be reported in the Executive Summary.
Comment: The intent is to record and report the length of time needed to restore resilience after the loss
of a Node.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 115 of 271

CLAUSE 7 PRICING

Rules for pricing the Priced Configuration and associated software and maintenance are included in the
TPC Pricing Specification, located at www.tpc.org.

The following requirements are intended to supplement the TPC Pricing Specification:

7.1 General

7.1.1 The pricing methodology used for pricing the Priced Configuration is the “Default Three-Year
Pricing Methodology”, as defined in the current revision of the TPC Pricing specification.

7.1.2 The pricing model used for pricing the Priced Configuration is the “Default Pricing Model”, as
defined in the current revision of the TPC Pricing specification.

7.1.3 The components to be priced are defined by the Priced Configuration (see Clause 7.2)

7.1.4 The functional requirements of the Priced Configuration are defined in terms of the Measured
Configuration (see Clause 10.1.2)

7.1.5 The allowable substitutions are defined in Clause 7.5 (Component Substitution).

7.2 Priced Configuration
The system to be priced is the aggregation of the SUT and any additional component that would be
required to achieve the reported performance level. Calculation of the priced system consists of:

• Price of the SUT as tested and as defined in Clause 10.1.2.
• Price of any additional storage and associated infrastructure required by the On-Line Storage

Requirement in Clause 7.3.
• Price of additional products that are required for the operation, administration or maintenance

of the priced system.
• Price of additional products required for Application development.

Comment: Any component, for example a Network Interface Card (NIC), must be included in the price of
the SUT if it draws resources for its own operation from the SUT. This includes, but is not limited to,
power and cooling resources. In addition, if the component performs any function defined in the
TPCx-HCI specification it must be priced regardless of where is draws its resources.

7.3 On-line Storage Requirement

7.3.1 A storage device is considered On-Line if it is capable of providing an access time to data, for random
read or update, of one second or less by the Operating System.

Comment: Examples of On-Line storage may include magnetic disks, optical disks, solid-state storage,
virtual disk, or any combination of these, provided that the above mentioned access criteria is met.

7.3.2 On-Line storage must be priced for sufficient space to store and maintain the data and User-Defined
Objects generated during a period of one Business Day at the Reported Throughput.

7.3.3 Archive Operation Requirement

TPCx-HCI has no requirements for pricing additional archive storage.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 116 of 271

7.3.4 Back-up Storage Requirements

TPCx-HCI has no requirements for on-line back-up data capabilities in the Priced Configuration.

7.4 TPCx-HCI Specific Pricing Requirements

7.4.1 Additional Operational Components

7.4.1.1 Additional products that might be included on a customer installed configuration, such as operator
consoles and magnetic tape drives, are also to be included in the priced system if explicitly required for
the operation, administration, or maintenance, of the priced system.

7.4.1.2 Copies of the software, on appropriate media, and a software load device, if required for initial load or
maintenance updates, must be included.

7.4.1.3 Clause 6.6.3.2The price of all components, including cables, used to interconnect components of the
SUT must be included.

7.4.2 Additional Software

7.4.2.1 All software licenses must be priced for a number of users at least equal to one user for each tpsHCI of
Nominal Throughput. Any usage pricing for this number of users must be based on the pricing policy
of the company supplying the priced component.

7.4.2.2 The price must include the software licenses necessary to create, compile, link, and execute this
benchmark Application as well as all run-time licenses required to execute on host system(s), client
system(s) and connected workstation(s) if used.

7.4.2.3 In the event the Application Program is developed on a system other than the SUT, the price of that
system and any compilers and other software used must also be included as part of the priced system.

7.5 Component Substitution

7.5.1 Substitution is defined as a deliberate act to replace components of the Priced Configuration by the
Test Sponsor as a result of failing the availability requirements of the TPC Pricing Specification or
when the Part Number for a component changes.

Comment: Corrections or "fixes" to components of the Priced Configuration are often required during the
life of products. These changes are not considered Substitutions so long as the Part Number of the priced
component does not change. Suppliers of hardware and software may update the components of the
Priced Configuration, but these updates must not impact the Reported Throughput. The following are
not considered Substitutions:
• software patches to resolve a security vulnerability
• silicon revision to correct errors
• new supplier of functionally equivalent components (i.e. memory chips, disk drives, ...)

7.5.2 Some hardware components of the Priced Configuration may be substituted after the Test Sponsor has
demonstrated to the Auditor's satisfaction that the substituting components do not negatively impact
the Reported Throughput. All Substitutions must be reported in the Report and noted in the
Auditor's Attestation Letter if a TPC-Certified Auditor has audited the Result. The following
hardware components may be substituted:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 117 of 271

• Durable Medium
• Durable Medium Enclosure
• Network interface card
• Router
• Bridge
• Repeater

7.6 Required Reporting

7.6.1 Two metrics will be reported with regard to pricing. The first is the total 3-year pricing as described in
the effective version of the TPC Pricing specification. The second is the total 3-year pricing divided by
the Reported Throughput (tpsHCI), as defined in Clause 5.7.1.

7.6.2 The pricing metric, defined in Clause 7.1.1, must be fully reported in the basic monetary unit of the
local currency unit rounded up and the Price/Performance Metric must be reported to a minimum
precision of three significant Digits rounded up. Neither metric may be interpolated or extrapolated.
For example, if the Total Price is $ 5,734,417.89 USD and the Reported Throughput is 105 tpsHCI, then
the price is $ 5,734,418 USD and the price/performance is $ 54,700 USD per tpsHCI (5,734,418/105).

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 118 of 271

CLAUSE 8 FULL DISCLOSURE REPORT

8.1 Full Disclosure Report Requirements
A Full Disclosure Report (FDR) is required. This section specifies the requirements for the FDR.

The FDR is a zip file of a directory structure containing the following:
• A Report in Adobe Acrobat PDF format,
• An Executive Summary Statement in Adobe Acrobat PDF format,
• The Supporting Files consisting of various source files, scripts, and listing files. Requirements for

the FDR file directory structure are described below.

Comment: The purpose of the FDR is to document how a benchmark Result was implemented and
executed in sufficient detail so that the Result can be reproduced given the appropriate hardware and
software products.

8.1.1 General Items

8.1.1.1 The order and titles of sections in the Report and Supporting Files must correspond with the order and
titles of sections from the TPCx-HCI Standard Specification (i.e., this document). The intent is to make
it as easy as possible for readers to compare and contrast material in different Reports.

8.1.1.2 The FDR must follow all reporting rules specified in the effective version of the TPC Pricing
Specification, located at www.tpc.org. For clarity and readability the TPC Pricing Specification
requirements may be repeated in the TPCx-HCI Specification.

8.1.1.3 The directory structure of the FDR has three folders:

• ExecutiveSummaryStatement - contains the Executive Summary Statement
• Report - contains the Report,
• SupportingFiles - contains the Supporting Files.

8.1.1.4 The reporting requirements of Clause 8 require descriptions, scripts and step-by-step GUI instructions
that are necessary to reproduce the benchmark Result. The Test Sponsor can only provide
descriptions, scripts and GUI instructions for the measured SUT as no knowledge is available at the
time of publication of future changes in hardware or software. To meet the Clause 8.1 reproducibility
requirement, the Test Sponsor must provide upon request any and all updated descriptions, scripts
and step-by-step GUI instructions required to reproduce the benchmark Result.

8.2 Executive Summary Statement
The TPC Executive Summary Statement must be included near the beginning of the Report. An example
of the Executive Summary Statement is presented in Appendix A. The Executive Summary Statement
generated by the Benchmark Kit must be used.

8.2.1 First Page of the Executive Summary Statement

8.2.1.1 The first page of the Executive Summary Statement must include the following:

• Sponsor’s name
• Measured server’s name
• TPCx-HCI Specification version number under which the benchmark is published

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 119 of 271

• TPC-Pricing Specification version number under which the benchmark is published
• Report date and/or Revision Date
• Reported Throughput in tpsHCI (see Clause 5.7.1)
• Price/Performance Metric (see TPC Pricing Specification)
• Availability Date (see TPC Pricing Specification)
• Total System Cost (see TPC Pricing Specification)
• Database server’s Operating System name and version
• Database Manager name and version
• The number of Nodes in the HCI Cluster
• Number of Processors/Cores/Threads that were enabled for the benchmark (see TPC Policies

located at www.tpc.org), summed over all the Nodes in the Cluster. For a TPCx-HCI disclosure, this
is the sum of the Processors/Cores/Threads for all the Nodes.

• Memory in GB, summed over all the Nodes in the Cluster
• A diagram (see Clause 8.3.1.2) describing the components of the Priced Configuration (see TPC

Pricing Specification)
• Initial Database Size in GB of each Tier B VM
• Redundancy Level and Redundancy Level implementation details
• Priced number of Durable Media (disks) for the database

8.2.2 Additional Pages of Executive Summary Statement

8.2.2.1 The Price Spreadsheet must be included in the Executive Summary Statement as specified by the TPC
Pricing Specification.

Price Spreadsheet Categories:
The major categories for division of the price spreadsheet are:
• Server Hardware
• Server Storage
• Server Software
• Client Hardware
• Client Software
• Infrastructure (networking, UPS, consoles, other components that do not fit into the above categories)

8.2.2.2 State whether a Pre-Publication Board or a TPC-Certified Audor, whose name of the Auditor who
certified the result must be included after the Price Spreadsheet , has audited and approved the Result.

8.2.2.3 The numerical quantities listed below must be included in the Executive Summary Statement after the
Price Spreadsheet:

• Reported Throughput in tpsHCI (see Clause 5.7.1)
• Configured Customers and Active Customers (see Clause 2.4)
• Measurement Interval in hh:mm:ss (hours, minutes, seconds) (see Clause 5.6.1.5),
• Ramp-up time in hh:mm:ss (see Clause 5.6.1.2),
• Business Recovery Time in hh:mm:ss (see Clause6.5.7.1),
• The number of Transactions in the Transaction Mix completed within the Measurement Interval,

(report the total, and the number per Transaction type) (see Clause 5.3.1)

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 120 of 271

• The number of each Transaction type (including Data-Maintenance) completed within the
Measurement Interval

• Percentage of Transaction Mix for each Transaction type completed within the Measurement
Interval (see Clause 5.3.1).

• Ninetieth percentile, minimum, maximum and average Response Times must be reported for all
Transactions of the Transaction Mix completed within the Measurement Interval (see Clause 5.5.1).

• Maximum, minimum and average Response Times must be reported for Data-Maintenance.
• The time to complete the recovery from the loss of a Node in the Data Accessibility test.

8.3 Report Disclosure Requirements

8.3.1 Report Introduction

8.3.1.1 A statement identifying the benchmark Sponsor(s) and other participating companies must be reported
in the Report.

8.3.1.2 Diagrams of both Measured and Priced Configurations must be reported in the Report, accompanied
by a description of the differences. This includes, but is not limited to:

• Number and type of processors, number of cores and number of threads.
• Size of allocated memory, and any specific mapping/partitioning of memory unique to the test.
• Number and type of disk units (and controllers, if applicable).
• Number of channels or bus connections to disk units, including their protocol type.
• Number of LAN (e.g. Ethernet) connections, including routers, workstations, etc., that were

physically used in the test or incorporated into the pricing structure.
• Type and the run-time execution location of software components (e.g. VMMS , DBMS, client,

processes, transaction monitors, software drivers, etc.).
Comment: Detailed diagrams for system configurations and architectures can widely vary, and it is
impossible to provide exact guidelines suitable for all implementations. The intent here is to describe the
system components and connections in sufficient detail to allow independent reconstruction of the
measurement environment.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 121 of 271

8.3.1.3 The following sample diagram illustrates a server benchmark (Measured) Configuration using a 32-
processor server. The server uses 3 SCSI Controllers each attached to four 72GB 15Krpm drives. Gigabit
Ethernet is used to link the Driver machine to the middle-tier machines, and the middle-tier machines
to the server. Note that this diagram does not depict or imply any optimal configuration for the
TPCx-HCI benchmark measurement.

Figure 8a - Example of Measured Benchmark Configuration

8.3.1.4 A description of the steps taken to configure all of the hardware must be reported in the Report. Any
and all configuration scripts or step-by-step GUI instructions are reported in the Supporting Files (see
Clause 8.4.1.1). The description, scripts and GUI instructions must be sufficient such that a reader
knowledgeable of computer systems and the TPCx-HCI specification could recreate the hardware
environment. This includes, but is not limited to:

• A description of any firmware updates or patches to the hardware.
• A description of any GUI configuration used to configure the system hardware.
• A description of exactly how the hardware is combined to create the complete system. For example,

if the SUT description lists a base chassis with 1 processor, a processor update package of 3
processors, a NIC controller and 3 disk controllers, a description of where and how the processors,
NIC and disk controllers are placed within the base chassis must be reported in the Report.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 122 of 271

• A description of how the hardware components are connected. The description can assume the
reader is knowledgeable of computer systems and the TPCx-HCI specification. For example, only a
description that Controller 1 in slot A is connected to Disk Tower 5 is required. The reader is assumed
to be knowledgeable enough to determine what type of cable is required based upon the component
descriptions and how to plug the cable into the components.

8.3.1.5 A description of the steps taken to configure all software must be reported in the Report. Any and all
configuration scripts or step-by-step GUI instructions are reported in the Supporting Files (see Clause
8.4.1.2). The description, scripts and GUI instructions must be sufficient such that a reader
knowledgeable of computer systems and the TPCx-HCI specification could recreate the software
environment. This includes, but is not limited to:

• A description of any updates or patches to the software.
• A description of any changes to the software.
• A description of any GUI configurations used to configure the software.

Comment: The TPCx-HCI benchmark fully supports the Licensed Compute Services pricing model
introduced in version 2.0 of the TPC Pricing Specification, as long as the configuration and parameters
settings of the underlying VMMS are disclosed in full detail to allow a reader knowledgeable of computer
systems and the TPCx-HCI specification to recreate the software environment.

8.3.2 Clause 2 Database Design, Scaling & Population Related Items

8.3.2.1 A description of the steps taken to create the database for the Reported Throughput must be reported
in the Report. No changes may be made to the database schema as created by the DDL and DML in the
TPCx-HCI Benchmark Kit. The output of the setup.sh script must be captured and included in the
supporting files. The distribution of tables, partitions and logs across all media must be explicitly
depicted for the Measured and Priced Configurations.

Comment: The intent is to provide sufficient detail to allow independent reconstruction of the test
database.

Disk # Controller # Slot #
Drives

Enclosure model
RAID level

Partition/file system Size Use

1 1 3 2 X 36.4GB EEENNN
Enclosure RAID 10 / 20.00GB Root file system

2 2 4 6 X 36.4GB EEENNN
Enclosure RAID 10 /pg_xlog 60.00GB DB Log

3 2 4 14 X 74.8GB EEENNN
Enclosure RAID 10 /dbstore 400.00GB DB data

tablespace

4 3 5 8 X 74.8GB EEENNN
Enclosure RAID 10 /dbstore/tpcv-index 200.00GB DB index

tablespace

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 123 of 271

8.3.2.2 The methodology used to load the database must be reported in the Report.

8.3.3 Clause 3 SUT, Driver, and Network Related Items

8.3.3.1 The Network configurations of both the Measured and Priced Configurations must be described and
reported in the Report. This includes the mandatory Network between the Driver and Tier A (see
Clause 10.1.2.2) and any optional Database Server interface networks (see Clause 10.1.1.3.15).

8.3.4 Benchmark Kit Related Items

8.3.4.1 The version of Benchmark Kit used in the benchmark must be reported in the Report (see Clause
10.7.3.1).

8.3.4.2 A statement that the required TPC-provided Benchmark Kit was used in the benchmark must be
reported in the Report.

8.3.4.3 If the Test Sponsor modified the Benchmark Kit, a statement that Benchmark Kit has been modified
must be reported in the Report. All formal waivers from the TPC documenting the allowed changes to
Benchmark Kit must also be reported in the Report (see Clause 1.5.)

8.3.5 Clause 5 Performance Metrics and Response Time Related Items

8.3.5.1 The number of VGenDriverMEE and VGenDriverCE instances used in the benchmark must be
reported in the Report (see Clause 10.2.3).

8.3.5.2 The Measured Throughput must be reported in the Report (see Clause 5.7.1.2).

8.3.5.3 The Measured Throughput of each Group must be reported, and be within 2% of its expected
contribution to the aggregate Measured Throughput (see Clause 5.7.1.3).

8.3.5.4 A Test Run Graph of throughput versus elapsed wall clock time must be reported in the Report for the
Trade-Result Transaction (see Clause 5.7.2).

8.3.5.5 The recorded averages over the Measurement Interval for each of the Transaction input parameters
specified by clause 5.4.1 must be reported in the Report.

8.3.6 Clause 6 Transaction and System Properties Related Items

8.3.6.1 The results of the ACID tests must be reported in the Report along with a description of how the ACID
requirements were met, and how the ACID tests were run.

8.3.6.2 The Test Sponsor must report in the Report the Redundancy Level (see Clause 6.6.4.1) and describe the
Data Accessibility test(s) used to demonstrate compliance. A list of all combinations of Durable Media
technologies tested in Clause 6.6.3.5 must be reported in the Report.

8.3.6.3 A Data Accessibility Graph for each run demonstrating a Redundancy Level must be reported in the
Report (see Clause 6.6.4.2).

8.3.6.4 The Test Sponsor must describe in the Report the test(s) used to demonstrate Business Recovery.

8.3.6.5 The Business Recovery Time Graph (see Clause 6.5.7.2) must be reported in the Report for all Business
Recovery tests.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 124 of 271

8.3.7 Clause 7 Pricing Related Items

8.3.7.1 The Auditor’s Attestation Letter or the Pre-Publication Board’s report, which indicates compliance,
must be included in the Report.

8.3.8 Supporting Files Index Table

An index for all files required by Clause 8.4 Supporting Files must be provided in the Report. The
Supporting Files index is presented in a tabular format where the columns specify the following:
• The first column denotes the clause in the TPC Specification
• The second column provides a short description of the file contents
• The third column contains the path name for the file starting at the SupportingFiles directory.

If there are no Supporting Files provided then the description column must indicate that there is no
supporting file and the path name column must be left blank.

Comment: This may be the common case for Clause 8.4.4 where Benchmark Kit modifications are required
in the Supporting Files.

8.3.8.1 The following table is an example of the Supporting Files Index Table that must be reported in the
Report.

Clause Description Pathname

Introduction

Database Tunable Parameters SupportingFiles/Introduction/vmNNN/DBtune.txt

OS Tunable Parameters SupportingFiles/Introduction/vmNNN/OStune.txt

VM Tunable paramegters SupportingFiles/Introduction/vmNNN/VMtune.txt

Clause 2 Log of database creation SupportingFiles/Clause2/vmNNN/setup.out

Clause 4 Document any modifications to the kit

Clause 5 Database Growth SupportingFiles/Clause5/vmNNN/DatabaseGrowth

Clause 6 Output of ACID tests SupportingFiles/Clause6/ACID output/XYZ.out

Clause 10

Driver Configuration SupportingFiles/Clause10/vcfg.properties

VGenLoader Parameters SupportingFiles/Clause10/create_TPCx-V_flat_files.sh

CE VGenLogger Output SupportingFiles/Clause10/CELogger-NNN.log

DM VGenLogger Output SupportingFiles/Clause10/DM_Msg-Tile-Group-Vcon.log

MEE VGenLogger Output SupportingFiles/Clause10/MEE_Msg-Tile-Group-Vcon.log

8.4 Supporting Files
The Supporting Files contain human readable and machine executable (i.e., able to be performed by the
appropriate program without modification) scripts that are required to recreate the benchmark Result.
If there is a choice of using a GUI or a script, then the machine executable script must be provided in the
Supporting Files. If no corresponding script is available for a GUI, then the Supporting Files must
contain a detailed step-by-step description of how to manipulate the GUI.

The directory structure under SupportingFiles must follow the clause numbering from the TPCx-HCI
Standard Specification (i.e., this document). The directory name is specified by the 8.4 third level Clauses
immediately preceding the fourth level Supporting Files reporting requirements. If there is more than
one instance of one type of file, subfolders may be used for each instance

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 125 of 271

File names should be chosen to indicate to the casual reader what is contained within the file. For
example, if the requirement is to provide the scripts for all table definition statements and all other
statements used to set-up the database, file names of 1, 2, 3, 4 or 5 are unacceptable. File names that
include the text “tables”, “index” or “frames” should be used to convey to the reader what is being
created by the script.

8.4.1 SupportingFiles/Introduction Directory

8.4.1.1 All scripts required to configure the hardware must be reported in the Supporting Files.

8.4.1.2 All scripts required to configure the software must be reported in the Supporting Files. This includes
any Tunable Parameters and options which have been changed from the defaults in commercially
available products, including but not limited to:

• Database tuning options.
• Recovery/commit options.
• Consistency/locking options.
• Operating System and application configuration parameters.
• Compilation and linkage options and run-time optimizations used to create/install applications, OS,

and/or databases.
• Parameters, switches or flags that can be changed to modify the behavior of the product.
Comment: This requirement can be satisfied by providing a full list of all parameters and options.

8.4.2 SupportingFiles/Clause2 Directory

8.4.2.1 Outputs of the setup.sh script on all VMs of all Groups of all Tiles must be reported in the Supporting
Files.

8.4.3 SupportingFiles/Clause3 Directory

8.4.3.1 No requirements

8.4.4 SupportingFiles/Clause4 Directory

8.4.4.1 If the Test Sponsor modified Benchmark Kit, the changes must be reported in the Supporting Files.

8.4.4.2 The VGenLoader parameters used must be reported in the Supporting Files.

8.4.4.3 The VGenLogger output for each CCE object, CMEE object and CDM object must be reported in the
Supporting Files (see Clause 10.7.7.1).

8.4.5 SupportingFiles/Clause5 Directory

8.4.6 SupportingFiles/Clause6 Directory

8.4.6.1 The output of the ACID tests must be reported in the Supporting Files.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 126 of 271

CLAUSE 9 AUDIT

9.1 General Rules

9.1.1 Prior to its publication, a TPCx-HCI Result must be reviewed by either a TPC-Certified, independent
Auditor or a Pre-Publication peer review board. Throughout this specification, the term “Auditor”
applies to either the TPC-Certified, independent Auditor, or the TPCx-HCI Pre-Publication Board,
except where the term TPC-Certified independent Auditor is explicitly used

9.1.2 Comment 1: The term TPC-Certified is used to indicate that the TPC has reviewed the qualification of
the Auditor and has certified his/her ability to verify that benchmark Results are in compliance with
this specification. (Additional details regarding the Auditor certification process and the audit process
can be found in the TPC Policy document.)

Comment 2: The Auditor must be independent from the Sponsor in that the outcome of the benchmark
carries no financial benefit to the Auditor, other than fees earned as a compensation for performing the
audit. More specifically:
• The Auditor is not allowed to have supplied any performance consulting for the benchmark
under audit.
The Auditor and the Pre-Publication board are not allowed to be financially related to the Sponsor or to
any one of the suppliers of a measured/priced component (e.g., the Auditor or Pre-Publication board
members cannot be an employee of an entity affiliated with or owned wholly or in part by the Sponsor
or by the supplier of a benchmarked component, and the Auditor cannot own a significant share of stocks
from the Sponsor or from the supplier of any benchmarked component, etc.)

The Pre-Publication board shall have 3 members, appointed by the subcommittee for a 6-month term.
The board will elect a chair, who will handle the communications of the board, including generating the
board’s approval report. The procedures of the Pre-Publication board are determined by the TPC
policies document.

9.1.3 All audit requirements specified in the version of the TPC Pricing Specification, located at www.tpc.org
must be followed. For clarity and readability the TPC Pricing Specification requirements may be
repeated in the TPCx-HCI Specification.

9.1.4 A generic audit checklist is provided as part of this specification. The Auditor may choose to provide
the Sponsor with additional details on the TPCx-HCI audit process.

9.1.5 The generic audit checklist specifies the TPCx-HCI requirements that should be checked to ensure a
TPCx-HCI Result is compliant with the TPCx-HCI Specification. The TPCx-HCI requirements may
also be required to be reported in the FDR. Not only should the TPCx-HCI requirement be checked for
accuracy but also the Auditor must ensure that the FDR accurately reflects the audited Result. For
example, if the audit checklist indicates to “verify that a Business Recovery Time Graph is generated
as specified”, the graph must be verified to be accurate and verified to be the same graph that is
reported in the FDR as specified by Clause 8.3.6.5.

9.1.6 If an independent, TPC-Certified Auditor has audited the Result, the TPC-Certified, independent
Auditor’s opinion regarding the compliance of a Result must be consigned in an Attestation Letter
delivered directly to the Sponsor. To document that a Result has been audited, the Attestation Letter
must be included in the Report and made readily available to the public. Upon request, and after
approval from the Sponsor, a detailed audit report may be produced by the TPC-Certified,
independent Auditor.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 127 of 271

9.1.7 The scope of the audit is limited to the functions defined in this specification. The ability to perform
arbitrary functions against the SUT (e.g., executing Transactions unrelated to those defined in Clause
3.3, generating input data unrelated to those produced by the CE and the MEE, creating data structures
unrelated to those necessary to implement Clause 2, etc.) is outside of the scope of the audit.

9.1.8 A Sponsor can demonstrate compliance of a new Result produced without running any performance
test by referring to the Attestation Letter of another Result, if the following conditions are all met:

• The referenced Result has already been published by the same or by another Sponsor.
• The new Result must have the same hardware and software architecture and configuration as the

referenced Result. The only exceptions allowed are for elements not involved in the processing logic
of the SUT (e.g., number of peripheral slots, power supply, cabinetry, fans, etc.)

• The Sponsor of the already published Result gives written approval for its use as referenced by the
Sponsor of the new Result.

• The TPC-Certified, independent Auditor or the Pre-Publication board verifies that there are no
significant functional differences between the priced components used for both Results (i.e.,
differences are limited to labeling, packaging and pricing.)

• The TPC-Certified, independent Auditor or the Pre-Publication board reviews the FDR of the new
Result for compliance. The new Attestation Letter of the Auditor or the report of the Pre-Publication
board must be included in the Report of the new Result.

Comment 1: The intent of this clause is to allow publication of benchmarks for systems with different
packaging and model numbers that are considered to be identical using the same benchmark run. For
example, a rack mountable system and a freestanding system with identical electronics can use the same
Test Run for publication, with, appropriate changes in pricing.

Comment 2: Although it should be apparent to a careful reader that the FDR for the two Results are based
on the same set of performance tests, the FDR for the new Result is not required to explicitly state that it
is based on the performance tests of another published Result.

Comment 3: When more than one Result is published based on the same set of performance tests, only
one of the Results from this group can occupy a numbered slot in each of the benchmark Result “Top
Ten” lists published by the TPC. The Sponsors of this group of Results must all agree on which Result
from the group will occupy the single slot. In case of disagreement among the Sponsors, the decision
will be made by the Sponsor of the earliest publication from the group.

9.2 Self-validation, Self-audit, and the role of the Auditor
Some of the requirement in this Clause, e.g. Clause 9.4, can be satisfied by verifying that the Test Sponsor
has used the mandatory, TPC-supplied TPCx-HCI Benchmark Kit without any modifications.

The TPCx-HCI Benchmark Kit includes Audit Tools that perform many of the mechanical database
audit tasks that are typically performed by an Auditor. The Benchmark Kit also automatically validates
many of the numerical quantities that need to be checked after a Test Run, e.g., the Transaction Mix,
Transaction input value mix requirements, Transaction Response Times, distribution of load among
Tiles and Groups, etc.

It is expected that the numerical validation reports and the output of Audit Tools will greatly facilitate
the work of an Auditor, and result in a faster, simpler, less costly audit process. Nonetheless, the tools
are meant to assist the Auditor and simplify the audit process, not replace the need for an independent
audit. The opinion of the Auditor, not the outputs of numerical validation or Audit Tools, ultimately
determines whether a TPCx-HCI Result is compliant with the TPCx-HCI Specification.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 128 of 271

9.2.1 Numerical validation by the Benchmark Kit

At the conclusion of a Test Run, the Benchmark Kit produces a number of files that contain various,
detailed results from the run. The file audit_check.log file contains the results of checking of the following
numerical quantities:

• Input Value Mix percentages (see Clause 5.4.1)

• The Transaction Mix (see Clause 5.3)

• Response Time requirements (see Clause 5.5) for each Transaction type in each Phase in each
Group in each Tile.

• The reported Trade-Result throughput in each Phase in each Group in each Tile.
The benchmark kit tests every one of these conditions, and produces a PASSED or FAILED outcome to
be used by the auditor in validating the Test Run. It is expected that a valid run will not have any FAILED
results.

9.2.2 Audit Tools

At the conclusion of a Test Run, the Test Sponsor must use the xVAudit application of the Benchmark
Kit to run the supplied database audit tests. These tests provide much of the data that the Auditor needs
for verifying the requirements laid out in Clauses 9.3, 9.4, 9.7, and 9.8. Below is the list of xVAudit
commands, and their primary use cases.

• The commands xVAudit.Atomicity.AtomicityAudit, xVAudit.Consistency.ConsistencyAudit,
xVAudit.Isolation.P1inReadOnlyAudit, xVAudit.Isolation.P1inReadWriteAudit, and
xVAudit.Isolation.P2inReadWriteAudit test the Atomicity, Consistency, and Isolation properties
of the databases.

• The command xVAudit.Cardinality.TestBedCardinalityAudit audit TPCx-HCI table cardinalities
at all the Tiles in the SUT.

• The command xVAudit.Schema.DatabaseStructureAudit produces a dump of the database
schemas for verifying the requirements of Clause 9.3.1

• The command xVAudit.StoredProcs.StoredProcAudit produces a dump of the stored procedures
for verifying the requirements of Clause 9.4.

• The commands xVAudit.Tables.DuplicatePrimaryKeyAudit, xVAudit.RI.RIAudit, and
xVAudit.Tables.RangeMaxValueAudit are used to verify the requirements of Clause 9.3.1.7.

9.3 Auditing the Database
The Auditor must verify that the implementation of the measured database meets the TPCx-HCI
Specification requirements. The Auditor may require the review of any and all source code and
associated scripts or programs used to create and populate the database. The Auditor can require
additional database verification not specified in the TPCx-HCI Specification to ensure the validity of the
database.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 129 of 271

9.3.1 Schema Related Items

9.3.1.1 Verify that the data types used to implement the columns of the TPCx-HCI required tables meet the
requirements from Clause 2.2.1.

9.3.1.2 Verify that the data Meta-types used to implement the columns of the TPCx-HCI required tables meet
the requirements of Clause 2.2.2.

9.3.1.3 Verify that the 9 tables in the Customer set have all of the required properties (see Clause 2.2.4).

9.3.1.4 Verify that the 9 tables in the Broker set have all of the required properties (see Clause 2.2.5).

9.3.1.5 Verify that the 11 tables in the Market set have all of the required properties (see Clause 2.2.6).

9.3.1.6 Verify that the 4 tables in the Dimension set have all of the required properties (see Clause 2.2.7).

9.3.1.7 Verify that all Primary Keys, all Foreign Keys, and all check constraints specified are maintained by the
database (see Clause 2.2.3).

9.3.1.8 Verify that Primary Keys are not a direct representation of the physical disk addresses of the row (see
Clause 10.3.8).

9.3.1.9 Verify that the implementation of the database satisfies the integrity rules (see Clause 10.4).

Comment: A check for the condition in clause 10.4.2 is not required, but the requirement still exists.

9.3.1.10 Verify that the implementation of the database satisfies the data access transparency requirements (see
Clause 10.5).

9.3.2 Population Related Items

9.3.2.1 Verify that the version of VGenLoader used is compliant with the current version of the TPCx-HCI
specification (see Clause 10.7.6.1).

9.3.2.2 Verify that none of the VGenLogger output contains “NO”. A “NO” indicates that the associated
VGenDriver or VGenLoader configuration parameter is not compliant with the current TPCx-HCI
Specification (see Clause 10.7.2.7).

9.3.2.3 Verify that the database is populated using data generated by VGenLoader (see Clause 2.4.1.1).

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 130 of 271

9.3.2.4 Verify that the database is populated with an integral number of Load Units (see Clause 2.4.1.2).

9.3.2.5 Verify that the number of Load Units in each VM is compliant with the requirements in Clauses 2.4.1.2,
2.4.1.3, and 4.3.4.2.

9.3.2.6 Verify that the initial database population consists of a number of Business Days equal to ITD (see
Clause 2.4.1.6).

9.3.2.7 Verify that the cardinality of the TPCx-HCI required tables in the initially populated database meets
the requirements of Clause 2.4.1.

9.3.2.8 Verify that each non-Growing Table can grow by a number of rows equal to at least 5% of the table
cardinality (see Clause 10.3.9).

9.4 Auditing the Transactions
The Auditor must verify that the implementation of the Transactions meets the TPCx-HCI Specification
requirements. The Auditor may require the review of any and all source code and associated scripts or
programs for the Transactions. The Auditor can require additional Transaction verification not specified
in the TPCx-HCI Specification to ensure the validity of the Transactions.

9.4.1 Verify that the implementation of each Transaction specified in Clause 3.3 is compliant with its
respective input parameters, output parameters, Database Footprint and Frame Implementation
requirements. More specifically verify that the stored procedures and the Frame Implementation in the
TPCx-HCI Benchmark Kit have not been modified.

9.5 Auditing the SUT, Driver and Networks
The Auditor must verify that the implementation of the test environment meets the TPCx-HCI
Specification requirements. The Auditor may require the review of any and all source code
implementing the various components involved and associated scripts or programs. The Auditor can
require additional verification not specified in the TPCx-HCI Specification to ensure the validity of the
test environment.

9.5.1 Verify the presence and use of a Network to communicate between the Driver and Tier A (see Clause
10.1.3.1.6).

9.5.2 Verify that the restrictions on operator interventions are met (see Clause 4.3.3).

9.6 Auditing Benchmark Kit

9.6.1 Verify that the version of Benchmark Kit used is compliant with the version of the TPCx-HCI
specification used for publication (see Clause 10.7.3).

• Verify that the VGenSourceFiles used have not been modified (see Clause 10.7.5).
• If the Test Sponsor modified Benchmark Kit in response to a formal waiver issued by the TPC,

verify that the changes fall under the scope of the waiver (see Clause 1.5.7).
• If the Test Sponsor modified Benchmark Kit outside of an existing TPC waiver, review the

changes to verify that it was done for the exclusive purpose of correcting a newly discovered
error in Benchmark Kit (see Clause 1.5.6).

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 131 of 271

9.7 Auditing the Execution Rules and Metrics
The Auditor must verify that all TPCx-HCI execution rules have been followed by the Test Sponsor. The
Auditor may require the review of any and all output of the benchmark environment. The Auditor can
require additional verification not specified in the TPCx-HCI Specification to ensure the validity of the
Benchmark Execution Rules and the resulting Reported Throughput.

9.7.1 Pre-run Configuration Items

9.7.1.1 Verify that the contents of the database meet the requirements of Clause 5.6.2.1 and Clause 5.6.2.3.

9.7.1.2 Verify that the Trade-Cleanup Transaction was executed prior to the start of the Test Run or that the
database was in its initially populated state (e.g., verify that the final TRADE count minus the number
of Trade-Orders completed by the Driver during the Test Run is equal to the initial TRADE count) (see
Clause 5.6.2.2).

9.7.1.3 Verify that no executions of the Trade-Cleanup Transaction occur during the Test Run (see Clause
5.6.1.1).

9.7.1.4 Verify that the system clocks are synchronized as required by Clause 4.3.2.

9.7.2 Runtime Configuration Items

9.7.2.1 Verify that, for specific global inputs, each instance of the CE, DM and the MEE is using the same
values as those used by the VGenLoader instances during the initial database population (see Clause
10.7.7.4). This requirement applies to the following global inputs:

• The contents of each flat_in file.
• The value for Scale Factor (SF).
• The number of Initial Trade Days.
• The number of Configured Customers and Active Customers.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 132 of 271

9.7.2.2 Verify that none of the VGenLogger output contains “NO”. A “NO” indicates that the associated
VGenDriver or VGenLoader configuration parameter is not compliant with the current TPCx-HCI
Specification (see Clause 10.7.2.7).

9.7.3 Runtime Data Generation Items

9.7.3.1 Verify that the reported Transaction Mix over the Measurement Interval only counts Valid
Transactions (see Clause5.3).

9.7.3.2 Verify that the reported Transaction Mix over the Measurement Interval excludes the Data-
Maintenance Transactions (see Clause 5.3.1).

9.7.3.3 Verify that the specified mix of Transactions over the Measurement Interval meets the requirements
(see Clause 5.3.1).

9.7.3.4 Verify that the reported Transaction Mix over the Measurement Interval is computed and reported
with the required precision and rounding (see Clause 5.3.2).

9.7.3.5 Verify that the CE Driver generated input data with a random variability that stays within the specified
ranges (see Clause 5.4.1).

9.7.3.6 Verify that the number of Load Units configured for the database is equal to the number of Load Units
actually accessed during the Test Run (see Clauses 2.4.1.7 and 5.6.8.6).

9.7.4 Response Time Items

9.7.4.1 Verify that the Transaction Response Times meet the requirements of Clause 5.5.1.2.

9.7.4.2 Verify for each type of Transaction that its average Response Times does not exceed its 90th percentile
Response Time (see Clause 5.5.1.4)

9.7.5 Throughput Items

9.7.5.1 Verify that each Measured Throughput is between 80% and 102% of the corresponding Nominal
Throughput (see Clause 5.7.1.2).

9.7.5.2 Verify that the Reported Throughput is not greater than the Nominal Throughput (see Clause 5.7.1).

9.7.6 Market-Feed Items

9.7.6.1 Verify the transaction rate requirements (see Clause 5.3.1) and response time requirements (see Clauses
5.5.1.2 and 5.5.1.5) for Market-Feed transactions.

9.7.7 Data-Maintenance Items

9.7.7.1 Verify that one, and only one, Data-Maintenance Transaction generator is used during the Test Run
(see Clause 10.7.7.7.2).

9.7.7.2 Verify that during the Measurement Interval the Data-Maintenance Transaction is invoked every 60
seconds and completes within no more than 55 seconds (see Clause 5.3.3).

9.7.7.3 Verify that the Data-Maintenance Transaction modified the rows specified in Clause 10.6.11.

9.7.8 Steady State Items

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 133 of 271

9.7.8.1 Verify that the Ramp-up period is at least 12 minutes.

9.7.8.2 Verify that the Steady State meets the requirements of Sustainable performance as specified by Clause
5.6.3.

9.7.8.3 Verify that all events performed at regular intervals during Steady State are present before and during
the Steady State as required (see Clause 5.6.4.1) and that the duration of Steady State meets all the
requirements listed in Clause 5.6.4.2.

9.7.8.4 Verify that the Measurement Interval meets all the requirements of Clause 5.6.5.

9.7.9 Space Calculation Items

9.7.9.1 Verify that the Data Growth is computed as specified and that sufficient space to accommodate it is
available on-line (see Clause 5.6.6).

9.8 Auditing the ACID Tests
The Auditor must verify that the implementation of the ACID tests sufficiently demonstrates compliance
with the TPCx-HCI ACID requirements. The Auditor may require the review the source code
implementing these tests and any associated scripts or programs. The Auditor can require additional
verification not specified in the TPCx-HCI Specification to ensure the validity of the ACID tests.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 134 of 271

9.8.1 Atomicity Items

9.8.1.1 Verify that the atomicity test is implemented as specified in Clause 6.2.2.

9.8.1.2 Verify that the atomicity test correctly demonstrates the atomicity property (see Clause 6.2.1).

9.8.2 Consistency Items

9.8.2.1 Verify that the consistency tests are implemented as specified in Clause 6.3.3.

9.8.2.2 Verify that the consistency conditions are successfully demonstrated by the tests (see Clause 6.3.2)

9.8.3 Isolation Items

9.8.3.1 Verify that the isolation tests are implemented as specified in Clause 6.4.2.

9.8.3.2 Verify that the isolation tests correctly demonstrate the isolation requirements (see Clause 6.4.1.3).

9.8.4 Data Accessibility Items

9.8.4.1 Verify that the Durability tests for Data Accessibility are implemented as specified (see Clause 6.6.3.5).

9.8.4.2 Verify that the Redundancy Level chosen by the Sponsor is successfully demonstrated by the Data
Accessibility test (see Clause 6.6.3.5).

9.8.4.3 Verify that the Redundancy Level chosen by the Sponsor is correctly reported in the Report (see Clause
6.6.3.4).

9.8.4.4 Verify that a Data Accessibility Graph is generated as specified in Clause 6.6.4.2.

9.8.4.5 Verify that all components of Durable Media technologies tested in Clause 6.6.3.5 are correctly
reported in the Report

9.8.4.6 Verify that resiliency is reestablished after the loss and reappearance of a Node, and the time to regain
resiliency is correctly reported.

9.8.4.7 Verify that Data Accessibility test was running at or above ((N-1)/N) * 90% of the Reported
Throughput with no errors before the power loss failure was induced.

9.8.5 Business Recovery Items

9.8.5.1 Verify that the Durability tests for Business Recovery are implemented as specified (see Clause 6.5.7).

9.8.5.2 Verify that recovery from each required single failure scenario is successfully demonstrated by one or
more Business Recovery tests (see Clause 6.5.7).

9.8.5.3 Verify that the Business Recovery Time correctly measures the time between the start of Business
Recovery and the end of Business Recovery (see Clause 6.5.5.10).

9.8.5.4 Verify that a Business Recovery Graph is generated as specified in Clause 6.5.7.2.

9.9 Auditing the Pricing

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 135 of 271

9.9.1 Rules for auditing Pricing information are specified in the effective version of the TPC Pricing
Specification, located at www.tpc.org.

9.9.2 Verify that the greater of the 1 Business Day Space or the data storage configured during the
measurement is included in the Priced Configuration (see Clause 7.3).

9.9.3 Verify that additional operational components or additional software that might be customary on a
customer installed configuration or might be necessary to build and run the Application are included
(see Clause 7.4.1 and Clause 7.4.2).

9.9.4 Verify that all component Substitutions are compliant with the TPC Pricing Specification and with the
TPCx-HCI specific restrictions (see Clause 7.5).

9.10 Auditing the FDR
For the Audit requirements specified in Clauses 9.6 through 9.9, the Auditor must ensure that if required
by Clause 8 , the items, requirements or values are correctly reported in the FDR.

 For those items, requirements or values that are reported in the FDR and not required to be audited, the
Auditor need only ensure that they are in the FDR and appear to be reasonable. For example, the Auditor
cannot be held responsible for accuracy of the Availability Date but can ensure that it is reported in the
FDR and does not fall outside the 6-month availability window starting from the publication date.

9.10.1 Verify that table partitioning, if used, meets the requirements from Clause 10.3.3.

9.10.2 Verify that the reported Transaction Mix over the Measurement Interval is computed and reported
with the required precision and rounding (see Clause 5.3.2).

9.10.3 Verify that the Reported Test Run Graph meets the requirements (see Clause 5.7.2).

9.10.4 Verify that the Executive Summary Statement is accurate and complies with the reporting
requirements as specified in Clause 8.2.

9.10.5 For those items that are required by Clause 8.3 to be reported in the Report and are also required by
Clauses 9.6 through 9.9 to be verified by the Auditor, verify that the items are accurately reported in
the Report. For those items that are required to be reported by Clause 8.3 but are not required to be
verified by the Auditor, ensure that the items are reported in the Report and appear to be reasonable.

9.10.6 Verify that the Supporting Files specified by Clause 8.4 exist and appear to be reasonable.

9.10.7 Verify that the following sections of the FDR are accurate:

• Verify that the diagram illustrating the Measured Configuration is accurate (see Clause 8.3.1.2)
• Verify that the diagram illustrating the Priced Configuration is accurate (see Clause 8.3.1.2)
• Verify that the textual descriptions required by Clause 8.3.2 are accurate.
• Verify that any Benchmark Kit changes made by the Sponsor comply with the requirements listed

in Clause 1.5, and are reported in detail in the FDR (see Clause 8.3.4.3).

9.10.8 A complete review of the Report by the Auditor, beyond the sections listed above, can be requested by
the Sponsor, but is not required.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 136 of 271

CLAUSE 10 TPCX-HCI BENCHMARK KIT DESIGN DOCUMENT

10.1 Description of SUT, Driver, and Network

10.1.1 Overview

TPCx-HCI is a distillation of an abstraction of multiple virtualized “real-world” OLTP environment. In
order to understand what TPCx-HCI tests and, as a consequence, what TPCx-HCI does not test, it is
necessary to understand the base “real-world” environment (Clause 10.1.1.1 Description of Real-World
OLTP Environment), the abstraction of that base environment (Clause 10.1.1.2 Functional Component
Abstraction of the Real-World OLTP Environment) and the distillation of that abstraction (Clause 10.1.1.3
Distillation of Functional Components into the TPCx-HCI Environment).

10.1.1.1 Description of the Real-World OLTP Environment

The figure below shows the “real-world” environment upon which TPCx-HCI is based. Users connect to
the brokerage house over a network using a myriad of possible interface devices (e.g. PCs or handheld
units). The brokerage house is also able to connect via a network to external businesses (e.g. the stock
market exchanges).

Figure 10.a - Diagram of the Real-World OLTP Environment

10.1.1.2 Functional Component Abstraction of the Real-World OLTP Environment

From the diagram of the real-world OLTP environment, the following diagram of the key functional
components can be abstracted.

Network
Network

Database
Services

Application
And

Business Logic
Services

Presentation
Services

Workstation

Laptop

Hand-held

Cell phone

Examples of
User Interfaces

Stock Market
Exchange

Example of
External Business

Modeled Business

Legend

Customer

Sponsor Provided

Stock Market

Network
Network

Database
Services

Application
And

Business Logic
Services

Presentation
Services

Workstation

Laptop

Hand-held

Cell phone

Examples of
User Interfaces

Stock Market
Exchange

Example of
External Business

Modeled Business

Network
Network

Database
Services

Application
And

Business Logic
Services

Presentation
Services

Workstation

Laptop

Hand-held

Cell phone

Examples of
User Interfaces

Stock Market
Exchange

Example of
External Business

Modeled Business

Legend

Customer

Sponsor Provided

Stock Market

LegendLegend

Customer

Sponsor Provided

Stock Market

Customer

Sponsor Provided

Stock Market

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 137 of 271

Figure 10.b - Abstraction of the Functional Components in an OLTP
Environment

A user makes use of some device to connect, via the network, to the business’s presentation services. As
is typical in a Customer-to-Business environment, the presentation layer provides a way for the user to
navigate the available services, select the desired operation, enter data and read results. A practical
example of this would be a customer using a home PC to connect to a web site to conduct business.
The brokerage house would likewise connect via a network to an external business, such as the market
exchange. As is typical of a Business-to-Business environment, presentation services are not needed.
Rather, data can be exchanged directly without the need for a human-readable format.
Regardless of how the data arrives at the brokerage house, it ultimately will pass through transaction
management functions where connection multiplexing/de-multiplexing occurs; routing may also occur
here as well as other possible functions. The transaction management layer ensures the data will be
delivered to the right business logic code that can perform the requested task.
A critical step in the business logic occurs when the data is handed off to some function or method
implementation for database processing. This method implementation will include Database Interface
code for packaging up the appropriate data and sending it to the database application logic (e.g. stored
SQL procedure) running in the context of the DBMS. The database application logic will then use DBMS
services to perform the necessary tasks, and the results will ultimately be returned “up-stream” as
appropriate.

10.1.1.3 Distillation of Functional Components into the TPCx-HCI Environment

By design, TPCx-HCI virtualized business model is database-centric. Therefore, even though
Presentation Services are an important part of a complete Customer-to-Business solution, they have been
distilled out of the TPCx-HCI workload. As a practical matter, Presentation Services often scale out such
that a Test Sponsor will configure (replicate) enough servers to run the Presentation Services so they are
not a limiting factor for the benchmark. So, to focus on what is being evaluated and to facilitate ease of
benchmarking, Presentation Services are not a functional component in the test configuration.
In the context of the diagram of the functional components of the target system model, the role of the
Customer is that of a decision maker and data provider (i.e., deciding what transaction to do and
supplying the necessary inputs for that transaction). However, the absence of Presentation Services in
TPCx-HCI leads to some simplifications in the test configuration emulation of the User. The decision
making and data input generation characteristics of the User are still essential, but characteristics of the
User like typing rates and think times are not necessary.

User
Interfaces

Network
Network

Database
Services

Modeled Business

Application
And

Business Logic
Services

Presentation
Services

Market
Exchange Legend

Customer

Sponsor Provided

Stock Market

User
Interfaces

Network
Network

Database
Services

Modeled Business

Application
And

Business Logic
Services

Presentation
Services

Market
Exchange

User
Interfaces

Network
Network

Database
Services

Modeled Business

Application
And

Business Logic
Services

Presentation
Services

Market
Exchange Legend

Customer

Sponsor Provided

Stock Market

LegendLegend

Customer

Sponsor Provided

Stock Market

Customer

Sponsor Provided

Stock Market

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 138 of 271

The role of the User Interface Device (UID) is to accept inputs from the User and send those inputs to the
Presentation Services, and accept outputs from the Presentation Services and display those outputs to
the User. However, TPCx-HCI does not define or require display layouts (since there are no Presentation
Services). Consequently there is no requirement to transmit transaction input and output data in a
display format. For example, there is no need to send and receive fully formed HTML pages via HTTP;
transaction inputs and outputs may be communicated in a binary format (i.e. by sending C++ data
structures over a socket).
Based on these items and the diagram of the functional components of the target system model, a diagram
for the functional components of the test configuration can be derived. Note that the implementation of
these functional components implies a combination of hardware and software.

Figure 10.c - Functional Components of the Test Configuration

10.1.1.3.1 Driving & Reporting – The TPC provided Benchmark Kit includes functionality to set up, administer
and execute a Test Run, collect data and generate summary reports. The TPC provided kit invokes VGenDriver
to generate input parameter for transactions according to this specification. The Benchmark Kit also performs
validation of the generated results.

10.1.1.3.2 CE – TPC provided functionality to set up, administer and execute the Customer Emulator. The TPC
written kit invokes VGenDriverCE.

10.1.1.3.3 MEE – TPC provided functionality to set up, administer and execute the Market-Exchange Emulator.
The TPC written kit invokes VGenDriverMEE.

N
et

w
or

k
B

et
w

ee
n

Ti
er

 A
 a

nd
 T

ie
r B

 V
M

s

Commercial Product
TPC Provided

TPC Defined
Interface

Legend

VGenDriverCE

Driving and Reporting

Mandatory Network
Between Driver and Tier A VMs

VGenDriver Connector

VGenDriverCE VGenDriverMEE VGenDriverDM

…CE …MEE …DM

CE… MEE… DM…

Virtual Machine Management Software

Sponsor
Provided

VGenDriver

Commercial
Product

Sponsor
Provided

Frame Implementation

VGenTxnHarness Connector

TPCx-HCI Logic and Frame Calls

Database Interface

Tier A VM1

VGenTxnHarness

Sponsor
Provided

Sponsor
Provided

Commercial
Product

Database Logic

Tier B VM2
DBMS

Database Logic

Tier B VM3
DBMS

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 139 of 271

10.1.1.3.4 DM – TPC provided functionality to set up, administer and execute the Data-Maintenance
Transaction once a minute. The TPC written kit invokes VGenDriverDM. The Benchmark Kit also provides
functionality to call the Trade-Cleanup Transaction once prior to the start of the run (see description of
VGenDriverDM below).

10.1.1.3.5 A TPC Defined Interface is a C++ class member that is designed to exchange data (and transfer
execution control) between various components of the TPC provided Benchmark Kit. The table in appendix A.14
lists the TPC Defined Interfaces and the associated C++ classes and member functions.

10.1.1.3.6 VGenDriver – TPC provided C++ source code that implements essential functionality during a Test
Run. The use of VGenDriver is mandatory. The following are parts of VGenDriver.

• VGenDriverCE – Customer Emulator that provides the required Transaction Mix and user
input data generation

• VGenDriverMEE – Market Exchange Emulator that provides the stock market functionality and
data generation

• VGenDriverDM – Data-maintenance functionalities that generates data for and invokes the
Data-Maintenance Transaction. Also, supplies an interface that can be used by the Benchmark
Kit to invoke the Trade-Cleanup Transaction.

10.1.1.3.7 VGenDriver Connector – TPC provided functionality that complies with a TPC Defined Interface.
The VGenDriver Connector is invoked from inside VGenDriver through the interface. The VGenDriver
Connector is responsible for sending the VGenDriver generated data to, and receiving the corresponding
resultant data back from, the VGenTxnHarness Connector via the Network. An example of the hardware and
software needed to implement the Connector is:

• TPC provided code
• An Operating System that provides a socket API and the underlying functionality
• The hardware system the Operating System runs on and the network interface card necessary

to connect to the Network (the network cable coming out of the NIC to connect it to the Network
would not be considered part of the Connector but rather part of the Network).

10.1.1.3.8 A Network is defined as Sponsor-provided functionality that must support communication through
an industry standard communications protocol using a physical or (in the case of TPCx-HCI) a virtual means.
One outstanding feature of the ConnectoróNetworkóConnector communication is that it follows the relevant
standards and must imply more than just an application package. It must be possible to have concurrent use of
the means by other applications. Physical transport of the data is required and the underlying means of this
transport must be capable of operating over arbitrary globally geographic distances.

10.1.1.3.9 TPC/IP over a physical or virtual local area network is an example of an acceptable Network
implementation.

10.1.1.3.10 Virtual Machine Management Software (VMMS) – Commonly referred to as a Hypervisor, a
commercially available framework or methodology of dividing the resources of a system into multiple computing
environments. Each of these computing environments allows a completely isolated software stack including an
operating system to run in complete isolation from anything else running on the system. The VMMS allows for
the creation of multiple computing environments on the same system.

Comment: The term VMMS is not meant to include the static partitioning of a system that occurs at boot
time or any dynamic partitioning that may take place through operator intervention.

10.1.1.3.11 Virtual Machine (VM) – A self-contained operating environment, managed by the VMMS, that
behaves as if it were a separate computer.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 140 of 271

10.1.1.3.12 VGenTxnHarness Connector – TPC provided functionality responsible for receiving the data sent
from, and sending the appropriate resultant data back to, the VGenDriver Connector via the Network. The
VGenTxnHarness Connector provides the data to, and accepts the resultant data from, VGenTxnHarness by
invoking a TPC Defined Interface. The VGenDriver Connector example implementation above applies here as
well.

10.1.1.3.13 VGenTxnHarness – TPC provided C++ source code that implements essential functionality during a
Test Run. VGenTxnHarness invokes the TPC’s implementations of the Transaction Frames, providing the
necessary inputs and accepting the necessary outputs through a TPC Defined Interface. The use of
VGenTxnHarness is mandatory.

10.1.1.3.14 Frame Implementation is TPC provided functionality that accepts inputs from, and provides outputs
to, VGenTxnHarness through a TPC Defined Interface. The Frame Implementation and all down-stream
functional components are responsible for providing the appropriate functionality outlined in the Transaction
Profiles (Clause 3.3).

10.1.1.3.15 Database Interface is a commercially available product used by the Frame Implementation to
communicate with the Database Server. It is possible that the Database Interface may communicate with the
Database Server over a Network, but this is not a requirement.

10.1.1.3.16 A Database Server is a commercially available product(s). TPC provided logic may run in the context
of the Database Server (e.g. a stored SQL procedure). An example of a Database Server is:

• commercially available DBMS running on a
• commercially available Operating System running on a
• commercially available hardware system utilizing
• commercially available storage

10.1.1.3.17 Database Logic is TPC provided Frame implementation logic (e.g. stored SQL procedure)

Comment: VGenDriver Connector and VGenTxnHarness Connector implementations are allowed to
perform modifications to the format of the data provided to them if and only if: such modifications are
done to support differing characteristics of the underlying transport mechanisms. For example,
transporting the data from a big-endian machine to a little-endian machine or from an ASCII
environment to an EBCDIC environment will require changes in the data format.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 141 of 271

10.1.2 Driver & System Under Test (SUT) Definitions
The diagram of the functional components of the Test System can be leveraged to provide pictorial
definitions of the Driver, SUT, Tier A and Tier B.

Figure 10.d - Defined Components of the Test Configuration

The clauses below define some terms used in this specification. A TPCx-HCI configuration has a single
instance of some components, e.g. the driver, and multiple of others, e.g., Tier B.

 Commercial Product TPC Provided

TPC Defined
Interface

Legend

 VGenDriverC
E

Driving and Reporting

Mandatory Network
Between Driver and Tier A VMs

VGenDriver Connector

 VGenDriverC
E VGenDriverME

E VGenDriverDM
…CE …MEE …DM

CE… MEE… DM…

 Virtual Machine Management Software

 Database Logic
DBMS

Tier B VM2

 Database Logic

DBMS
Tier B VM3

-

Frame Implementation

VGenTxnHarness Connector -
TPCX-HCI Logic and Frame
Calls

 Database Interface

Tier A VM1

Group 1

Group 2

Group 3

Group 4

D
river

System
 U

nder Test
(SU

T)

 Database Logic

DBMS
Tier B VM2

 Database Logic

DBMS
Tier B VM3

 Database Logic

DBMS

Tier B VM2

 Database Logic

DBMS
Tier B VM3

 Database Logic

DBMS
Tier B VM2

 Database Logic

DBMS
Tier B VM3

-

Frame Implementation

VGenTxnHarness Connector -
TPCX-HCI Logic and Frame
Calls

 Database Interface

Tier A VM1

-

Frame Implementation

VGenTxnHarness Connector -
TPCX-HCI Logic and Frame
Calls

 Database Interface

Tier A VM1

-

Frame Implementation

VGenTxnHarness Connector -
TPCX-HCI Logic and Frame
Calls

 Database Interface

Tier A VM1

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 142 of 271

10.1.2.1 The Driver – is defined to be all hardware and software needed to implement the Driving & Reporting,
VGenDriver and up-stream Connector functional components.

10.1.2.2 The use of a Network (as defined in Clause 10.1.1.3) between the Driver and Tier A is mandatory.

10.1.2.3 The use of commercially available Virtual Machine Management Software (VMMS) product (as
defined in Clause 10.1.1.3) is mandatory.

10.1.2.4 Virtual Machine (VM) is defined as: A Virtual Machine (VM) is a self-contained operating
environment, managed by the VMMS, and that behaves as if it were a separate computer (as defined in
Clause 10.1.1.3). TPCx-HCI requires that there shall be three VMs per Group: one Tier A VM and two
transactional specific Tier B VMs.

10.1.2.5 Tier A is defined as: Tier A consists of all hardware and software needed to implement the down-
stream Connector, VGenTxnHarness, Frame Implementation and Database Interface functional
components.

10.1.2.6 Tier B is defined as: Tier B consists of all hardware and software needed to implement the Database
Server functional components, encapsulated within two transaction-specific Virtual Machines,
contained within the same Group. This includes data storage media sufficient to satisfy the initial
database population requirements of Clause 2.4.1 and the Business Day growth requirements of Clause
5.6.6.4 and Clause 5.6.6.5.

10.1.2.7 Tile is defined as: Tile is the unit of replication of TPCx-HCI configuration and load distribution. Each
Tile consists of 4 Groups. A valid TPCx-HCI configuration has 1 or more Tiles per Node, with all Tiles
contributing identical proportions of the total load. The number of Tiles and the number of Load Units
configured in the initial populations of the databases in each Group are dependent on the Nominal
Throughput, and are determined by a formula defined in Clause 4.3.4.

10.1.2.8 Group is defined as: Each Tile has four Groups, with Groups 1, 2, 3, and 4 contributing an average of
10%, 20%, 30%, and 40% of the total throughput of the Tile, respectively. Each Group consists of one
Tier A Virtual Machine and two transaction-specific Tier B Virtual Machines.

10.1.2.9 System Under Test is defined as: System Under Test (SUT) is the total collection of all hardware and
software components in all Tiles, to include their Tier A and Tier B Virtual Machines.

10.1.2.10 Measured Configuration - See System Under Test.

10.1.3 Further Requirements for SUT and Driver Implementations

10.1.3.1 Restrictions on the Driver

The purpose of this section is to limit the knowledge (or use of the knowledge by the Driver) of the SUT,
the contents of the databases and the transactions.

10.1.3.1.1 During the Test Run the TPC provided code to implement the Driver must not:

• make decisions based upon the contents of the databases (including VGenInputFiles)
• provide information to the SUT or any of the VMs that results in a performance advantage

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 143 of 271

10.1.3.1.2 The no-peeking-in-the-packet rule: Data predicated routing (based on the content of the packet) in
VGenDriver Connector or VGenTxnHarness Connector is not allowed. Data predicated routing (based on the
Transaction type of the packet only) in VGenTxnHarness Connector is allowed for Transaction routing of Trade-
Lookup and Trade-Update to VM2 and all other Transactions to VM3. No other packet data access usage is
allowed in VGenTxnHarness Connector.

10.1.3.1.3 The TPC provided code executed between VGenDriver (i.e. the following APIs: CESUTInterface,
MEESUTInterface, DMSUTInterface) and the mandatory Network may not make any decision related to routing,
timing, reordering or pacing of that Transaction or any other Transaction based on that Transaction’s type or
input values.

Comment: These restrictions include direct knowledge (e.g., obtained by peeking in the packet) or implied
knowledge (e.g., obtained by card counting, message size, etc.).

10.1.3.1.4 Any TPC provided code that sends a market request from the SUT to the Driver (i.e.
SendToMarketInterface) may not make any decisions related to routing, timing, reordering, or pacing of that
request or any other request based on that request’s input values.

Comment: These restrictions include direct knowledge or implied knowledge.

10.1.3.1.5 The TPCx-HCI model allows the Frame Implementation within Tier A to select VM2 or VM3 as the
destination of a transaction based on the transaction types described in Clause 5.3.1. Otherwise, if routing is done
within a Frame Implementation, a transaction monitor must perform the routing (see Clause 3.2.1.9). The
Sponsor’s implementation of SendToMarketFromFrame interface is not governed by this clause but the
implementation still must conform to Clause 10.1.3.1.5

10.2 Driver Implementation Architectures
The driver architecture has an impact on understanding and interpreting the benchmark execution rules.
Therefore, this section provides an overview of key architectural modules. These models are examples
only and do not represent an exhaustive list. For simplicity, the focus will be on the CE, but the same
principles apply to the MEE as well.

10.2.1 The Simple CE

In its simplest form, the CE has:
• A single thread of execution
• A single instance of the CCE class (i.e. a VGenDriverCE of size 1)
• A single blocking Network connection to the SUT

During the Test Run, the CE cycles through a process of calling from Sponsor provided code into
VGenDriverCE code to generate the next Transaction type and the necessary input data, calling from
the VGenDriverCE code into Sponsor provided code to record the Transaction’s start time, send the
input data to the SUT, wait for the Transaction to execute, receive in the output data from the SUT,
record the Transaction’s end time, and then finally return from the Sponsor code back through the
VGenDriverCE code back to the initial Sponsor code. The following diagram captures this pictorially.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 144 of 271

Figure 10.e - The Simple CE

10.2.2 The Replicated CE

There are limits to the amount of throughput the Simple CE can generate. So replication of the Simple
CE is permitted. This allows multiple copies of the Simple CE to generate the necessary Nominal
Throughput for any size database. Since there will be multiple instances of the CCE class, this is
equivalent to a VGenDriverCE of size N (where N is the number of CCE instances).

CESutInterface /
VGenDriver Connector

TxnType ()
– Record Start Time sT n
– Send data to SUT
– Wait for Response
– Receive data from SUT
– Record End Time eT n

VGenDriverCE

DoTxn()
– Generate Txn Type
– Generate Txn Inputs
– CESUTInterface::TxnType

Customer Emulator

– DoTxn ()

CESutInterface/
VGenDriver Connector

TxnType()
– Record Start Time sT n
– Send data to SUT
– Wait for Response
– Receive data from SUT
– Record End Time eT n

VGenDriverCE

DoTxn()
– Generate Txn Type
– Generate Txn Inputs
– CESUTInterface::TxnType

Customer Emulator

– DoTxn()

Commercial Product
TPC Provided

TPC Defined
Interface

Legend

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 145 of 271

The mandatory use of VGenDriverCE’s auto-RNG seeding (see Clause 10.7.7.2) means that these will
not be exactly identical copies of the Simple CE. Each copy will start off at a different point in the RNG
stream. The following diagram shows the Replicated CE.

Figure 10.f The Replicated CE

10.2.3 Driver Reporting Requirements

The TPCx-HCI Express Benchmark Kit reports the number of VGenDriverMEE and VGenDriverCE
instances used in the benchmark in the Report.

10.3 Implementation Rules

10.3.1 The physical clustering of records within the database is allowed.

10.3.2 All TPCx-HCI required tables must have the properly scaled number of rows as defined by the
database population requirements in Clause 2.4.

Commercial Product
TPC Provided

TPC Defined
Interface

Legend

VGenDriverCE

CESutInterface /
VGenDriver Connector

TxnType ()
– Record Start Time sT n
– Send data to SUT
– Wait for Response
– Receive data from SUT
– Record End Time eT n

VGenDriverCE

DoTxn()
– Generate Txn Type
– Generate Txn Inputs
– CESUTInterface:: TxnType

Customer Emulator

– DoTxn ()

CESutInterface /
VGenDriver Connector

TxnType ()
– Record Start Time sT n
– Send data to SUT
– Wait for Response
– Receive data from SUT
– Record End Time eT n

VGenDriverCE

DoTxn()
– Generate Txn Type
– Generate Txn Inputs
– CESUTInterface:: TxnType

Customer Emulator

– DoTxn ()
CESutInterface /
VGenDriver Connector

TxnType ()
– Record Start Time sT n
– Send data to SUT
– Wait for Response
– Receive data from SUT
– Record End Time eT n

VGenDriverCE

DoTxn()
– Generate Txn Type
– Generate Txn Inputs
– CESUTInterface:: TxnType

Customer Emulator

– DoTxn ()

CESutInterface /
VGenDriver Connector

TxnType ()
– Record Start Time sT n
– Send data to SUT
– Wait for Response
– Receive data from SUT
– Record End Time eT n

VGenDriverCE

DoTxn()
– Generate Txn Type
– Generate Txn Inputs
– CESUTInterface:: TxnType

Customer Emulator

– DoTxn ()
CESutInterface /
VGenDriver Connector

TxnType ()
– Record Start Time sT n
– Send data to SUT
– Wait for Response
– Receive data from SUT
– Record End Time eT n

VGenDriverCE

DoTxn()
– Generate Txn Type
– Generate Txn Inputs
– CESUTInterface::TxnType

Customer Emulator

– DoTxn ()

/

TxnType ()
– Record Start Time sT n
– Send data to SUT
– Wait for Response
– Receive data from SUT
– Record End Time eT n

DoTxn()
– Generate Txn Type
– Generate Txn Inputs
– CESUTInterface::TxnType

Customer Emulator

– DoTxn ()

VGenDriverCE
VGenDriver Connector
CESutInterface

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 146 of 271

10.3.3 Table Partitioning

10.3.3.1 Horizontal partitioning of tables is allowed. Groups of rows from a table may be assigned to different
files, disks, or areas. If implemented, the details of such partitioning must be reported in the Report.

10.3.3.2 Vertical partitioning of tables is allowed. Groups of columns of one table may be assigned to files,
disks, or areas different from those storing the other columns of that table. If implemented, the details
of such partitioning must be reported in the Report (see Clause 10.5 for limitations).

10.3.3.3 Assignment of data to different files, disks, or areas, not based on knowledge of the logical structure of
the data (e.g., knowledge of row or column boundaries), is not considered partitioning. For example,
distribution or striping over multiple disks of a physical file which stores one or more logical tables is
not considered partitioning as long as this distribution is done by the hardware or software without
knowledge of the logical structure stored in the physical file.

10.3.4 Replication is allowed for all tables. All copies of TPCx-HCI tables that are replicated must meet all
requirements for atomicity, consistency, and isolation as defined in Clauses 6.2, 6.3 and 6.4. If
implemented, the details of such replication must be reported in the Report.

Comment: Only one copy of a replicated TPCx-HCI table needs to meet the Durability requirements
defined in Clause 6.5.

10.3.5 Columns may be added and/or duplicated from one TPCx-HCI table to another as long as these
changes do not improve performance.

10.3.6 Each TPCx-HCI column, as described by the table definitions in Clause 2.2, must be logically discrete
and independently accessible by the DBMS. For example, ADDRESS.AD_LINE1 and
ADDRESS.AD_LINE2 are not allowed to be implemented as two sub-parts of a single column
ADDRESS.AD_LINE.

10.3.7 Each TPCx-HCI column, as described by the table definitions in Clause 2.2, must be accessible by the
DBMS as a single column. For example, NEWS_ITEMS.NI_ITEM is not allowed to be implemented as
two separate columns NEWS_ITEMS.NI_ITEM1 and NEWS_ITEMS.NI_ITEM2.

10.3.8 The Primary Key of each table must not directly represent the physical disk addresses of the row or any
offsets thereof. The Application is not allowed to reference rows using relative addressing since they
are simply offsets from the beginning of the storage space. This does not preclude hashing schemes or
other file organizations that have provisions for adding, deleting, and modifying records in the
ordinary course of processing.

Comment 1: It is the intent of this clause that the Application Program (see Clause 1.2) executing the
transaction, or submitting the transaction request, not use physical identifiers, but logical identifiers for
all accesses, and contain no user written code which translates or aids in the translation of a logical key
to the location within the table of the associated row or rows. For example, it is not legitimate for the
Application to build a "translation table" of logical-to-physical addresses and use it to enhance
performance.
Comment 2: Internal record or row identifiers, for example, Tuple IDs or cursors, may be used under the
following condition. For each transaction executed, initial access to any row must be via the column(s)
specified in the transaction Profile and no other columns. Initial access includes insertion, deletion,
retrieval, and update of any row.

10.3.9 While inserts and deletes are not performed on all tables, the system must not be configured to take
special advantage of this fact during the test. Although inserts are inherently limited by the storage
space available on the configured system, there must be no restriction on inserting in any of the non-
Growing Tables a minimum number of rows equal to 5% of the table cardinality.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 147 of 271

Comment: It is required that the space for the additional 5% table cardinality (and corresponding growth
in associated User-Defined Objects, such as indices) be configured for the Test Run and priced (as Fixed
Space per Clause 5.6.6.2) accordingly. For systems where space is configured and dynamically allocated
at a later time, this space must be considered as allocated and included as Fixed Space when priced.

10.3.10 The implementation of the BLOB object must satisfy the following properties:

• Changes to the data in the object must be under the same transactional control as the changes to the
objects of any other type.

• Recovery after Catastrophic failure must be capable of restoring all objects, including BLOBs, to the
same point in time.

• The object, and any associated references to it, must be treated as a unit with respect to atomicity.
Comment: The implementation of BLOB in the NEWS_ITEM table may be implemented either by specific
inclusion of the BLOB in the table or by use of a reference to a BLOB object stored elsewhere on the
System Under Test.

10.3.11 User-Defined Objects

Any object defined in the database is considered a User-Defined Object, except for the following:
• a TPCx-HCI Table (see clause 2.2.3)
• a required Primary Key (see clause 2.2.3.1)
• a required Foreign Key (see clause 2.2.3.2)
• a required constraint (see clause 2.2.3.3)
• Database Metadata

10.3.11.1 There are no restrictions on User-Defined Objects, provided that:

• all Transaction and Frame implementation rules from clause 3.2 are met
• all ACID requirements in clause 7 are met

10.4 Integrity Rules

10.4.1 In any Committed state, the Primary Key values must be unique within each table. For example, in the
case of a horizontally partitioned table, Primary Key values of rows across all partitions must be
unique.

10.4.2 In any Committed state, no ill-formed rows may exist in the database. An ill-formed row occurs when
the value of any column cannot be determined. For example, in the case of a vertically partitioned
table, a row must exist in all the partitions.

10.4.3 Referential Integrity (RI) must be enforced by the database for all Foreign Key (FK) and Primary Key
(PK) relations defined between TPCx-HCI tables.

Comment: Referential Integrity preserves the relationship of data between tables, by restricting actions
performed on Primary Keys and Foreign Keys in a table. Referential Integrity prevents removing rows
containing Primary Keys that are referenced by Foreign Keys in other tables in the database without also
removing the rows with corresponding/referencing Foreign Keys. Referential Integrity also prevents
adding rows containing Foreign Keys that refer to Primary Keys whose rows are not already present in
the database. Referential Integrity does not allow modifications to Primary Key columns of rows that
are referenced by Foreign Keys in other tables in the database without also modifying the
corresponding/referencing Foreign Keys to be equal to the new Primary Key.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 148 of 271

10.5 Data Access Transparency Requirements
Data Access Transparency is the property of the system that removes from the Application Program any
knowledge of the location and access mechanisms of partitioned data. An implementation that uses
vertical and/or horizontal partitioning must meet the requirements for transparent data access described
here.
No finite series of tests can prove that the system supports complete data access transparency. The
requirements below describe the minimum capabilities needed to establish that the system provides
transparent data access.
Comment: The intent of this clause is to require that access to physically and/or logically partitioned data
be provided directly and transparently by services implemented by commercially available layers below
the Application Program such as the data/file manager (DBMS), the Operating System, the hardware,
or any combination of these.

10.5.1 Each of the tables described in Clause 2.2 (and any additional tables used in the implementation of the
Transactions) must be identifiable by names that have no relationship to the partitioning of tables. All
data manipulation operations in the Application Program (see Clause 1.2) must use only these names.

10.5.2 The system must prevent any data manipulation operation performed using the names described in
Clause 10.5.1 that would result in a violation of the integrity rules (see Clause 10.4). For example: the
system must prevent a non-TPCx-HCI application from committing the insertion of a row in a
vertically partitioned table unless all partitions of that row have been inserted.

10.5.3 Using the names which satisfy Clause 10.5.1, any arbitrary non-TPCx-HCI application must be able to
manipulate any set of rows or columns:

• Identifiable by any arbitrary condition supported by the underlying DBMS
• Using the names described in Clause 10.5.1 and using the same data manipulation semantics and

syntax for all tables.
For example, the semantics and syntax used to update an arbitrary set of rows in any one table must also
be usable when updating another arbitrary set of rows in any other table.

Comment: The intent is that the TPCx-HCI Application Program uses general-purpose mechanisms to
manipulate data in the database.

10.6 The Transactions

10.6.1 The Broker-Volume Transaction

The Broker-Volume Transaction is designed to emulate a brokerage house’s “up-to-the-minute” internal
business processing. An example of a Broker-Volume Transaction would be a manager generating a
report on the current performance potential of various brokers.

Broker-Volume is invoked by VGenDriverCE. It consists of a single Frame. The Transaction searches
the pending limit orders to find orders that are associated with a given list of brokers responsible for
stocks of a given sector. The value of each order is calculated based upon bid price and quantity of shares
and added to the running total volume for the appropriate broker. The list of brokers with their
associated total volume sorted in descending volume order is returned.

10.6.1.1 Broker-Volume Transaction Parameters

The inputs to the Broker-Volume Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Broker-Volume Interfaces Module/Data Structure

CE Input generation GenerateBrokerVolumeInput()

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 149 of 271

Transaction Input/Output Structure TBrokerVolumeTxnInput
TBrokerVolumeTxnOutput

Frame 1 Input/Output Structure TBrokerVolumeTxnInput
TBrokerVolumeFrame1Output

Broker-Volume Transaction Parameters:

Parameter Direction Description

broker_list[] IN
A list of twenty to forty distinct broker name strings as defined by B_NAME in
BROKER table. Names are randomly selected from the broker range, with uniform
distribution. The list size is determined by the first null input name in the
broker_list array.

sector_name IN A randomly selected sector name string as defined in SC_NAME in SECTOR table
using uniform distribution.

list_len OUT Number of items in the list being returned.

status OUT Code indicating the execution status for this transaction.

volume[] OUT
A list of numbers, sorted in descending order, representing the sum of all trade
request values (TR_QTY * TR_BID_PRICE) in the TRADE_REQUEST table for
stocks in a given sector grouped by broker names provided by broker_list. The list
size is determined by list_len parameter.

10.6.1.2 Broker-Volume Transaction Database Footprint

This Transaction is read-only and makes no changes to the database. The Broker-Volume Database
Footprint is as follows:

Broker-Volume Database Footprint

Table Column
Frame

1

BROKER B_NAME Return

TRADE_REQUEST
TR_BID_PRICE Reference

TR_QTY Reference

Transaction Control Start
Commit

10.6.1.3 Broker Volume Transaction Frame 1 of 1

The database access methods used in Frame 1 are all Returns.

The VGenTxnHarness controls the execution of Frame 1 as follows:
{

invoke (Broker-Volume_Frame-1)

if (list_len < 0) or (list_len > max_broker_list_len) then

{

 status = -111

}

}

Broker-Volume Frame 1 of 1 Parameters:

Parameter Direction Description

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 150 of 271

broker_list[] IN

A list of twenty to forty distinct broker name strings as
defined by B_NAME in BROKER table. Names are randomly
selected from the broker range, with, uniform distribution.
The list size is determined by the first null input name in the
broker_list array.

sector_name IN A randomly selected sector name string as defined in
SC_NAME in SECTOR table using uniform distribution.

broker_name[] OUT
A list of broker name strings sorted in descending order of
the “volume” associated with the broker. The list size is
determined by list_len parameter.

list_len OUT Number of items in the list being returned.

status OUT Code indicating the execution status for this Frame.

volume[] OUT

A list of numbers, sorted in descending order, representing
the sum of all trade request values (TR_QTY *
TR_BID_PRICE) in the TRADE_REQUEST table for stocks in
a given sector grouped by broker names provided by
broker_list. The list size is determined by list_len parameter.

Broker-Volume_Frame-1 Pseudo-code: Broker Volume

{

start transaction

// Should return 0 to 40 rows

select

broker_name[] = B_NAME,

volume[] = sum(TR_QTY * TR_BID_PRICE)

from

TRADE_REQUEST,

SECTOR,

INDUSTRY

COMPANY,

BROKER,

SECURITY

where

TR_B_ID = B_ID and

TR_S_SYMB = S_SYMB and

S_CO_ID = CO_ID and

CO_IN_ID = IN_ID and

SC_ID = IN_SC_ID and

B_NAME in (broker_list) and

SC_NAME = sector_name

group by

B_NAME

order by

2 DESC

// row_count will frequently be zero near the start of a Test Run when

// TRADE_REQUEST table is mostly empty.

list_len = row_count

commit transaction

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 151 of 271

Broker-Volume_Frame-1 Pseudo-code: Broker Volume

}

10.6.2 The Customer-Position Transaction

The Customer-Position Transaction is designed to emulate the process of retrieving the customer’s
profile and summarizing their overall standing based on current market values for all assets. This is
representative of the work performed when a customer asks the question “What am I worth today?”

Customer-Position is invoked by VGenDriverCE. It consists of three Frames, (Frame 2 and 3 are
mutually exclusive). The customer is specified either by a customer ID or a customer tax ID. If the
customer ID passed into the Transaction is 0, then the customer tax ID is used to look up the customer
ID. Detailed information about the customer’s profile is retrieved. In addition, for each of the customer’s
accounts, the cash balance of the account and the total current market value of all holdings in the account
are returned.
If a history of trading activity has been requested, information is retrieved on the ten most recent trades
for a randomly chosen account among the customer’s accounts.

10.6.2.1 Customer-Position Transaction Parameters

The inputs to the Customer Position Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Customer-Position Interfaces Module/Data Structure

CE Input generation GenerateCustomerPositionInput()

Transaction Input/Output Structure TCustomerPositionTxnInput
TCustomerPositionTxnOutput

Frame 1 Input/Output Structure TCustomerPositionFrame1Input
TCustomerPositionFrame1Output

Frame 2 Input/Output Structure TCustomerPositionFrame2Input
TCustomerPositionFrame2Output

Frame 3 Input/Output Structure TCustomerPositionFrame3Output

Customer-Position Transaction Parameters:

Parameter Direction Description

acct_id_idx IN
Index to one of the customer’s accounts. This
indexed account will be used in frame 2 if
get_history is TRUE.

cust_id IN Customer id or 0, selected by the driver.

get_history IN Selected by the driver to be 1 if Frame 2 is to be
invoked or 0 if not.

tax_id IN Customer tax id or empty string selected by the
driver.

acct_id[max_acct_len] OUT Array of customer account IDs.

acct_len OUT Number of customer accounts (max_acct_len (10) or
less)

asset_total[max_acct_len] OUT Array of asset totals for each customer account.

c_ad_id OUT Customer address identifier.

c_area_1 OUT Area code for customer’s first phone number.

c_area_2 OUT Area code for customer’s second phone number.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 152 of 271

c_area_3 OUT Area code for customer’s third phone number.

c_ctry_1 OUT Country code for customer’s first phone number.

c_ctry_2 OUT Country code for customer’s second phone number.

c_ctry_3 OUT Country code for customer’s third phone number.

c_dob OUT Customer date of birth.

c_email_1 OUT Customer’s first email address.

c_email_2 OUT Customer’s second email address.

c_ext_1 OUT Customer’s extension for the first phone number.

c_ext_2 OUT Customer’s extension for the second phone number.

c_ext_3 OUT Customer’s extension for the third phone number.

c_f_name OUT Customer first name.

c_gndr OUT Customer gender.

c_l_name OUT Customer last name.

c_local_1 OUT Customer’s first phone number.

c_local_2 OUT Customer’s second phone number.

c_local_3 OUT Customer’s third phone number.

c_m_name OUT Customer middle name.

c_st_id OUT Customer Status id.

c_tier OUT Customer tier.

cash_bal[max_acct_len] OUT Array of cash balances for each customer account.

hist_dts[max_hist_len] OUT Date for each transaction date from the transaction
history

hist_len OUT Number of records from the transaction history

qty[max_hist_len] OUT Number of shares involved in each event from
history

status OUT Code indicating the execution status for this
transaction.

symbol[max_hist_len] OUT Security involved in each event from history.

trade_id[max_hist_len] OUT Trade ID for each event from history.

trade_status[max_hist_len] OUT Trade Status for each event from history.

10.6.2.2 Customer-Position Transaction Database Footprint

The Customer-Position Database Footprint is as follows:

Customer-Position Database Footprint

Table Name Column
Frame

1 2* 3*

CUSTOMER

C_AD_ID Return
C_AREA_1 Return
C_AREA_2 Return
C_AREA_3 Return
C_CTRY_1 Return
C_CTRY_2 Return
C_CTRY_3 Return

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 153 of 271

C_DOB Return
C_EMAIL_1 Return
C_EMAIL_2 Return
C_EXT_1 Return
C_EXT_2 Return
C_EXT_3 Return
C_F_NAME Return
C_GNDR Return
C_L_NAME Return
C_LOCAL_1 Return
C_LOCAL_2 Return
C_LOCAL_3 Return
C_M_NAME Return
C_ST_ID Return
C_TIER Return

CUSTOMER_ACCOUNT
CA_BAL Return
CA_ID Return

HOLDING_SUMMARY HS_QTY Reference
LAST_TRADE LT_PRICE Reference
STATUS_TYPE ST_NAME Return
TRADE_HISTORY TH_DTS Return

TRADE

T_ID Return
T_QTY Return
T_S_SYMB Return

Transaction Control Start Commit Commit

10.6.2.3 Customer-Position Transaction Frame 1 of 3

If the cust_id input parameter is set to 0, the Frame must use the tax_id input parameter to search the
CUSTOMER table and find the ID of the customer. The Frame retrieves the detailed customer
information and finds the cash balance for each of the customer’s accounts as well as the total value of
the holdings in each account. In addition to the detailed customer information, the Frame returns a list
of accounts and their associated cash balance and asset value sorted by asset value.

The database access methods used in Frame 1 are Reference and Return.

The VGenTxnHarness controls the execution of Frame 1 as follows:
{

invoke (Customer-Position_Frame-1)

if (acct_len < 1) or (acct_len > max_acct_len) then

{

 status = -211

)

}

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 154 of 271

Customer-Position Frame 1 of 3 Parameters:

Parameter Direction Description

cust_id IN/OUT Customer id or 0, selected by the driver.

tax_id IN Customer tax id or empty string selected by the driver.

acct_id[max_acct_len] OUT Array of customer account IDs.

acct_len OUT Number of customer accounts (max_acct_len (10) or less).

asset_total[max_acct_len] OUT Array of asset totals for each customer account.

c_ad_id OUT Customer address identifier.

c_area_1 OUT Area code for customer’s first phone number.

c_area_2 OUT Area code for customer’s second phone number.

c_area_3 OUT Area code for customer’s third phone number.

c_ctry_1 OUT Country code for customer’s first phone number.

c_ctry_2 OUT Country code for customer’s second phone number.

c_ctry_3 OUT Country code for customer’s third phone number.

c_dob OUT Customer date of birth.

c_email_1 OUT Customer’s first email address.

c_email_2 OUT Customer’s second email address.

c_ext_1 OUT Customer’s extension for the first phone number.

c_ext_2 OUT Customer’s extension for the second phone number.

c_ext_3 OUT Customer’s extension for the third phone number.

c_f_name OUT Customer first name.

c_gndr OUT Customer gender.

c_l_name OUT Customer last name.

c_local_1 OUT Customer’s first phone number.

c_local_2 OUT Customer’s second phone number.

c_local_3 OUT Customer’s third phone number.

c_m_name OUT Customer middle name.

c_st_id OUT Customer Status id.

c_tier OUT Customer tier.

cash_bal[max_acct_len] OUT Array of cash balances for each customer account.

status OUT Code indicating the execution status for this Frame.

Customer-Position_Frame-1 Pseudo-code: Get the customer's total assets

{

start transaction

if (cust_id == null_cust_id) then {

select

cust_id = C_ID

from

CUSTOMER

where

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 155 of 271

Customer-Position_Frame-1 Pseudo-code: Get the customer's total assets

C_TAX_ID = tax_id

}

select

c_st_id = C_ST_ID,

c_l_name = C_L_NAME,

c_f_name = C_F_NAME,

c_m_name = C_M_NAME,

c_gndr = C_GNDR,

c_tier = C_TIER,

c_dob = C_DOB,

c_ad_id = C_AD_ID,

c_ctry_1 = C_CTRY_1,

c_area_1 = C_AREA_1,

c_local_1 = C_LOCAL_1,

c_ext_1 = C_EXT_1,

c_ctry_2 = C_CTRY_2,

c_area_2 = C_AREA_2,

c_local_2 = C_LOCAL_2,

c_ext_2 = C_EXT_2,

c_ctry_3 = C_CTRY_3,

c_area_3 = C_AREA_3,

c_local_3 = C_LOCAL_3,

c_ext_3 = C_EXT_3,

c_email_1 = C_EMAIL_1,

c_email_2 = C_EMAIL_2

from

CUSTOMER

where

C_ID = cust_id

// Should return 1 to max_acct_len (10).

select first max_acct_len rows

acct_id[] = CA_ID,

cash_bal[] = CA_BAL,

assets_total[] = ifnull((sum(HS_QTY * LT_PRICE)),0)

from

CUSTOMER_ACCOUNT left outer join

HOLDING_SUMMARY on HS_CA_ID = CA_ID,

LAST_TRADE

where

CA_C_ID = cust_id and

LT_S_SYMB = HS_S_SYMB

group by

CA_ID, CA_BAL

order by

3 asc

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 156 of 271

Customer-Position_Frame-1 Pseudo-code: Get the customer's total assets

acct_len = row_count

}

10.6.2.4 Customer-Position Transaction Frame 2 of 3

This Frame is only executed if the Transaction parameter get_history value is set to TRUE. Using the
customer account ID the Frame must search the TRADE and TRADE_HISTORY tables to find up to 30
history rows that correspond with the 10 most recent trades executed by the customer account. For each
event the Frame must return the T_ID, T_S_SYMB, T_QTY, TH_DTS, and ST_NAME for all events in a
descending order of date found in TH_DTS. This Frame completes the work and commits the
Transaction

The database access methods used in Frame 2 are all Returns.

The VGenTxnHarness controls the execution of Frame 2 as follows:
{

if (get_history == 1) then

{

 frame2.acct_id = frame1.acct_id[acct_id_idx]

 invoke (Customer-Position_Frame-2)

 if (hist_len < 10) or (hist_len > max_hist_len) then

 {

 status = -221

 }

 exit

}

}

Customer-Position Frame 2 of 3 Parameters:

Parameter Direction Description

acct_id IN Customer account identifier

hist_dts[max_hist_len] OUT Date for each transaction date from the transaction history

hist_len OUT Number of records from the transaction history, at most
max_hist_len which is 30.

qty[max_hist_len] OUT Number of shares involved in each event from history

status OUT Code indicating the execution status for this Frame.

symbol[max_hist_len] OUT Security involved in each event from history.

trade_id[max_hist_len] OUT Trade ID for each event from history.

trade_status[max_hist_len] OUT Trade Status for each event from history.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 157 of 271

Customer-Position_Frame-2 Pseudo-code: Get the customer's trade history

{

// Should return 10 to 30 rows.

select first 30 rows

trade_id[] = T_ID,

symbol[] = T_S_SYMB,

qty[] = T_QTY,

trade_status[] = ST_NAME,

hist_dts[] = TH_DTS

from

(select first 10 rows

T_ID as ID

 from

TRADE

 where

T_CA_ID = acct_id

 order by T_DTS desc) as T,

TRADE,

TRADE_HISTORY,

STATUS_TYPE

where

T_ID = ID and

TH_T_ID = T_ID and

ST_ID = TH_ST_ID

order by

TH_DTS desc

hist_len = row_count

commit transaction

}

10.6.2.5 Customer-Position Transaction Frame 3 of 3

This Frame is only executed if get_history Transaction input parameter is set to FALSE. The Frame
simply Commits the Transaction started in Frame 1 and returns the status.

There are no database access methods used in Frame 3. This Frame is only using Transaction control
operations.

The VGenTxnHarness controls the execution of Frame 3 as follows:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 158 of 271

{

if (get_history != 1)

{

 invoke (Customer-Position_Frame-3)

}

}

Customer-Position Frame 3 of 3 Parameters:

Parameter Direction Description

status OUT Frame Status.

Customer-Position_Frame-3: End database transaction

{

commit transaction

}

10.6.3 The Market-Feed Transaction

The Market-Feed Transaction is designed to emulate the process of tracking the current market activity.
This is representative of the brokerage house processing the “ticker-tape” from the market exchange.

Market-Feed is invoked by VGenDriverMEE. It consists of a single Frame. The Transaction receives the
latest trade activity information (symbol, price, quantity, etc.) from the market exchange. As a result of
processing the ticker feed, the prices for securities will increase or decrease. These changes in price may
trigger pending limit orders.
Each Market-Feed ticker consists of 20 entries (max_feed_len constant in TxnHarnessStructs.h). These
entries are generated by the MEE to simulate the reporting of trades from other brokerage houses. The
Market-Feed Transaction is allowed to process any number of ticker elements (from one to all) per
Database Transaction.

10.6.3.1 Market-Feed Transaction Parameters

The inputs to the Market-Feed Transaction are generated by the VGenDriverMEE code in MEE.cpp. The
data structures defined in TxnHarnessStructs.h must be used to communicate the input and output
parameters.

Market-Feed Interfaces Module/Data Structure

MEE Input generation CMEESUTInterface::MarketFeed()

Transaction Input/Output Structure TMarketFeedTxnInput
TMarketFeedTxnOutput

Frame 1 Input/Output Structure TMarketFeedFrame1Input
TMarketFeedFrame1Output

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 159 of 271

Market-Feed Transaction Parameters:

Parameter Direction Description

price_quote[] IN
A list of numeric prices the Market Exchange Emulator generated for each
entry on the ticker list. Each security’s price fluctuates between a low and high
price, the fluctuation has a predefined frequency.

symbol[] IN
A list of strings containing the Security Symbol for each security on the ticker.
The security symbol string follows the definition of LT_S_SYMB in the
LAST_TRADE table. The ticker was generated by the Market Exchange
Emulator.

trade_qty[] IN
A list of numbers representing the number of shares of a security that were
traded for this ticker entry. The trade_qty is the same as the trade_qty
requested in the Trade Request.

status OUT Code indicating the execution status for this transaction.

10.6.3.2 Market-Feed Transaction Database Footprint

The Market-Feed Database Footprint is as follows:

Market-Feed Database Footprint

Table Name Column
Frame

1

LAST_TRADE

LT_DTS Modify

LT_PRICE Modify

LT_VOL Reference
Modify

Transaction Control Start
Commit

10.6.3.3 Market-Feed Transaction Frame 1 of 1

Using the entries in the ticker list, the Frame is responsible for:
• modifying the rows in the LAST_TRADE table with the new prices, the new daily volumes and

the new last trade dates
• identifying any pending limit orders that should be triggered by these ticker prices, processing

them, and submitting them to the MEE

The database access methods used in Frame 1 are Modify and Reference.

The VGenTxnHarness controls the execution of Frame 1 as follows:
{

invoke (Market-Feed_Frame-1)

}

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 160 of 271

Market-Feed Frame 1 of 1 Parameters:

Parameter Direction Description

price_quote[] IN
A list of numeric prices the Market Exchange Emulator generated for
each entry on the ticker list. Each security’s price fluctuates between a
low and high price, the fluctuation has a predefined frequency.

symbol[] IN
A list of strings containing the Security Symbol for each security on the
ticker. The security symbol string follows the definition of LT_S_SYMB
in the LAST_TRADE table. The ticker was generated by the Market
Exchange Emulator.

trade_qty[] IN
A list of numbers representing the number of shares of a security that
were traded for this ticker entry. The trade_qty is the same as the
trade_qty requested in the Trade Request.

status OUT Code indicating the execution status for this Frame.

Market-Feed_Frame-1 Pseudo-code: Record the stock price and update the volume
and datetime for securities contained in the ticker feed.

{

declare now_dts DATETIME

declare rows_updated int

get_current_dts(now_dts)

rows_updated = 0

start transaction

update

LAST_TRADE

set

LT_PRICE = price_quote[],

LT_VOL = LT_VOL + trade_qty[],

LT_DTS = now_dts

where

LT_S_SYMB = symbol[i]

rows_updated = row_count

commit transaction

if (rows_updated != max_feed_len) then

{

status = -311

}

}

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 161 of 271

10.6.4 The Market-Watch Transaction

The Market-Watch Transaction is designed to emulate the process of monitoring the overall performance
of the market by allowing a customer to track the current daily trend (up or down) of a collection of
securities. The collection of securities being monitored may be based upon a customer’s current holdings,
a customer’s watch list of prospective securities, or a particular industry.

Market-Watch is invoked by VGenDriverCE. It consists of a single Frame. This Transaction calculates
the percentage change in value of the market capitalization of a collection of securities at a chosen day’s
closing prices compared to the current market prices. The chosen day is non-uniformly selected from the
1305 days of market data that was loaded during initial population of the database. The calculation is
done by looking at the chosen day’s closing price for each security in the list and multiplying that by the
number of outstanding shares for that security. This product is added to a running total for the chosen
day’s closing market capitalization. In addition, the current price for each security in the list is multiplied
by the number of outstanding shares for that security. This product is added to a running sum for the
current market capitalization. The difference between the total market capitalization for the chosen day's
closing and the current total, expressed as a percentage, is returned.

The Transaction supports this market watch calculation on a group of securities chosen based on the
following list of criteria:
• Prospective-Watch - The collection of securities is chosen using all the securities in a customer’s

watch list.
• Industry-Watch - The collection of securities is chosen using all the securities in an industry

belonging to companies within a specified range. The industry name is chosen at random from the
possible industry names using a uniform distribution.

• Portfolio-Watch - The collection of securities is chosen using all the securities that are held in a
customer’s account. The rules for determining the range of available customers are described in
clause 10.6.1.1. The customer account identifier is chosen at random from all the possible accounts
for that customer using a uniform distribution.

10.6.4.1 Market-Watch Transaction Parameters

The inputs to the Market-Watch Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp. The data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Market-Watch Interfaces Module/Data Structure

CE Input generation GenerateMarketWatchInput()

Transaction Input/Output Structure TMarketWatchTxnInput
TMarketWatchTxnOutput

Frame 1 Input/Output Structure TMarketWatchFrame1Input
TMarketWatchFrame1Output

Market-Watch Transaction Parameters:

Parameter Direction Description

acct_id IN

A single customer is chosen non-uniformly by customer tier, from the
range of available customers. A single customer account id, as defined by
CA_ID in CUSTOMER_ACCOUNT, is chosen at random, uniformly,
from the range of customer account ids for the chosen customer. This
input will be used 35% of the time. The securities collection will be all the
securities held this customer account. The other 65% of the time when
this input is not being used its value will be 0.

cust_id IN

A number randomly selected from the possible customer identifiers as
defined by C_ID in CUSTOMER table using a non-uniform by customer
tier distribution. This input will be used 60% of the time. The securities
collection will be all the securities in this customer’s watch list. The other
40% of the time when this input is not being used its value will be 0.

ending_co_id IN
Company identifier of the last company in the range of 5,000 companies
to be searched for companies in IN_NAME industry. The value will be
starting_co_id + 4,999. This input will only be used when industry_name

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 162 of 271

is used which is 5% of the time. The other 95% of the time when this
input is not being used its value will be zero.

industry_name IN

A randomly selected industry name string as defined in IN_NAME in
INDUSTRY table using uniform distribution. This input will be used 5%
of the time. The securities collection will be all the securities of companies
in this industry. The other 95% of the time when this input is not being
used its value will be an empty string.

start_date IN
A date non-uniformly selected from the 1305 days in the
DAILY_MARKET table. The closing price of securities on this date is
used in the market capitalization calculations.

starting_co_id IN

A number randomly selected from the range of possible company
identifiers minus 4,999. Company identifier of the first company in the
range of 5,000 companies to be searched for companies in IN_NAME
industry. This input will only be used when industry_name is used
which is 5% of the time. The other 95% of the time when this input is not
being used its value will be zero.

pct_change OUT
Numeric value calculated during the transaction by finding the
percentage change from chosen day’s close of business capitalization for
the collection of securities and the current capitalization for the collection
of securities.

status OUT Code indicating the execution status for this transaction.

10.6.4.2 Market-Watch Transaction Database Footprint

The Market-Watch Database Footprint is as follows:

Market-Watch Database Footprint

Table Column
Frame

1

COMPANY
CO_ID Reference*

CO_IN_ID Reference*

DAILY_MARKET DM_CLOSE Reference

HOLDING_SUMMARY HS_S_SYMB Reference*

INDUSTRY
IN_ID Reference*

IN_NAME Reference*

LAST_TRADE LT_PRICE Reference

SECURITY

S_CO_ID Reference*

S_NUM_OUT Reference

S_SYMB Reference*

WATCH_ITEM WI_S_SYMB Reference*

WATCH_LIST
WL_C_ID Reference*

WL_ID Reference*

Transaction Control Start
Commit

10.6.4.3 Market-Watch Transaction Frame 1 of 1

The database access methods used in Frame 1 are all References.

The VGenTxnHarness controls the execution of Frame 1 as follows:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 163 of 271

{

if (acct_id != 0) or (cust_id != 0) or (industry_name != “”) then

{

 invoke (Market-Watch_Frame-1)

}

else

{

 status = -411

}

}

Market-Watch Frame 1 of 1 Parameters:

Parameter Direction Description

acct_id IN

A single customer is chosen non-uniformly by customer tier, from the
range of available customers. A single customer account id, as defined by
CA_ID in CUSTOMER_ACCOUNT, is chosen at random, uniformly,
from the range of customer account ids for the chosen customer. This
input will be used 35% of the time. The securities collection will be all the
securities held this customer account. The other 65% of the time when
this input is not being used its value will be 0.

cust_id IN

A number randomly selected from the possible customer identifiers as
defined by C_ID in CUSTOMER table using a non-uniform by customer
tier distribution. This input will be used 60% of the time. The securities
collection will be all the securities in this customer’s watch list. The other
40% of the time when this input is not being used its value will be 0.

ending_co_id IN

Company identifier of the last company in the range of 5,000 companies
to be searched for companies in IN_NAME industry. The value will be
starting_co_id + 4,999. This input will only be used when industry_name
is used which is 5% of the time. The other 95% of the time when this
input is not being used its value will be zero.

industry_name IN

A randomly selected industry name string as defined in IN_NAME in
INDUSTRY table using uniform distribution. This input will be used 5%
of the time. The securities collection will be all the securities of companies
in this industry. The other 95% of the time when this input is not being
used its value will be an empty string.

start_date IN
A date non-uniformly selected from the 1305 days in the
DAILY_MARKET table. The closing price of securities on this date is
used in the market capitalization calculations.

starting_co_id IN

A number randomly selected from the range of possible company
identifiers minus 4,999. Company identifier of the first company in the
range of 5,000 companies to be searched for companies in IN_NAME
industry. This input will only be used when industry_name is used
which is 5% of the time. The other 95% of the time when this input is not
being used its value will be zero.

pct_change OUT
Numeric value calculated during the transaction by finding the
percentage change from chosen day’s close of business capitalization for
the collection of securities and the current capitalization for the collection
of securities.

status OUT Code indicating the execution status of this Frame.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 164 of 271

Market-Watch_Frame-1 Pseudo-code: Build list of securities and compute
percentage

{

start transaction

if (cust_id != 0) then {

declare stock_list cursor for

select

WI_S_SYMB

from

WATCH_ITEM,

WATCH_LIST

where

WI_WL_ID = WL_ID and

WL_C_ID = cust_id

} else if (industry_name != "") then {

declare stock_list cursor for

select

S_SYMB

from

INDUSTRY,

COMPANY,

SECURITY

where

IN_NAME = industry_name and

CO_IN_ID = IN_ID and

CO_ID between (starting_co_id and ending_co_id) and

S_CO_ID = CO_ID

} else if (acct_id != 0) then {

declare stock_list cursor for

select

HS_S_SYMB

from

HOLDING_SUMMARY

where

HS_CA_ID = acct_id

}

old_mkt_cap = 0.0

new_mkt_cap = 0.0

pct_change = 0.0

open stock_list

do until (stock_list.end_of_cursor) {

fetch from

stock_list cursor

into

symbol

select

new_price = LT_PRICE

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 165 of 271

Market-Watch_Frame-1 Pseudo-code: Build list of securities and compute
percentage

from

LAST_TRADE

where

LT_S_SYMB = symbol

select

s_num_out = S_NUM_OUT

from

SECURITY

where

S_SYMB = symbol

// Closing price for this security on the chosen day.

select

old_price = DM_CLOSE

from

DAILY_MARKET

where

DM_S_SYMB = symbol and

DM_DATE = start_date

old_mkt_cap += s_num_out * old_price

new_mkt_cap += s_num_out * new_price

}

if (old_mkt_cap != 0) then

{

// value of 0.00 for pct_change is valid

pct_change = 100 * (new_mkt_cap / old_mkt_cap - 1)

}

else

{

// no rows found, this can happen rarely when an account has no holdings

pct_change = 0.0

}

close stock_list

commit transaction

}

10.6.5 The Security-Detail Transaction

The Security-Detail Transaction is designed to emulate the process of accessing detailed information on
a particular security. This is representative of a customer doing research on a security prior to making a
decision about whether or not to execute a trade.

Security-Detail is invoked by VGenDriverCE. It consists of a single Frame. For a given security, the
Transaction will return detailed security and company information, a list of the company’s competitors,
current and historical financial data, and recent news items about the company.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 166 of 271

10.6.5.1 Security-Detail Transaction Parameters

The inputs to the Security-Detail Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Security-Detail Transaction Parameters:

Parameter Direction Description

access_lob_flag IN If 1, access the complete news articles for the company. If 0, access just the
news headlines and summaries.

max_rows_to_return IN
An integer value, randomly selected between 5 and 20 with a uniform
distribution. This value determines how many rows must be returned
from the DAILY_MARKET table for this security.

start_day IN

A date randomly selected from a uniform distribution of dates between 3
January 2000 and max_rows_to_return days before 1 January 2005. The
DAILY_MARKET table contains data for the period 3 January 2000 to 31
December 2004. The transaction will return max_rows_to_return worth of
rows from the DAILY_MARKET table for this security beginning with the
row for start_day.

symbol IN Security symbol, randomly selected from a uniform distribution.

last_vol OUT Volume of last trade

news_len OUT Number of news items returned in news array.

status OUT Code indicating the execution status for this transaction.

10.6.5.2 Security-Detail Transaction Database Footprint

The Security-Detail Database Footprint is as follows:

Security-Detail Database Footprint

Table Column
Frame

1

ADDRESS

AD_CTRY Return

AD_LINE1 Return

AD_LINE2 Return

AD_ZC_CODE Return

COMPANY

CO_CEO Return

CO_DESC Return

CO_NAME Return

CO_OPEN_DATE Return

CO_SP_RATE Return

CO_ST_ID Return

COMPANY_COMPETITOR
CP_CO_ID Reference

CP_COMP_CO_ID Reference

Security-Detail Interfaces Module/Data Structure

CE Input generation GenerateSecurityDetailInput()

Transaction Input/Output Structure TSecurityDetailTxnInput
TSecurityDetailTxnOutput

Frame 1 Input/Output Structure TSecurityDetailFrame1Input
TSecurityDetailFrame1Output

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 167 of 271

CP_IN_ID Reference

DAILY_MARKET

DM_CLOSE Return

DM_DATE Return

DM_HIGH Return

DM_LOW Return

DM_VOL Return

EXCHANGE

EX_CLOSE Return

EX_DESC Return

EX_NAME Return

EX_NUM_SYMB Return

EX_OPEN Return

FINANCIAL

FI_ASSETS Return

FI_BASIC_EPS Return

FI_DILUT_EPS Return

FI_INVENTORY Return

FI_LIABILITY Return

FI_MARGIN Return

FI_NET_EARN Return

FI_OUT_BASIC Return

FI_OUT_DILUT Return

FI_QTR Return

FI_QTR_START_DATE Return

FI_REVENUE Return

FI_YEAR Return

INDUSTRY IN_NAME Return

LAST_TRADE

LT_OPEN_PRICE Return

LT_PRICE Return

LT_VOL Return

NEWS_ITEM

NI_AUTHOR Return

NI_DTS Return

NI_HEADLINE Return*

NI_ITEM Return*

NI_SOURCE Return

NI_SUMMARY Return*

NEWS_XREF
NX_CO_ID Reference

NX_NI_ID Reference

SECURITY

S_52_WK_HIGH Return

S_52_WK_HIGH_DATE Return

S_52_WK_LOW Return

S_52_WK_LOW_DATE Return

S_DIVIDEND Return

S_NAME Return

S_NUM_OUT Return

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 168 of 271

S_PE Return

S_START_DATE Return

S_YIELD Return

ZIP_CODE
ZC_DIV Return

ZC_TOWN Return

Transaction Control Start
Commit

10.6.5.3 Security Detail Transaction Frame 1 of 1

The database access methods used in Frame 1 are Returns and References.

The VGenTxnHarness controls the execution of Frame 1 as follows:
{

invoke (Security-Detail_Frame-1)

if (day_len < min_day_len) or (day_len > max_day_len) then

{

 status = -511

}

else if (fin_len != max_fin_len) then

{

 status = -512

}

else if (news_len != max_news_len) then

{

 status = -513

}

}

Security-Detail Frame 1 of 1 Parameters:

Parameter Direction Description

access_lob_flag IN If 1, access the complete news articles for the company. If 0, access just
the news headlines and summaries.

max_rows_to_return IN
An integer value, randomly selected between 5
(iSecurityDetailMinRows) and 20 (iSecurityDetailMaxRows) with a
uniform distribution. This value determines how many rows must be
returned from the DAILY_MARKET table for this security.

start_day IN

A date randomly selected from a uniform distribution of dates between
3 January 2000 and max_rows_to_return before 31 December 2004. The
DAILY_MARKET table contains data for the period 3 January 2000 to 31
December 2004. The transaction will return max_rows_to_return worth
of rows from the DAILY_MARKET table for this security beginning
with the row for start_day.

symbol IN Security symbol, randomly selected from a uniform distribution.

52_wk_high OUT Number showing 52 week high value for the security.

52_wk_high_date OUT Date showing when the 52_wk_high happened.

52_wk_low OUT Number showing 52 week low value for the security.

52_wk_low_date OUT Date showing when 52_wk_low happened.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 169 of 271

ceo_name OUT CEO name, based on a list of distinct first and last names.

co_ad_ctry OUT Company country, USA or Canada

co_ad_div OUT Company county or state or province

co_ad_line1 OUT Line 1 from a real company address

co_ad_line2 OUT Line 2 from a real company address

co_ad_town OUT Company town

co_ad_zip OUT Company ZIP or postal code. Contains partly realistic US or Canadian
ZIP codes

co_desc OUT Short description of the company. Readable English text.

co_name OUT Company name

co_st_id OUT Contains the value ‘ST1’

cp_co_name[max_comp_len] OUT
Array of strings containing the company names of competitors for this
securities’ company. VGen loads the COMPANY_COMPETITOR table
with 3 competitors for each company, so max_comp_len is 3.

cp_in_name[max_comp_len] OUT
Array of strings containing the name of the industries in which
competitors compete with this securities’ company. VGen loads the
COMPANY_COMPETITOR table with 3 competitors for each company,
so max_comp_len is 3.

day[max_day_len] OUT Array of numbers containing daily data. max_day_len is a constant set
to 20.

day_len OUT Elements in the Day array

divid OUT Number containing security dividend

ex_ad_ctry OUT Exchange country

ex_ad_div OUT Exchange county or town or province

ex_ad_line1 OUT Line 1 from real exchange address

ex_ad_line2 OUT Line 2 from real exchange address

ex_ad_town OUT Exchange town

ex_ad_zip OUT Exchange ZIP code

ex_close OUT Time the exchange closes, 2 possible values.

ex_date OUT Date listed on exchange. Not earlier than Start_date

ex_desc OUT Description of the exchange

ex_name OUT Name of the exchange. 4 values

ex_num_symb OUT Number of securities traded

ex_open OUT Time the exchange opens

fin[max_fin_len] OUT Array of numbers with financial data. max_fin_len (20) is a constant set
in the VGen code.

fin_len OUT Length of the array

last_open OUT Price of security at last exchange open

last_price OUT Price for security

last_vol OUT Volume of last trade

news[max_news_len] OUT Array of news items about the security’s company. max_new_len (2) is a
constant set in the VGen code.

news_len OUT Number of news items returned in news array.

num_out OUT Number of outstanding shares. Valid range is 4,000,000 to 9,500,000,000.

open_date OUT Date the company opened. Valid range is 01/01/1800 to build date

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 170 of 271

pe_ratio OUT Price/earning ratio. A random value between 1.00 and 120.00

s_name OUT Security name, 6850 distinct values

sp_rate OUT Standards & Poor rating for the company, one of 39 values.

start_date OUT Date of trade started. Range id between 01/01/1900 and build date.

status OUT Code indicating the execution status for this Frame.

yield OUT Number containing yield for the security

Security-Detail_Frame-1 Pseudo-code: Get all details about the security

{

Declare co_id IDENT_T

start transaction

select

s_name = S_NAME,

co_id = CO_ID,

co_name = CO_NAME,

sp_rate = CO_SP_RATE

ceo_name = CO_CEO,

co_desc = CO_DESC,

open_date = CO_OPEN_DATE,

co_st_id = CO_ST_ID,

co_ad_line1 = CA.AD_LINE1,

co_ad_line2 = CA.AD_LINE2,

co_ad_town = ZCA.ZC_TOWN,

co_ad_div = ZCA.ZC_DIV,

co_ad_zip = CA.AD_ZC_CODE,

co_ad_ctry = CA.AD_CTRY,

num_out = S_NUM_OUT,

start_date = S_START_DATE,

exch_date = S_EXCH_DATE,

pe_ratio = S_PE,

52_wk_high = S_52WK_HIGH,

52_wk_high_date = S_52WK_HIGH_DATE,

52_wk_low = S_52WK_LOW,

52_wk_low_date = S_52WK_LOW_DATE,

divid = S_DIVIDEND,

yield = S_YIELD,

ex_ad_div = ZEA.ZC_DIV,

ex_ad_ctry = EA.AD_CTRY

ex_ad_line1 = EA.AD_LINE1,

ex_ad_line2 = EA.AD_LINE2,

ex_ad_town = ZEA.ZC_TOWN,

ex_ad_zip = EA.AD_ZC_CODE,

ex_close = EX_CLOSE,

ex_desc = EX_DESC,

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 171 of 271

Security-Detail_Frame-1 Pseudo-code: Get all details about the security

ex_name = EX_NAME,

ex_num_symb = EX_NUM_SYMB,

ex_open = EX_OPEN

from

SECURITY,

COMPANY,

ADDRESS CA,

ADDRESS EA,

ZIP_CODE ZCA,

ZIP_CODE ZEA,

EXCHANGE

where

S_SYMB = symbol and

CO_ID = S_CO_ID and

CA.AD_ID = CO_AD_ID and

EA.AD_ID = EX_AD_ID and

EX_ID = S_EX_ID and

ca.ad_zc_code = zca.zc_code and

ea.ad_zc_code =zea.zc_code

// Should return max_comp_len (3) rows

select first max_comp_len rows

cp_co_name[] = CO_NAME,

cp_in_name[] = IN_NAME

from

COMPANY_COMPETITOR, COMPANY, INDUSTRY

where

CP_CO_ID = co_id and

CO_ID = CP_COMP_CO_ID and

IN_ID = CP_IN_ID

// Should return max_fin_len (20) rows

select first max_fin_len rows

fin[].year = FI_YEAR,

fin[].qtr = FI_QTR,

fin[].strart_date = FI_QTR_START_DATE,

fin[].rev = FI_REVENUE,

fin[].net_earn = FI_NET_EARN,

fin[].basic_eps = FI_BASIC_EPS,

fin[].dilut_eps = FI_DILUT_EPS,

fin[].margin = FI_MARGIN,

fin[].invent = FI_INVENTORY,

fin[].assets = FI_ASSETS,

fin[].liab = FI_LIABILITY,

fin[].out_basic = FI_OUT_BASIC,

fin[].out_dilut = FI_OUT_DILUT

from

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 172 of 271

Security-Detail_Frame-1 Pseudo-code: Get all details about the security

FINANCIAL

where

FI_CO_ID = co_id

order by

FI_YEAR asc,

FI_QTR

fin_len = row_count

// Should return max_rows_to_return rows

// max_rows_to_return is between 5 and 20

select first max_rows_to_return rows

day[].date = DM_DATE,

day[].close = DM_CLOSE,

day[].high = DM_HIGH,

day[].low = DM_LOW,

day[].vol = DM_VOL

from

DAILY_MARKET

where

DM_S_SYMB = symbol and

DM_DATE >= start_day

order by

DM_DATE asc

day_len = row_count

select

last_price = LT_PRICE,

last_open = LT_OPEN_PRICE,

last_vol = LT_VOL

from

LAST_TRADE

where

LT_S_SYMB = symbol

// Should return max_news_len (2) rows

if (access_lob_flag)

select first max_news_len rows

news[].item = NI_ITEM,

news[].dts = NI_DTS,

news[].src = NI_SOURCE,

news[].auth = NI_AUTHOR,

news[].headline = “”,

news[].summary = “”

from

NEWS_XREF,

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 173 of 271

Security-Detail_Frame-1 Pseudo-code: Get all details about the security

NEWS_ITEM

where

NI_ID = NX_NI_ID and

NX_CO_ID = co_id

else

select first max_news_len rows

news[].item = “”,

news[].dts = NI_DTS,

news[].src = NI_SOURCE,

news[].auth = NI_AUTHOR,

news[].headline = NI_HEADLINE,

news[].summary = NI_SUMMARY

from

NEWS_XREF,

NEWS_ITEM

where

NI_ID = NX_NI_ID and

NX_CO_ID = co_id

news_len = row_count

commit transaction

}

10.6.6 The Trade-Lookup Transaction

The Trade-Lookup Transaction is designed to emulate information retrieval by either a customer or a
broker to satisfy their questions regarding a set of trades. The various sets of trades are chosen such that
the work is representative of:
• performing general market analysis
• reviewing trades for a period of time prior to the most recent account statement
• analyzing past performance of a particular security
• analyzing the history of a particular customer holding

Trade-Lookup is invoked by VGenDriverCE. It consists of four mutually exclusive Frames. Each Frame
employs a different technique for looking up historical trade data.

Frame 1 accepts a list of trade IDs. Information for each of the trades in the list is returned.

Frame 2 accepts a customer account ID, a start timestamp, end timestamp and a number of trades (N) as
inputs. It returns information for the first N trades for the specified customer account between the start
and end timestamps (inclusive).

Frame 3 accepts a security symbol, a start timestamp, end timestamp and a number of trades (N) as
inputs. It returns information for the first N trades for the given security between the start and end
timestamps (inclusive).

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 174 of 271

Frame 4 accepts a customer account ID and a timestamp as inputs. The first trade for this customer
account at or after the specified timestamp is identified. Then a maximum of 20 historical holding changes
for this trade ID are returned. The historical holding changes report on changes made by this trade to
holdings created by prior trades, and report on changes made by subsequent trades to any holding
created by this trade.

10.6.6.1 Trade-Lookup Transaction Parameters

The inputs to the Trade-Lookup Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp. The data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Trade-Lookup Interfaces Module/Data Structure

CE Input generation GenerateTradeLookupInput()

Transaction Input/Output
Structure

TTradeLookupTxnInput
TTradeLookupTxnOutput

Frame 1 Input/Output Structure TTradeLookupFrame1Input
TTradeLookupFrame1Output

Frame 2 Input/Output Structure TTradeLookupFrame2Input
TTradeLookupFrame2Output

Frame 3 Input/Output Structure TTradeLookupFrame3Input
TTradeLookupFrame3Output

Frame 4 Input/Output Structure TTradeLookupFrame4Input
TTradeLookupFrame4Output

Trade-Lookup Transaction Parameters:

Parameter Direction Description

acct_id IN Customer account ID. Used when frame_to_execute is 2 or 4, otherwise set to
0.

end_trade_dts IN

For Frames 1 and 4, this parameter is ignored, so it is set to an empty date.
Used in Frame 2 as the end point in time for identifying a particular trade.
Used in Frame 3 as the end point in time for identifying trades for a particular
symbol.

frame_to_execute IN Identifies which of the mutually exclusive frames to execute.

max_acct_id IN Used in Frame 3 to identify the maximum customer account ID, otherwise set
to 0.

max_trades IN
Used in Frames 1, 2 and 3 for the number of trades to find otherwise set to 0.
The default value for max_trades for each frame is set in the
TTradeLookupSettings structure in DriverParameterSettings.h

start_trade_dts IN

For Frame 1, this parameter is ignored, so it is set to an empty date.
Used in Frame 2 as the point in time for identifying a particular trade.
Non-uniform over pre-populated interval.
Used in Frame 3 as the point in time for identifying trades for a particular
symbol.
Uniform over pre-populated interval.
Used in Frame 4 as the point in time for identifying a particular trade.
Uniform over pre-populated interval.

symbol IN
Used in Frame 3 as the security symbol for which to find trades. Uniformly
chosen over all securities. For the other frames symbol is set to the empty
string.

trade_id[] IN
Array of non-uniform randomly chosen trade IDs used by Frame 1 to identify
a set of particular trades. For the other frames array elements are set to 0. For
Frame 1, max_trades indicates how many elements are to be used in the array.

frame_executed OUT Confirmation of which frame was executed.

is_cash[] OUT Indicates whether the trades used in Frame 1, 2 or 3 were cash transactions.

is_market[] OUT Indicates whether the trades used in Frame 1 were market order trades.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 175 of 271

num_found OUT Number of trade rows found for frames 1, 2, 3, or number of holding history
rows found for frame 4.

status OUT Code indicating the execution status for this transaction.

trade_list[] OUT List of trade IDs found in Frames 2 and 3.

10.6.6.2 Trade-Lookup Transaction Database Footprint

The Trade-Lookup Database Footprint is as follows:

Trade-Lookup Database Footprint

Table Column
Frame

1* 2* 3* 4*

CASH_TRANSACTION

CT_AMT Return* Return* Return*
CT_DTS Return* Return* Return*
CT_NAME Return* Return* Return*

HOLDING_HISTORY Row(s) Return*

SETTLEMENT

SE_AMT Return Return Return
SE_CASH_DUE_DATE Return Return Return
SE_CASH_TYPE Return Return Return

TRADE

T_BID_PRICE Return Return
T_CA_ID Return
T_DTS Reference Return Reference

T_EXEC_NAME Return Return Return
T_ID Return Return Return

T_IS_CASH Return Return Return
T_QTY Return
T_S_SYMB Reference
T_TRADE_PRICE Return Return Return
T_TT_ID Return

TRADE_HISTORY
TH_DTS Return Return Return
TH_ST_ID Return Return Return

TRADE_TYPE TT_IS_MRKT Return
Transaction Control Start

Commit
Start
Commit

Start
Commit

Start
Commit

Start
Commit

10.6.6.3 Trade-Lookup Transaction Frame 1 of 4

The first Frame is responsible for retrieving information about the specified array of trade IDs.

The VGenTxnHarness controls the execution of Frame 1 as follows:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 176 of 271

{

if(frame_to_execute == 1)

{

 invoke (Trade-Lookup_Frame-1)

 if (num_found != max_trades) then

 {

 status = -611

 }

 frame_executed = 1

}

[...]

Trade-Lookup Frame 1 of 4 Parameters:

Parameter Direction Description

max_trades IN
Number of valid array elements in trade_id[]. The default value (20) is
set in TTradeLookupSettings.MaxRowsFrame1 in
DriverParameterSettings.h.

trade_id[] IN The array of trade IDs picked non-uniformly over the set of pre-
populated trades.

bid_price[] OUT The requested unit price.

cash_transaction_amount[] OUT Amount of the cash transaction.

cash_transaction_dts[] OUT Date and time stamp of when the transaction took place.

cash_transaction_name[] OUT Description of the cash transaction.

exec_name[] OUT Name of the person who executed the trade.

is_cash[] OUT Flag that is non-zero for a cash trade, zero for a margin trade.

is_market[] OUT Flag that is non-zero for a market trade, zero for a limit trade.

num_found OUT Number of trade rows returned; should be the same as max_trades.

settlement_amount[] OUT Cash amount of settlement.

settlement_cash_due_date[] OUT Date by which customer or brokerage must receive the cash.

settlement_cash_type[] OUT Type of cash settlement involved: cash or margin.

status OUT Code indicating the execution status for this frame.

trade_history_dts[][3] OUT Array of timestamps of when the trade history was updated.

trade_history_status_id[][3] OUT Array of status type identifiers.

trade_price[] OUT Unit price at which the security was traded.

Trade-Lookup_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array

{

declare i int

start transaction

num_found = 0

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 177 of 271

Trade-Lookup_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array

for (i = 0; i++; i < max_trades) do {

// Get trade information

// Should only return one row for each trade

select

bid_price[i] = T_BID_PRICE,

exec_name[i] = T_EXEC_NAME,

is_cash[i] = T_IS_CASH,

is_market[i] = TT_IS_MRKT,

trade_price[i] = T_TRADE_PRICE

from

TRADE,

TRADE_TYPE

where

T_ID = trade_id[i] and

T_TT_ID = TT_ID

num_found = num_found + row_count

// Get settlement information

// Should only return one row for each trade

select

settlement_amount[i] = SE_AMT,

settlement_cash_due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_type[i] = SE_CASH_TYPE

from

SETTLEMENT

where

SE_T_ID = trade_id[i]

// get cash information if this is a cash transaction

// Should only return one row for each trade that was a cash transaction

if (is_cash[i]) then {

select

cash_transaction_amount[i] = CT_AMT,

cash_transaction_dts[i] = CT_DTS,

cash_transaction_name[i] = CT_NAME

from

CASH_TRANSACTION

where

CT_T_ID = trade_id[i]

}

// read trade_history for the trades

// Should return 2 to 3 rows per trade

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 178 of 271

Trade-Lookup_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array

select first 3 rows

trade_history_dts[i][] = TH_DTS,

trade_history_status_id[i][] = TH_ST_ID

from

TRADE_HISTORY

where

TH_T_ID = trade_id[i]

order by

TH_DTS

} // end for loop

commit transaction

}

10.6.6.4 Trade-Lookup Transaction Frame 2 of 4

The second Frame returns information for the first N trades executed for the specified customer account
between a specified start time and end time. If the specified start time is too close to the specified end
time, then it is possible that fewer than N trades may be returned.

The VGenTxnHarness controls the execution of Frame 2 as follows:
[...]

else if(frame_to_execute == 2)

{

 invoke (Trade-Lookup_Frame-2)

 if (num_found < 0) or (num_found > max_trades) then

 {

 status = -621

 }

 else if (num_found == 0) then

 {

 // Can happen rarely in large databases when an account has no trades

 // in the last 4 days

 status = +621

 }

 frame_executed = 2

}

[...]

Trade-Lookup Frame 2 of 4 Parameters:

Parameter Direction Description

acct_id IN A single customer is chosen non-uniformly by customer tier, from
the range of available customers. A single customer account id, as

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 179 of 271

defined by CA_ID in CUSTOMER_ACCOUNT, is chosen at
random, uniformly, from the range of customer account ids for the
chosen customer.

end_trade_dts IN Point in time at which to stop searching for N trades.

max_trades IN
Maximum number of trades to return. The default value (20) is set
in TTradeLookupSettings.MaxRowsFrame2 in
DriverParameterSettings.h.

start_trade_dts IN Point in time from which to search for N trades.

bid_price[] OUT The requested unit price.

cash_transaction_amount[] OUT Amount of the cash transaction.

cash_transaction_dts[] OUT Date and time stamp of when the transaction took place.

cash_transaction_name[] OUT Description of the cash transaction.

exec_name[] OUT Name of the person who executed the trade.

is_cash[] OUT Flag that is non-zero for a cash trade, zero for a margin trade.

num_found OUT Number of trade rows returned (may be less than max_trades).

settlement_amount[] OUT Cash amount of settlement.

settlement_cash_due_date[] OUT Date by which customer or brokerage must receive the cash.

settlement_cash_type[] OUT Type of cash settlement involved: cash or margin.

status OUT Code indicating the execution status for this frame.

trade_history_dts[][3] OUT Array of timestamps of when the trade history was updated.

trade_history_status_id[][3] OUT Array of status type identifiers.

trade_list[] OUT Trade ID actually used for retrieving data.

trade_price[] OUT Unit price at which the security was traded.

Trade-Lookup_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time.

{

declare i int

start transaction

// Get trade information

// Should return between 0 and max_trades rows

select first max_trades rows

bid_price[] = T_BID_PRICE,

exec_name[] = T_EXEC_NAME,

is_cash[] = T_IS_CASH,

trade_list[] = T_ID,

trade_price[] = T_TRADE_PRICE

from

TRADE

where

T_CA_ID = acct_id and

T_DTS >= start_trade_dts and

T_DTS <= end_trade_dts

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 180 of 271

Trade-Lookup_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time.

order by

T_DTS asc

num_found = row_count

// Get extra information for each trade in the trade list.

for (i = 0; i < num_found; i++) {

// Get settlement information

// Should return only one row for each trade

select

settlement_amount[i] = SE_AMT,

settlement_cash_due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_type[i] = SE_CASH_TYPE

from

SETTLEMENT

where

SE_T_ID = trade_list[i]

// get cash information if this is a cash transaction

// Should return only one row for each trade that was a cash transaction

if (is_cash[i]) then {

select

cash_transaction_amount[i] = CT_AMT,

cash_transaction_dts[i] = CT_DTS

cash_transaction_name[i] = CT_NAME

from

CASH_TRANSACTION

where

CT_T_ID = trade_list[i]

}

// read trade_history for the trades

// Should return 2 to 3 rows per trade

select first 3 rows

trade_history_dts[i][] = TH_DTS,

trade_history_status_id[i][] = TH_ST_ID

from

TRADE_HISTORY

where

TH_T_ID = trade_list[i]

order by

TH_DTS

} // end for loop

commit transaction

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 181 of 271

Trade-Lookup_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time.

}

10.6.6.5 Trade-Lookup Transaction Frame 3 of 4

The third Frame returns information for the first N trades for a given security between a specified start
time and end time. If the specified start time is too close to the specified end time, then it is possible that
fewer than N trades may be returned.

The VGenTxnHarness controls the execution of Frame 3 as follows:
[...]

else if(frame_to_execute == 3)

{

 invoke (Trade-Lookup_Frame-3)

 if (num_found < 0) or (num_found > max_trades) then

 {

 status = -631

 }

 else if (num_found == 0) then

 {

 // Can happen rarely in large databases

 status = +631

 }

 frame_executed = 3

}

}

Trade-Lookup Frame 3 of 4 Parameters:

Parameter Direction Description

end_trade_dts IN Point in time at which to end the search.

max_acct_id IN Maximum customer account ID.

max_trades IN
Maximum number of trades to find. The default value (20) is set in
TTradeLookupSettings.MaxRowsFrame3 in
DriverParameterSettings.h.

start_trade_dts IN Point in time from which to start search.

symbol IN Security for which to find trades.

acct_id[] OUT Array of accounts for which the trades were done.

cash_transaction_amount[] OUT Amount of the cash transaction.

cash_transaction_dts[] OUT Date and time stamp of when the transaction took place.

cash_transaction_name[] OUT Description of the cash transaction.

exec_name[] OUT Array of name of the person who executed each of the trades.

is_cash[] OUT Flag that is non-zero for a cash trade, zero for a margin trade.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 182 of 271

num_found OUT Number of TRADE rows returned.

price[] OUT Array of the price that was paid in each trade.

quantity[] OUT Array of the quantity of security bought in each trade.

settlement_amount[] OUT Cash amount of settlement.

settlement_cash_due_date[] OUT Date by which the customer or brokerage must receive the cash.

settlement_cash_type[] OUT Type of cash settlement involved: cash or margin.

status OUT Code indicating the execution status for this frame.

trade_dts[] OUT Array of the timestamps for when the trade was requested.

trade_history_dts[][3] OUT Array of timestamps of when the trade history was updated.

trade_history_status_id[][3] OUT Array of status type identifiers.

trade_list[] OUT Array of T_IDs found.

trade_type[] OUT Array of the trade type for each trade.

Trade-Lookup_Frame-3 Pseudo-code: Get a list of N trades executed for a
certain security starting from a given point in time.

{

declare i int

start transaction

// Should return between 0 and max_trades rows.

select first max_trades rows

acct_id[] = T_CA_ID,

exec_name[] = T_EXEC_NAME,

is_cash[] = T_IS_CASH,

price[] = T_TRADE_PRICE,

quantity[] = T_QTY,

trade_dts[] = T_DTS,

trade_list[] = T_ID,

trade_type[] = T_TT_ID

from

TRADE

where

T_S_SYMB = symbol and

T_DTS >= start_trade_dts and

T_DTS <= end_trade_dts

// The max_acct_id “where” clause is a hook used for engineering purposes

// only and is not required for benchmark publication purposes.

// T_CA_ID <= max_acct_id

order by

T_DTS asc

num_found = row_count

// Get extra information for each trade in the trade list.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 183 of 271

Trade-Lookup_Frame-3 Pseudo-code: Get a list of N trades executed for a
certain security starting from a given point in time.

for (i = 0; i < num_found; i++) {

// Get settlement information

// Should return only one row for each trade

select

settlement_amount[i] = SE_AMT,

settlement_cash_due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_type[i] = SE_CASH_TYPE

from

SETTLEMENT

where

SE_T_ID = trade_list[i]

// get cash information if this is a cash transaction

// Should return only one row for each trade that was a cash transaction

if (is_cash[i]) then {

select

cash_transaction_amount[i] = CT_AMT,

cash_transaction_dts[i] = CT_DTS

cash_transaction_name[i] = CT_NAME

from

CASH_TRANSACTION

where

CT_T_ID = trade_list[i]

}

// read trade_history for the trades

// Should return 2 to 3 rows per trade

select first 3 rows

trade_history_dts[i][] = TH_DTS,

trade_history_status_id[i][] = TH_ST_ID

from

TRADE_HISTORY

where

TH_T_ID = trade_list[i]

order by

TH_DTS asc

} // end for loop

commit transaction

}

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 184 of 271

10.6.6.6 Trade-Lookup Transaction Frame 4 of 4

The fourth Frame identifies the first trade for the specified customer account on or after the specified
time. Up to the first 20 rows in the HOLDING_HISTORY with a matching trade ID are then returned. If
the specified time is too close to the end of the historical trade data, it is possible that no matching trade
may be found for the specified customer account.

The VGenTxnHarness controls the execution of Frame 4 as follows:
[...]

else if(frame_to_execute == 4)

{

 invoke (Trade-Lookup_Frame-4)

 if (num_trades_found <> 1) then

 {

 status = -641

 }

 if (num_found == 0) then

 {

 status = +643

 }

 if (num_found < 0) or (num_found > 20) then

 {

 status = -642

 }

 frame_executed = 4

}

[...]

Trade-Lookup Frame 4 of 4 Parameters:

Parameter Direction Description

acct_id IN

A single customer is chosen non-uniformly by customer tier, from
the range of available customers. A single customer account id, as
defined by CA_ID in CUSTOMER_ACCOUNT, is chosen at
random, uniformly, from the range of customer account ids for the
chosen customer.

start_trade_dts IN Point in time from which to search for a trade.

holding_history_id[20] OUT Array of trade identifiers of the trades that originally created each of
the returned holding rows.

holding_history_trade_id[20] OUT Array of trade identifiers of the trades that modified each of the
returned holding rows.

num_found OUT Number of HOLDING_HISTORY rows returned (may be zero).

num_trades_found OUT Number of TRADE rows found.

quantity_after[20] OUT Array of quantities of the security that was held after the holding
was modified.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 185 of 271

quantity_before[20] OUT Array of quantities of the security that was held before the holding
was modified.

status OUT Code indicating the execution status for this frame.

trade_id OUT
ID of first trade found for customer account at or after the specified
time. This is the ID that is used for the look up in
HOLDING_HISTORY.

Trade-Lookup_Frame-4 Pseudo-code: Return HOLDING_HISTORY information for a
particular trade ID.

{

start transaction

select first 1 row

trade_id = T_ID

from

TRADE

where

T_CA_ID = acct_id and

T_DTS >= start_trade_dts

order by

T_DTS asc

if (row_count == 0) then

{

status = +641

}

// The trade_id is used in the subquery to find the original trade_id

// (HH_H_T_ID), which then is used to list all the entries.

// Should return 0 to (capped) 20 rows.

select first 20 rows

holding_history_id[] = HH_H_T_ID,

holding_history_trade_id[] = HH_T_ID,

quantity_before[] = HH_BEFORE_QTY,

quantity_after[] = HH_AFTER_QTY

from

HOLDING_HISTORY

where

HH_H_T_ID in

(select

HH_H_T_ID

from

HOLDING_HISTORY

where

HH_T_ID = trade_id)

num_found = row_count

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 186 of 271

Trade-Lookup_Frame-4 Pseudo-code: Return HOLDING_HISTORY information for a
particular trade ID.

commit transaction

}

10.6.7 The Trade-Order Transaction

The Trade Order Transaction is designed to emulate the process of buying or selling a security by a
Customer, Broker, or authorized third-party. If the person executing the trade order is not the account
owner, the Transaction will verify that the person has the appropriate authorization to perform the trade
order. The Transaction allows the person trading to execute buys at the current market price, sells at the
current market price, or limit buys and sells at a requested price. The Transaction also provides an
estimate of the financial impact of the proposed trade by providing profit/loss data, tax implications,
and anticipated commission fees. This allows the trader to evaluate the desirability of the proposed
security trade before either submitting or canceling the trade.

The Trade-Order Transaction is invoked by VGenDriverCE. It consists of six Frames. The Transaction
starts by using the account ID passed into the Transaction to obtain information on the customer, the
customer’s account, and the broker for the account.

Next, the Transaction conditionally validates that the person executing the trade is authorized to perform
such actions on the specified account. If the executor is not authorized, then the Transaction rolls back.
However, during the benchmark execution, the CE will always generate authorized executors.
The next step is to estimate the overall financial implications of executing the trade. For limit-orders, the
requested price is used in the estimation; for market orders, the requested price is set to the current
market value of the security and that value is used in the estimation. Estimation includes assessing any
effects the requested trade would have on existing holdings (e.g. the sale of existing long positions, or
the cover of existing short positions). If a profit would be realized as a result of this trade, the capital
gains taxes are calculated. Administrative fees and the broker’s commission for handling the trade are
calculated. If the trade is being submitted on margin, the customer’s total assets for the account are
assessed. All the above information is used for recording the order.

After all the above processing has completed, a small percentage of the Trade-Order Transactions are
selected to emulate either the canceling the order or an error condition by rolling back all modifications.
All other Trade-Order Transactions are Committed. After a successfully Committed market order, the
VGenTxnHarness sends the order for the trade to the appropriate MEE.

10.6.7.1 Trade-Order Transaction Parameters

The inputs to the Trade-Order Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp. The data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Trade-Order Interfaces Module/Data Structure

CE Input generation GenerateTradeOrderInput()

Transaction Input/Output Structure TTradeOrderTxnInput
TTradeOrderTxnOutput

Frame 1 Input/Output Structure TTradeOrderFrame1Input
TTradeOrderFrame1Output

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 187 of 271

Frame 2 Input/Output Structure TTradeOrderFrame2Input
TTradeOrderFrame2Output

Frame 3 Input/Output Structure TTradeOrderFrame3Input
TTradeOrderFrame3Output

Frame 4 Input/Output Structure TTradeOrderFrame4Input
TTradeOrderFrame4Output

Frame 5 Input/Output Structure TTradeOrderFrame5Output

Frame 6 Input/Output Structure TTradeOrderFrame6Output

Trade-Order Transaction Parameters:

Parameter Direction Description

acct_id IN
A single customer is chosen non-uniformly by customer tier, from the range of
available customers. A single customer account id, as defined by CA_ID in
CUSTOMER_ACCOUNT, is chosen at random, uniformly, from the range of
customer account ids for the chosen customer.

co_name IN

The security being traded in this transaction can be specified in one of two ways.
Either by specifying the security’s symbol, or by specifying the company name and
the issue. If the symbol is used to specify the security, then the company name and
the issue are an empty string (i.e. “”). Otherwise the company name and the issue
are both specified and the symbol is an empty string (i.e. “”). For more information,
see Clause 5.4.1.

exec_f_name IN
First name of the person executing the trade. Note that the person executing this
trade, may not be the registered owner of the account. If this is the case, the
executor’s permission to execute trades for this account will be verified in Frame 2.
For more information, see Clause 5.4.1.

exec_l_name IN
Last name of the person executing the trade. Note that the person executing this
trade, may not be the registered owner of the account. If this is the case, the
executor’s permission to execute trades for this account will be verified in Frame 2.
For more information, see Clause 5.4.1.

exec_tax_id IN
Tax identifier for the person executing the trade. Note that the person executing this
trade, may not be the registered owner of the account. If this is the case, the
executor’s permission to execute trades for this account will be verified in Frame 2.
For more information, see Clause 5.4.1.

is_lifo IN
If this flag is set to 1 then this trade will process against existing holdings from
newest to oldest (LIFO order). If this flag is set to 0, then this trade will process
against existing holdings from oldest to newest (FIFO order).

issue IN

The security being traded in this transaction can be specified in one of two ways.
Either by specifying the security’s symbol, or by specifying the company name and
the issue. If the symbol is used to specify the security, then the company name and
the issue are an empty string (i.e. “”). Otherwise the company name and the issue
are both specified and the symbol is an empty string (i.e. “”). For more information,
see Clause 5.4.1.

requested_price IN
For a limit order, this is the requested price for triggering the trade. For a market
order, the input value is undefined and this variable is set to the current market
price for the given security inside Frame 3.

roll_it_back IN
If this flag is 1 then an intentional rollback (Frame 5) is executed. If 0, then a commit
(Frame 6) is executed. See Clause 5.4.1 for details on the percentage of trades that
will be intentionally rolled back.

st_pending_id IN Identifier for the “Pending” order status – passed in for ease of benchmarking.

st_submitted_id IN Identifier for the “Submitted” order status – passed in for ease of benchmarking.

symbol IN

The security being traded in this transaction can be specified in one of two ways.
Either by specifying the security’s symbol, or by specifying the company name and
the issue. If the symbol is used to specify the security, then the company name and
the issue are an empty string (i.e. “”). Otherwise the company name and the issue
are both specified and the symbol is an empty string (i.e. “”). For more information,
see Clause 5.4.1.

trade_qty IN The number of shares to be traded for this order.

trade_type_id IN Identifier indicating the type of trade - passed in for each of benchmarking. For more
information on the different types of trades generated, see Clause 5.4.1.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 188 of 271

type_is_margin IN If this flag is set to 1, then the order will be done on margin. If the flag is set to 0,
then this trade will be done with cash.

buy_value OUT The total dollar amount for the securities bought for a matching sell order. If trade
is a buy or sell of new securities then buy_value is zero.

sell_value OUT The total dollar value of the securities sold for a matching buy order. If trade is buy
or sell of new securities then sell_value is zero.

status OUT Code indicating the execution status for this transaction.

tax_amount OUT The estimated amount of tax that will be incurred as a result of this order. If no
profit is realized, then tax_amount is zero.

trade_id OUT Unique trade identifier generated by the SUT for this order.

10.6.7.2 Trade-Order Transaction Database Footprint

This Transaction includes a mixture of Add, Reference, and Return access methods. The Trade-Order
Database Footprint is as follows:

Trade-Order Database Footprint

Table Column
Frame

1 2* 3 4 5* 6*

ACCOUNT_PERMISSION

AP_ACL Return

AP_CA_ID Reference

AP_F_NAME Reference

AP_L_NAME Reference

AP_TAX_ID Reference

BROKER B_NAME Return

CHARGE CH_CHRG Return

COMMISSION_RATE CR_RATE Return

COMPANY
CO_ID Reference*

CO_NAME Return*

CUSTOMER

C_F_NAME Return

C_L_NAME Return

C_TIER Return

C_TAX_ID Return

CUSTOMER_ACCOUNT

CA_BAL Reference*

CA_B_ID Return

CA_C_ID Return

CA_NAME Return

CA_TAX_ST Return

CUSTOMER_TAXRATE CX_TX_ID Reference*

HOLDING
H_PRICE Reference

H_QTY Reference

HOLDING_SUMMARY HS_QTY Reference

LAST_TRADE LT_PRICE Return

SECURITY

S_CO_ID Reference*

S_EX_ID Reference

S_NAME Return

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 189 of 271

S_SYMB Return*

TAXRATE TX_RATE Reference*

TRADE 1 Row Add

TRADE_HISTORY 1 Row Add

TRADE_REQUEST 1 Row Add*

TRADE_TYPE
TT_IS_MRKT Return

TT_IS_SELL Return

Transaction Control Start Rollback* Rollback Commit

10.6.7.3 Trade-Order Transaction Frame 1 of 6

The first Frame is responsible for retrieving information about the customer, customer account, and its
broker.

The VGenTxnHarness controls the execution of Frame 1 as follows:
{

invoke (Trade-Order_Frame-1)

if (num_found <> 1) then

{

 status = -711

}

}

Trade-Order Frame 1 of 6 Parameters:

Parameter Direction Description

acct_id IN Identifier of the customer account involved in the transaction.

acct_name OUT Name of the account specified by acct_id.

broker_id OUT Identifier of the broker associated with the specified acct_id.

broker_name OUT Name of the broker associated with the specified acct_id.

cust_f_name OUT First name of the customer who owns the specified account. This output string
must not contain trailing white space.

cust_id OUT Unique identifier of the customer who owns the specified account.

cust_l_name OUT Last name of the customer who owns the specified account. This output string
must not contain trailing white space.

cust_tier OUT The brokerage house service level tier this customer belongs to.

num_found OUT Number of CUSTOMER_ACCOUNT rows found.

status OUT Code indicating the execution status for this frame.

tax_id OUT Tax identifier for the customer who owns the specified account. This output
string must not contain trailing white space.

tax_status OUT Tax status of the customer who owns the specified account.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 190 of 271

Trade-Order_Frame-1 Pseudo-code: Get customer, customer account, and broker
information

{

start transation

// Get account, customer, and broker information

select

acct_name = CA_NAME,

broker_id = CA_B_ID,

cust_id = CA_C_ID,

tax_status = CA_TAX_ST

from

CUSTOMER_ACCOUNT

where

CA_ID = acct_id

if (row_count == 0) then

{

status = -711

}

select

cust_f_name = C_F_NAME,

cust_l_name = C_L_NAME,

cust_tier = C_TIER,

tax_id = C_TAX_ID

from

CUSTOMER

where

C_ID = cust_id

select

broker_name = B_NAME

from

BROKER

where

B_ID = broker_id

}

10.6.7.4 Trade-Order Transaction Frame 2 of 6

The second Frame is conditionally executed when the Transaction executor’s first name, last name, and
tax id do not match the customer first name, customer last name, and customer tax id returned in Frame
1. Frame 2 is responsible for validating the executor’s permission to order trades for the specified
customer account.

The database access methods used in Frame 2 are all References.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 191 of 271

{

if (exec_l_name != cust_l_name or

 exec_f_name != cust_f_name or

 exec_tax_id != tax_id) then

{

 invoke (Trade-Order_Frame-2)

 if (ap_acl[0] == ‘\0’) then

 {

 status = -721;

 }

}

}

Trade-Order Frame 2 of 6 Parameters:

Parameter Direction Description

acct_id IN Identifier of the customer account involved in the transaction.

exec_f_name IN First name of the person executing the trade.

exec_l_name IN Last name of the person executing the trade.

exec_tax_id IN Tax identifier for the person executing the trade.

ap_acl OUT
Account permission access control list string for this executor on this customer
account. If a NULL string is returned, then the executor of this transaction does
not have permission to execute trades for the specified account.

status OUT Code indicating the execution status for this frame.

Trade-Order_Frame-2 Pseudo-code : Check executor's permission

{

select

ap_acl = AP_ACL

from

ACCOUNT_PERMISSION

where

AP_CA_ID = acct_id and

AP_F_NAME = exec_f_name and

AP_L_NAME = exec_l_name and

AP_TAX_ID = exec_tax_id

if (ap_acl is NULL) then

{

rollback

status = -721

}

}

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 192 of 271

10.6.7.5 Trade-Order Transaction Frame 3 of 6

The third Frame is responsible for estimating the overall impact of executing the requested trade. Profit
and loss estimates are calculated and capital gains taxes are estimated based on any profits.
Administrative fees and commission rates are obtained. If this is a margin trade, the customer’s assets
needed to cover the cost of the trade are calculated using current market values.

The database access methods used in Frame 3 are References and Returns.

The VGenTxnHarness controls the execution of Frame 3 as follows:
{

invoke (Trade-Order_Frame-3)

if ((sell_value > buy_value) and

 ((tax_status == 1) or (tax_status == 2)) and

 (tax_amount == 0.00)) then

{

 status = -731

}

else if (comm_rate <= 0.0000) then

{

 status = -732

}

else if (charge_amount <= 0.00) then

{

 status = -733

}

}

Trade-Order Frame 3 of 6 Parameters:

Parameter Direction Description

acct_id IN Identifier of the customer account involved in the transaction.

cust_id IN Unique identifier of the customer who owns the specified account.

cust_tier IN The brokerage house service level tier this customer belongs to.

is_lifo IN
If this flag is set to 1 then this trade will process against existing holdings
from newest to oldest (LIFO order). If this flag is set to 0, then this trade will
process against existing holdings from oldest to newest (FIFO order).

issue IN Specifies the particular issue of security for the given company. This value is
an empty string (i.e. “”) if the security is specified by symbol.

st_pending_id IN Identifier for the “Pending” order status – passed in for ease of
benchmarking.

st_submitted_id IN Identifier for the “Submitted” order status – passed in for ease of
benchmarking.

tax_status IN Tax status of the customer who owns the specified account.

trade_qty IN The number of shares to be traded for this order.

trade_type_id IN Identifier indicating the type of trade - passed in for ease of benchmarking.

type_is_margin IN If this flag is set to 1, then the order will be done on margin. If the flag is set
to 0, then this trade will be done with cash.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 193 of 271

co_name IN-OUT
Name of the company for the security being traded. Otherwise, if the trade
is being done based on symbol, then co_name is an empty string (i.e. “”) and
will be set appropriately inside the frame. This output string must not
contain trailing white space.

requested_price IN-OUT
For a limit order, this is the requested price for triggering the trade. For a
market order, the input value is undefined and this variable must be set to
the current market price for the given security.

symbol IN-OUT
The stock symbol for the security being traded. Otherwise, if the trade is
being done based on co_name and issue, then symbol is an empty string (i.e.
“”) and will be set appropriately inside the frame. This output string must
not contain trailing white space.

buy_value OUT The total dollar amount for the securities bought for a matching sell order.
If trade is a buy or sell of new securities then buy_value is zero.

charge_amount OUT The fee charged by the brokerage house for processing this trade.

comm_rate OUT The broker’s commission rate for processing this trade.

cust_assets OUT
If this trade is being done on margin, this will be set to the sum of the cash
balance and the current market value of all holdings in the specified
account.

market_price OUT The current market trading price of the security.

s_name OUT The full name of the security. This output string must not contain trailing
white space.

sell_value OUT The total dollar value of the securities sold for a matching buy order. If
trade is buy or sell of new securities then sell_value is zero.

status OUT Code indicating the execution status for this frame.

status_id OUT Identifier indicating the status of this order (either pending or submitted).
This output string must not contain trailing white space.

tax_amount OUT The estimated amount of tax that will be incurred as a result of this order. If
no profit is realized, then tax_amount is zero.

type_is_market OUT Flag set to 1 for market orders and to 0 for limit orders.

type_is_sell OUT Flag set to 1 for sell orders and to 0 for buy orders.

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

{

Declare co_id IDENT_T

Declare exch_id CHAR(6)

// Get information on the security

if (symbol == “”) then {

select

co_id = CO_ID

from

COMPANY

where

CO_NAME = co_name

select

exch_id = S_EX_ID,

s_name = S_NAME,

symbol = S_SYMB

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 194 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

from

SECURITY

where

S_CO_ID = co_id and

S_ISSUE = issue

} else {

select

co_id = S_CO_ID,

exch_id = S_EX_ID,

s_name = S_NAME

from

SECURITY

where

S_SYMB = symbol

select

co_name = CO_NAME

from

COMPANY

where

CO_ID = co_id

}

// Get current pricing information for the security

select

market_price = LT_PRICE

from

LAST_TRADE

where

LT_S_SYMB = symbol

// Set trade characteristics based on the type of trade.

select

type_is_market = TT_IS_MRKT,

type_is_sell = TT_IS_SELL

from

TRADE_TYPE

where

TT_ID = trade_type_id

// If this is a limit-order, then the requested_price was passed in to the frame,

// but if this a market-order, then the requested_price needs to be set to the

// current market price.

if(type_is_market) then {

requested_price = market_price

}

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 195 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

// Local frame variables used when estimating impact of this trade on

// any current holdings of the same security.

Declare hold_price S_PRICE_T

Declare hold_qty S_QTY_T

Declare needed_qty S_QTY_T

Declare hs_qty S_QTY_T

// Initialize variables

buy_value = 0.0

sell_value = 0.0

needed_qty = trade_qty

select

hs_qty = HS_QTY

from

HOLDING_SUMMARY

where

HS_CA_ID = acct_id and

HS_S_SYMB = symbol

if (hs_qty is NULL) then // No prior holdings exist – no rows returned

hs_qty = 0

if (type_is_sell) then {

// This is a sell transaction, so estimate the impact to any currently held

// long postions in the security.

//

if (hs_qty > 0) then {

if (is_lifo) then {

// Estimates will be based on closing most recently acquired holdings

// Could return 0, 1 or many rows

declare hold_list cursor for

select

H_QTY,

H_PRICE

from

HOLDING

where

H_CA_ID = acct_id and

H_S_SYMB = symbol

order by

H_DTS desc

} else {

// Estimates will be based on closing oldest holdings

// Could return 0, 1 or many rows

declare hold_list cursor for

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 196 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

select

H_QTY,

H_PRICE

from

HOLDING

where

H_CA_ID = acct_id and

H_S_SYMB = symbol

order by

H_DTS asc

}

// Estimate, based on the requested price, any profit that may be realized

// by selling current holdings for this security. The customer may have

// multiple holdings at different prices for this security (representing

// multiple purchases different times).

open hold_list

do until (needed_qty = 0 or end_of_hold_list) {

fetch from

hold_list

into

hold_qty,

hold_price

if (hold_qty > needed_qty) then {

// Only a portion of this holding would be sold as a result of the

// trade.

buy_value += needed_qty * hold_price

sell_value += needed_qty * requested_price

needed_qty = 0

} else {

// All of this holding would be sold as a result of this trade.

buy_value += hold_qty * hold_price

sell_value += hold_qty * requested_price

needed_qty = needed_qty - hold_qty

}

}

close hold_list

}

// NOTE: If needed_qty is still greater than 0 at this point, then the

// customer would be liquidating all current holdings for this security, and

// then creating a new short position for the remaining balance of

// this transaction.

} else {

// This is a buy transaction, so estimate the impact to any currently held

// short positions in the security. These are represented as negative H_QTY

// holdings. Short postions will be covered before opening a long postion in

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 197 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

// this security.

if (hs_qty < 0) then { // Existing short position to buy

if (is_lifo) then {

// Estimates will be based on closing most recently acquired holdings

// Could return 0, 1 or many rows

declare hold_list cursor for

select

H_QTY,

H_PRICE

from

HOLDING

where

H_CA_ID = acct_id and

H_S_SYMB = symbol

order by

H_DTS desc

} else {

// Estimates will be based on closing oldest holdings

// Could return 0, 1 or many rows

declare hold_list cursor for

select

H_QTY,

H_PRICE

from

HOLDING

where

H_CA_ID = acct_id and

H_S_SYMB = symbol

order by

H_DTS asc

}

// Estimate, based on the requested price, any profit that may be realized

// by covering short postions currently held for this security. The customer

// may have multiple holdings at different prices for this security

// (representing multiple purchases at different times).

open hold_list

do until (needed_qty = 0 or end_of_hold_list) {

fetch from

hold_list

into

hold_qty,

hold_price

if (hold_qty + needed_qty < 0) then {

// Only a portion of this holding would be covered (bought back) as

// a result of this trade.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 198 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

sell_value += needed_qty * hold_price

buy_value += needed_qty * requested_price

needed_qty = 0

} else {

// All of this holding would be covered (bought back) as

// a result of this trade.

// NOTE: Local variable hold_qty is made positive for easy

// calculations

hold_qty = -hold_qty

sell_value += hold_qty * hold_price

buy_value += hold_qty * requested_price

needed_qty = needed_qty - hold_qty

}

}

close hold_list

}

// NOTE: If needed_qty is still greater than 0 at this point, then the

// customer would cover all current short positions (if any) for this security,

// and then open a new long position for the remaining balance

// of this transaction.

}

// Estimate any capital gains tax that would be incurred as a result of this

// transaction.

tax_amount = 0.0

if ((sell_value > buy_value) and

((tax_status == 1) or (tax_status == 2)) then {

//

// Customers may be subject to more than one tax at different rates.

// Therefore, get the sum of the tax rates that apply to the customer

// and estimate the overall amount of tax that would result from this order.

//

Declare tax_rates S_PRICE_T

select

tax_rates = sum(TX_RATE)

from

TAXRATE

where

TX_ID in (

select

CX_TX_ID

from

CUSTOMER_TAXRATE

where

CX_C_ID = cust_id)

tax_amount = (sell_value – buy_value) * tax_rates

}

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 199 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

// Get administrative fees (e.g. trading charge, commision rate)

select

comm_rate = CR_RATE

from

COMMISSION_RATE

where

CR_C_TIER = cust_tier and

CR_TT_ID = trade_type_id and

CR_EX_ID = exch_id and

CR_FROM_QTY <= trade_qty and

CR_TO_QTY >= trade_qty

select

charge_amount = CH_CHRG

from

CHARGE

where

CH_C_TIER = cust_tier and

CH_TT_ID = trade_type_id

// Compute assets on margin trades

Declare acct_bal BALANCE_T

Declare hold_assets S_PRICE_T

cust_assets = 0.0

if (type_is_margin) then {

select

acct_bal = CA_BAL

from

CUSTOMER_ACCOUNT

where

CA_ID = acct_id

// Should return 0 or 1 row

select

hold_assets = sum(HS_QTY * LT_PRICE)

from

HOLDING_SUMMARY,

LAST_TRADE

where

HS_CA_ID = acct_id and

LT_S_SYMB = HS_S_SYMB

if (hold_assets is NULL) /* account currently has no holdings */

 cust_assets = acct_bal

else

cust_assets = hold_assets + acct_bal

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 200 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

}

// Set the status for this trade

if (type_is_market then {

status_id = st_submitted_id

} else {

status_id = st_pending_id

}

}

10.6.7.6 Trade-Order Transaction Frame 4 of 6

The fourth Frame is responsible for creating an audit trail record of the order and assigning a unique
trade ID to it.

The database access methods used in Frame 4 are all Adds.
{

// Estimate the total commision amount for this trade.

comm_amount = (comm_rate / 100) * trade_qty * requested_price

exec_name = exec_f_name + " " + exec_l_name

is_cash = !(type_is_margin)

invoke (Trade-Order_Frame-4)

{

Trade-Order Frame 4 of 6 Parameters:

Parameter Direction Description

acct_id IN Identifier of the customer account involved in the transaction.

broker_id IN Identifier of the broker associated with the customer account involved in the
transaction.

charge_amount IN The fee charged by the brokerage house for processing this trade.

comm_amount IN The broker’s commission for processing this trade.

exec_name IN First and last name of the person executing this trade.

is_cash IN If this flag is set to 1, then this trade will be done with cash. If this flag is set to 0,
then this trade will be done on margin.

is_lifo IN
If this flag is set to 1 then this trade will process against existing holdings from
newest to oldest (LIFO order). If this flag is set to 0, then this trade will process
against existing holdings from oldest to newest (FIFO order).

requested_price IN
For a limit trade, this is the requested price for triggering action. For a market
order, this has been set by the harness code to the current market price for the
given security.

status_id IN Identifier indicating the status of this order (either pending or submitted).

symbol IN The stock symbol for the security being traded.

trade_qty IN The number of shares to be traded for this order.

trade_type_id IN Identifier indicating the type of trade to be executed.

type_is_market IN Flag set to 1 for market orders and to 0 for limit orders.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 201 of 271

status OUT Code indicating the execution status for this frame.

trade_id OUT Unique trade identifier generated by the SUT for this order.

Trade-Order_Frame-4 Pseudo-code: Record the trade request by making all
related updates

{

// Get the timestamp and unique trade ID for this trade.

Declare now_dts DATETIME

get_current_dts (now_dts)

get_new_trade_id (trade_id)

// Record trade information in TRADE table.

insert into

TRADE (

T_ID, T_DTS, T_ST_ID, T_TT_ID, T_IS_CASH,

T_S_SYMB, T_QTY, T_BID_PRICE, T_CA_ID, T_EXEC_NAME,

T_TRADE_PRICE, T_CHRG, T_COMM, T_TAX, T_LIFO

)

values (

trade_id, // T_ID

now_dts, // T_DTS

status_id, // T_ST_ID

trade_type_id, // T_TT_ID

is_cash, // T_IS_CASH

symbol, // T_S_SYMB

trade_qty, // T_QTY

requested_price, // T_BID_PRICE

acct_id, // T_CA_ID

exec_name, // T_EXEC_NAME

NULL, // T_TRADE_PRICE

charge_amount, // T_CHRG

comm_amount // T_COMM

0, // T_TAX

is_lifo // T_LIFO

)

// Record pending trade information in TRADE_REQUEST table if this trade is a

// limit trade

if (!type_is_market) {

insert into

TRADE_REQUEST (

TR_T_ID, TR_TT_ID, TR_S_SYMB,

TR_QTY, TR_BID_PRICE, TR_B_ID

)

values (

trade_id, // TR_T-ID

trade_type_id, // TR_TT_ID

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 202 of 271

Trade-Order_Frame-4 Pseudo-code: Record the trade request by making all
related updates

symbol, // TR_S_SYMB

trade_qty, // TR_QTY

requested_price, // TR_BID_PRICE

broker_id // TR_B_ID

)

}

// Record trade information in TRADE_HISTORY table.

insert into

TRADE_HISTORY (

TH_T_ID, TH_DTS, TH_ST_ID

)

values (

trade_id, // TH_T_ID

now_dts, // TH_DTS

status_id // TH_ST_ID

)

}

10.6.7.7 Trade-Order Transaction Frame 5 of 6

The fifth Frame is conditionally executed when the parameter roll_it_back is set to 1. This Frame is
responsible for intentionally rolling back all database updates from this Transaction, occasionally
exercising the rollback functionality.

There are no database access methods used in Frame 5. This Frame is only using Transaction control
operations.

The VGenTxnHarness controls the execution of Frame 5 as follows:
{

if (roll_it_back) then {

 invoke (Trade-Order_Frame-5)

 exit // Rest of transaction and SendToMarket are skipped

}

{

Trade-Order Frame 5 of 6 Parameters:

Parameter Direction Description

status OUT Code indicating the execution status for this frame.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 203 of 271

Trade-Order_Frame-5 Pseudo-code: Rollback database transaction

{

// Intentional rollback of transaction caused by driver (CE).

rollback transaction

}

10.6.7.8 Trade-Order Transaction Frame 6 of 6

The sixth Frame is conditionally executed when parameter roll_it_back is set to 0. This Frame is
responsible for committing all database updates from this Transaction.

There are no database access methods used in Frame 6. This Frame is only using Transaction control
operations.

The VGenTxnHarness controls the execution of Frame 6 as follows:
{

invoke (Trade-Order_Frame-6)

if (type_is_market) then {

 eAction = eMEEProcessOrder

}

else {

 eAction = eMEESetLimitOrderTrigger

}

// Send the trade to the Market Exchange Emulator (MEE)

SendToMarketFromHarness (

 requested_price,

 symbol,

 trade_id,

 trade_qty,

 trade_type_id,

 eAction

)

}

Trade-Order Frame 6 of 6 Parameters:

Parameter Direction Description

status OUT Code indicating the execution status for this frame.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 204 of 271

Trade-Order Frame 6 Pseudo-code: Commit database transaction

{

commit transaction

}

10.6.8 The Trade-Result Transaction

The Trade-Result Transaction is designed to emulate the process of completing a stock market trade.
This is representative of a brokerage house receiving from the market exchange the final confirmation
and price for the trade. The customer’s holdings are updated to reflect that the trade has completed.
Estimates generated when the trade was ordered for the broker commission and other similar quantities
are replaced with the actual numbers and historical information about the trade is recorded for later
reference.

Trade-Result is invoked by VGenDriverMEE. It consists of seven Frames. The Transaction starts by
using the trade ID passed into the Transaction to obtain information about the trade. The information
gathered includes the account ID of the customer account, which is used to lookup additional account
information.
Next the customer’s holdings are updated to reflect the completion of the trade. The particular work done
depends on the type of trade (buy or sell), the number of shares involved and the customer’s current
position (long or short) with respect to the security. When selling shares, current holdings are liquidated
to cover the sale. If the customer does not have enough shares to cover the sale, any currently held shares
are liquidated and a short position is taken for the balance of shares. If the customer already has a short
position and more shares are sold, then the short position is simply extended. An analogous situation
exists when purchasing shares. Any shares bought will first be used to cover any existing short position.
After that, any shares bought will be used to create or extend a long position.
If, when reconciling the trade with the customer’s current holdings, any shares are sold for a profit and
the profit is taxable, the amount of tax due on the profit is calculated.
Next the broker’s commission is calculated and then all information with respect to the trade is recorded.
Finally, settlement records are entered for the trade and if the trade is not on margin, the customer’s
account balance is update accordingly.
The seventh frame is independent of the prior six and is a separate database transaction. It is invoked
only when the separate transaction “trigger_id” input parameter is non-zero. When that condition
occurs, the seventh frame performs the actions required to submit the previously pending limit order
that has now reached its trigger (bid or ask) price.

10.6.8.1 Trade-Result Transaction Parameters

The inputs to the Trade-Result Transaction are generated by the VGenDriverMEE code in MEE.cpp. The
data structures defined in TxnHarnessStructs.h must be used to communicate the input and output
parameters.

Trade-Result Interfaces Module/Data Structure

MEE Input generation CMEESUTInterface::TradeResult()

Transaction Input/Output Structure TTradeResultTxnInput
TTradeResultTxnOutput

Frame 1 Input/Output Structure TTradeResultFrame1Input
TTradeResultFrame1Output

Frame 2 Input/Output Structure TTradeResultFrame2Input
TTradeResultFrame2Output

Frame 3 Input/Output Structure TTradeResultFrame3Input
TTradeResultFrame3Output

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 205 of 271

Frame 4 Input/Output Structure TTradeResultFrame4Input
TTradeResultFrame4Output

Frame 5 Input/Output Structure TTradeResultFrame5Input
TTradeResultFrame5Output

Frame 6 Input/Output Structure TTradeResultFrame6Input
TTradeResultFrame6Output

Frame 7 Input/Output Structure TTradeResultFrame7Input
TTradeResultFrame7Output

Trade-Result Transaction Parameters:

Parameter Direction Description

trade_id IN The Trade ID for the trade to be settled. Trade ID is the primary key of the
TRADE table.

trade_price IN The price of the trade.

trigger_id IN The Trade ID for the pending trade that has triggered and needs to be to
be submitted to the MEE. Trade ID is the primary key of the TRADE table.

acct_bal OUT Customer account’s cash balance after the trade was completed.

acct_id OUT Customer account ID of the customer account involved in Trade-Result
transaction.

load_unit OUT Load Unit number for the customer account involved in the Trade-Result
transaction.

status OUT Code indicating the execution status for this transaction.

10.6.8.2 Trade-Result Transaction Database Footprint

This Transaction includes a mixture of Reference, Return, Modify, Remove and Add operations. The
Trade-Result Database Footprint is as follows:

Trade-Result Database Footprint

Table Column
Frame

1 2 3* 4 5 6 7

BROKER
B_COMM_TOTAL Reference

Modify

B_NUM_TRADES Reference
Modify

CASH_TRANSACTION 1 row Add *

COMMISSION_RATE CR_RATE Return
CUSTOMER C_TIER Reference

CUSTOMER_ACCOUNT

CA_BAL
Return
Reference*
Modify*

CA_B_ID Return
CA_C_ID Return
CA_TAX_ST Return

CUSTOMER_TAXRATE CX_TX_ID Reference

HOLDING

H_PRICE Reference
H_QTY Reference

Modify*

row(s) Remove*
1 row Add*

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 206 of 271

HOLDING_SUMMARY

HS_QTY Reference Modify*
1 row Remove*
1 row Add*

HOLDING_HISTORY Row(s) Add

SECURITY
S_EX_ID Reference
S_NAME Reference

SETTLEMENT 1 row Add

TAX_RATE TX_RATE Reference

TRADE

T_CA_ID Return
T_CHRG Return
T_COMM Modify
T_DTS Modify Modify*

T_IS_CASH Return
T_LIFO Return
T_QTY Return
T_S_SYMB Return
T_ST_ID Modify Modify*

T_TAX Modify
T_TRADE_PRICE Modify
T_TT_ID Return

TRADE_HISTORY 1 row Add Add *

TRADE_REQUEST

TR_BID_PRICE Return*

TR_QTY Return*

TR_T_ID Return*

TR_TT_ID Return*

Row(s) Remove*

TRADE_TYPE

TT_IS_MRKT Return
TT_IS_SELL Return
TT_NAME Return

Transaction Control Start Commit Start,
Commit

10.6.8.3 Trade-Result Transaction Frame 1 of 7

The first Frame is responsible for retrieving information about the customer and its trade.

The database access methods used in Frame 1 are all Returns.

The VGenTxnHarness controls the execution of Frame 1 as follows:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 207 of 271

{

invoke (Trade-Result_Frame-1)

if (num_found <> 1) then

{

 status = -811

}

}

Trade-Result Frame 1 of 7 Parameters:

Parameter Direction Description

trade_id IN The trade ID for the trade to be settled passed to the transaction by the Market-
Exchange-Emulator.

acct_id OUT Customer account ID of the customer account involved in Trade-Result
transaction.

charge OUT Fee charged for placing this trade request.

hs_qty OUT Current quantity of shares of the security being traded, that the customer holds
in their account.

is_lifo OUT
If this flag is set to 1, then this trade will process against existing holdings from
newest to oldest (LIFO order). If this flag is set to 0, then this trade will process
against existing holdings from oldest to newest (FIFO order).

num_found OUT Number of TRADE rows found.

status OUT Code indicating the execution status for this frame.

symbol OUT Seven character identifier of security that is being traded. This output string
must not contain trailing white space.

trade_is_cash OUT Boolean indicating trade is for cash (1) or on margin (0).

trade_qty OUT Quantity of securities traded

type_id OUT Trade type identifier, (T_TT_ID). This output string must not contain trailing
white space.

type_is_market OUT Boolean indicating trade type is a market trade (1) or limit trade (0).

type_is_sell OUT Boolean indicating if this is a sell trade (1) or a buy trade (0).

type_name OUT Trade type name

Trade-Result_Frame-1 Pseudo-code: Get info on the trade and the customer's
account

{

start transaction

select

acct_id = T_CA_ID,

type_id = T_TT_ID,

symbol = T_S_SYMB,

trade_qty = T_QTY,

charge = T_CHRG,

is_lifo = T_LIFO,

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 208 of 271

Trade-Result_Frame-1 Pseudo-code: Get info on the trade and the customer's
account

trade_is_cash = T_IS_CASH

from

TRADE

where

T_ID = trade_id

num_found = row_count

select

type_name = TT_NAME,

type_is_sell = TT_IS_SELL,

type_is_market = TT_IS_MRKT

from

TRADE_TYPE

where

TT_ID = type_id

select

hs_qty = HS_QTY

from

HOLDING_SUMMARY

where

HS_CA_ID = acct_id and

HS_S_SYMB = symbol

if (hs_qty is NULL) then // no prior holdings exist

hs_qty = 0

}

10.6.8.4 Trade-Result Transaction Frame 2 of 7

The second Frame is responsible for modifying the customer's holdings to reflect the result of a buy or a
sell trade.

The database access methods used in Frame 2 are a mixture of References, Modifies, Removes and
Adds.

The VGenTxnHarness controls the execution of Frame 2 as follows:
{

invoke (Trade-Result_Frame-2)

}

Trade-Result Frame 2 of 7 Parameters:

Parameter Direction Description

acct_id IN Customer account ID of the customer account involved in the Trade-Result
transaction obtained in Frame 1

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 209 of 271

hs_qty IN Current quantity of shares of the security being traded, that the customer
holds in their account.

is_lifo IN
If this flag is set to 1, then this trade will process against existing holdings
from newest to oldest (LIFO order). If this flag is set to 0, then this trade will
process against holdings from oldest to newest (FIFO order).

symbol IN Seven character security identifier obtained in Frame 1

trade_id IN
The trade ID for the trade to be settled passed to the transaction by the
Market- Exchange-Emulator. Used for insert(s) into the HOLDING and
HOLDING_HISTORY tables.

trade_price IN The price of the trade passed to the Trade-Result Transaction by the Market
Exchange Emulator.

trade_qty IN Quantity of securities traded obtained form Frame 1

type_is_sell IN Boolean obtained in Frame 1 indicating if this is a sell trade (1) or a buy trade
(0).

broker_id OUT ID of the broker who executed the trade.

buy_value OUT The total dollar amount for the securities bought for a matching sell order. If
trade is a buy or sell of new securities then buy_value is zero.

cust_id OUT Customer ID of the customer who owns the customer account involved in the
trade.

sell_value OUT The total dollar value of the securities sold for a matching buy order. If trade
is buy or sell of new securities then sell_value is zero.

status OUT Code indicating the execution status for this frame.

tax_status OUT Customer account tax status

trade_dts OUT Date and time of trade result generated by the SUT.

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

{

// Local Frame Variables

Declare hold_id IDENT_T

Declare hold_price S_PRICE_T

Declare hold_qty S_QTY_T

Declare needed_qty S_QTY_T

get_current_dts (trade_dts)

// Initialize variables

buy_value = 0.0

sell_value = 0.0

needed_qty = trade_qty

select

broker_id = CA_B_ID,

cust_id = CA_C_ID,

tax_status = CA_TAX_ST

from

CUSTOMER_ACCOUNT

where

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 210 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

CA_ID = acct_id

// Determine if sell or buy order

if (type_is_sell) then {

if (hs_qty == 0) then // no prior holdings exist, but one will be inserted

insert into

HOLDING_SUMMARY (

HS_CA_ID,

HS_S_SYMB,

HS_QTY

)

values (

acct_id,

symbol,

-trade_qty

)

else

if (hs_qty != trade_qty) then

update

HOLDING_SUMMARY

set

HS_QTY = hs_qty – trade_qty

where

HS_CA_ID = acct_id and

HS_S_SYMB = symbol

// Sell Trade:

// First look for existing holdings, H_QTY > 0

if (hs_qty > 0) {

if (is_lifo) then {

// Could return 0, 1 or many rows

declare hold_list cursor for

select

H_T_ID,

H_QTY,

H_PRICE

from

HOLDING

where

H_CA_ID = acct_id and

H_S_SYMB = symbol

order by

H_DTS desc

} else {

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 211 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

// Could return 0, 1 or many rows

declare hold_list cursor for

select

H_T_ID,

H_QTY,

H_PRICE

from

HOLDING

where

H_CA_ID = acct_id and

H_S_SYMB = symbol

order by

H_DTS asc

}

// Liquidate existing holdings. Note that more than

// 1 HOLDING record can be deleted here since customer

// may have the same security with differing prices.

open hold_list

do until (needed_qty = 0 or end_of_hold_list) {

fetch from

hold_list

into

hold_id,

hold_qty,

hold_price

if (hold_qty > needed_qty) then {

//Selling some of the holdings

insert into

HOLDING_HISTORY (

HH_H_T_ID,

HH_T_ID,

HH_BEFORE_QTY,

HH_AFTER_QTY

)

values (

hold_id, // H_T_ID of original trade

trade_id, // T_ID current trade

hold_qty, // H_QTY now

hold_qty - needed_qty // H_QTY after update

)

update

HOLDING

set

H_QTY = hold_qty - needed_qty

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 212 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

where

current of hold_list

buy_value += needed_qty * hold_price

sell_value += needed_qty * trade_price

needed_qty = 0

} else {

// Selling all holdings

insert into

HOLDING_HISTORY (

HH_H_T_ID,

HH_T_ID,

HH_BEFORE_QTY,

HH_AFTER_QTY

)

values (

hold_id, // H_T_ID original trade

trade_id, // T_ID current trade

hold_qty, // H_QTY now

0 // H_QTY after delete

)

delete from

HOLDING

where

current of hold_list

buy_value += hold_qty * hold_price

sell_value += hold_qty * trade_price

needed_qty = needed_qty - hold_qty

}

}

close hold_list

}

// Sell Short:

// If needed_qty > 0 then customer has sold all existing

// holdings and customer is selling short. A new HOLDING

// record will be created with H_QTY set to the negative

// number of needed shares.

if (needed_qty > 0) then {

insert into

HOLDING_HISTORY (

HH_H_T_ID,

HH_T_ID,

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 213 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

HH_BEFORE_QTY,

HH_AFTER_QTY

)

values (

trade_id, // T_ID current is original trade

trade_id, // T_ID current trade

0, // H_QTY before

(-1) * needed_qty // H_QTY after insert

)

insert into

HOLDING (

H_T_ID,

H_CA_ID,

H_S_SYMB,

H_DTS,

H_PRICE,

H_QTY

)

values (

trade_id, // H_T_ID

acct_id, // H_CA_ID

symbol, // H_S_SYMB

trade_dts, // H_DTS

trade_price, // H_PRICE

(-1) * needed_qty //* H_QTY

)

else

if (hs_qty = trade_qty) then

delete from

HOLDING_SUMMARY

where

HS_CA_ID = acct_id and

HS_S_SYMB = symbol

}

} else { // The trade is a BUY

if (hs_qty == 0) then // no prior holdings exist, but one will be inserted

insert into

HOLDING_SUMMARY (

HS_CA_ID,

HS_S_SYMB,

HS_QTY

)

values (

acct_id,

symbol,

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 214 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

trade_qty

)

else // hs_qty != 0

if (-hs_qty != trade_qty) then

update

HOLDING_SUMMARY

set

HS_QTY = hs_qty + trade_qty

where

HS_CA_ID = acct_id and

HS_S_SYMB = symbol

// Short Cover:

// First look for existing negative holdings, H_QTY < 0,

// which indicates a previous short sell. The buy trade

// will cover the short sell.

if (hs_qty < 0) then {

if (is_lifo) then {

// Could return 0, 1 or many rows

declare hold_list cursor for

select

H_T_ID,

H_QTY,

H_PRICE

from

HOLDING

where

H_CA_ID = acct_id and

H_S_SYMB = symbol

order by

H_DTS desc

} else {

// Could return 0, 1 or many rows

declare hold_list cursor for

select

H_T_ID,

H_QTY,

H_PRICE

from

HOLDING

where

H_CA_ID = acct_id and

H_S_SYMB = symbol

order by

H_DTS asc

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 215 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

}

// Buy back securities to cover a short position.

open hold_list

do until (needed_qty = 0 or end_of_hold_list) {

fetch from

hold_list

into

hold_id,

hold_qty,

hold_price

if (hold_qty + needed_qty < 0) then {

// Buying back some of the Short Sell

insert into

HOLDING_HISTORY (

HH_H_T_ID,

HH_T_ID,

HH_BEFORE_QTY,

HH_AFTER_QTY

)

values (

hold_id, // H_T_ID original trade

trade_id, // T_ID current trade

hold_qty, // H_QTY now

hold_qty + needed_qty // H_QTY after update

)

update

HOLDING

set

H_QTY = hold_qty + needed_qty

where

current of hold_list

sell_value += needed_qty * hold_price

buy_value += needed_qty * trade_price

needed_qty = 0

} else {

// Buying back all of the Short Sell

insert into

HOLDING_HISTORY (

HH_H_T_ID,

HH_T_ID,

HH_BEFORE_QTY,

HH_AFTER_QTY

)

values (

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 216 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

hold_id, // H_T_ID original trade

trade_id, // T_ID current trade

hold_qty, // H_QTY now

0 // H_QTY after delete

)

delete from

HOLDING

where

current of hold_list

// Make hold_qty positive for easy calculations

hold_qty = -hold_qty

sell_value += hold_qty * hold_price

buy_value += hold_qty * trade_price

needed_qty = needed_qty - hold_qty

}

}

close hold_list

}

// Buy Trade:

// If needed_qty > 0, then the customer has covered all

// previous Short Sells and the customer is buying new

// holdings. A new HOLDING record will be created with

// H_QTY set to the number of needed shares.

if (needed_qty > 0) then {

insert into

HOLDING_HISTORY (

HH_H_T_ID,

HH_T_ID,

HH_BEFORE_QTY,

HH_AFTER_QTY

)

values (

trade_id, // T_ID current is original trade

trade_id, //* T_ID current trade

0, // H_QTY before

needed_qty // H_QTY after insert

)

insert into

HOLDING (

H_T_ID,

H_CA_ID,

H_S_SYMB,

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 217 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

H_DTS,

H_PRICE,

H_QTY

)

values (

trade_id // H_T_ID

acct_id, // H_CA_ID

symbol, // H_S_SYMB

trade_dts, // H_DTS

trade_price, // H_PRICE

needed_qty // H_QTY

)

}

else

if (-hs_qty = trade_qty) then

delete from

HOLDING_SUMMARY

where

HS_CA_ID = acct_id and

HS_S_SYMB = symbol

}

}

10.6.8.5 Trade-Result Transaction Frame 3 of 7

The third Frame is responsible for computing the amount of tax due by the customer as a result of the
trade. Frame 3 is only executed if the customer is liquidating existing holdings, and the liquidation has
resulted in a gain, and the customer's tax status is either 1 or 2. The amount of tax due is recorded in the
TRADE table.

Comment: The parameter tax_amount is used by the VGenTxnHarness to compute the value of the
parameter se_amount just before Frame 6. Thus, the parameter tax_amount is initialized to zero and is
passed in and out of Frame 3.

The database access methods used in Frame 3 are a mixture of References and Modifies.

The VGenTxnHarness controls the execution of Frame 3 as follows:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 218 of 271

{

tax_amount = 0.00

if ((tax_status == 1 or tax_status == 2)

 and (sell_value > buy_value)) then

{

 invoke (Trade-Result_Frame-3)

 if (tax_amount <= 0.00) then

 {

 status = -831

 }

}

}

Trade-Result Frame 3 of 7 Parameters:

Parameter Direction Description

buy_value IN The total dollar amount for the securities bought for a matching sell order.

cust_id IN Customer ID of the customer involved in the Trade-Result transaction, which was
obtained in Frame 1.

sell_value IN The total dollar value of the securities sold for a matching buy order.

trade_id IN The Trade ID for the trade to be settled passed to the transaction by the Market-
Exchange-Emulator.

status OUT Code indicating the execution status for this frame.

tax_amount OUT Tax_amount is initialized to 0.0 by the VGen code and modified by Frame 3.

Trade-Result_Frame-3 Pseudo-code: Compute and record the tax liability

{

// Local Frame variables

Declare tax_rates S_PRICE_T

select

tax_rates = sum(TX_RATE)

from

TAXRATE

where

TX_ID in (select

CX_TX_ID

from

CUSTOMER_TAXRATE

where

CX_C_ID = cust_id)

tax_amount = (sell_value – buy_value) * tax_rates

update

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 219 of 271

Trade-Result_Frame-3 Pseudo-code: Compute and record the tax liability

TRADE

set

T_TAX = tax_amount

where

T_ID = trade_id

}

10.6.8.6 Trade-Result Transaction Frame 4 of 7

The fourth Frame is responsible for computing the commission for the broker who executed the trade.

The database access methods used in Frame 4 are all References.

The VGenTxnHarness controls the execution of Frame 4 as follows:
{

invoke (Trade-Result_Frame-4)

if (comm_rate <= 0.00) then

{

 status = -841

}

}

Trade-Result Frame 4 of 7 Parameters:

Parameter Direction Description

cust_id IN Customer ID of the customer involved in the Trade-Result transaction, which was
obtained in Frame 1.

symbol IN Seven character security identifier, which was obtained in Frame 1

trade_qty IN Quantity of securities traded, which was obtained in Frame 1

type_id IN Trade type identifier, which was obtained in Frame 1

comm_rate OUT The broker commission rate. Ranges from 0.00 to 100.00.

s_name OUT Name of security traded

status OUT Code indicating the execution status for this frame.

Trade-Result_Frame-4 Pseudo-code: Compute and record the broker's commission

{

select

s_ex_id = S_EX_ID,

s_name = S_NAME

from

SECURITY

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 220 of 271

Trade-Result_Frame-4 Pseudo-code: Compute and record the broker's commission

where

S_SYMB = symbol

select

c_tier = C_TIER

from

CUSTOMER

where

C_ID = cust_id

// Only want 1 commission rate row

select first 1 row

comm_rate = CR_RATE

from

COMMISSION_RATE

where

CR_C_TIER = c_tier and

CR_TT_ID = type_id and

CR_EX_ID = s_ex_id and

CR_FROM_QTY <= trade_qty and

CR_TO_QTY >= trade_qty

}

10.6.8.7 Trade-Result Transaction Frame 5 of 7

The fifth Frame is responsible for recording the result of the trade and the broker's commission.

The database access methods used in Frame 5 are a mixture of Modifies, Adds and Removes.

The VGenTxnHarness controls the execution of Frame 5 as follows:
{

comm_amount = (comm_rate / 100) * (trade_qty * trade_price)

invoke (Trade-Result_Frame-5)

}

Trade-Result Frame 5 of 7 Parameters:

Parameter Direction Description

broker_id IN Broker ID, which was obtained in Frame 1.

comm_amount IN The broker commission amount, computed by the VGen code

st_completed_id IN The index ID value into STATUS_TYPE for “Completed” status.

trade_dts IN Trade date and time provided by the output of Frame 2.

trade_id IN The Trade ID for the trade to be settled passed to the transaction by the Market
Exchange Emulator.

trade_price IN Trade price provided by the Market Exchange Emulator.

status OUT Code indicating the execution status for this frame.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 221 of 271

Trade-Result_Frame-5 Pseudo-code: Record the trade result and the broker's
commission

{

update

TRADE

set

T_COMM = comm_amount,

T_DTS = trade_dts,

T_ST_ID = st_completed_id,

T_TRADE_PRICE = trade_price

where

T_ID = trade_id

insert into

TRADE_HISTORY (

TH_T_ID,

TH_DTS,

TH_ST_ID

)

values (

trade_id,

trade_dts,

st_completed_id

)

update

BROKER

set

B_COMM_TOTAL = B_COMM_TOTAL + comm_amount,

B_NUM_TRADES = B_NUM_TRADES + 1

where

B_ID = broker_id

}

10.6.8.8 Trade-Result Transaction Frame 6 of 7

The sixth Frame is responsible for settling the trade.

The database access methods used in Frame 6 are a mixture Adds and Modifies.

The VGenTxnHarness controls the execution of Frame 6 as follows:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 222 of 271

{

due_date = (trade_date + 2 days)

if (type_is_sell) then

{

 se_amount = (trade_qty * trade_price) – charge – comm_amount

} else {

 se_amount = -((trade_qty * trade_price) + charge + comm_amount)

}

if (tax_status == 1) then

{

 se_amount = se_amount – tax_amount

}

invoke (Trade-Result_Frame-6)

}

Trade-Result Frame 6 of 7 Parameters:

Parameter Direction Description

acct_id IN Customer account ID of the customer involved in the Trade-Result transaction,
which was obtained in Frame 1.

due_date IN Date and time when trade is due to be settled.

s_name IN Name of security traded, which was obtained in Frame 4

se_amount IN The trade settlement amount.

trade_dts IN Date and time of trade result generated by the SUT, and output in Frame 2.

trade_id IN The trade ID for the trade to be settled, passed to the transaction by the Market
Exchange Emulator.

trade_is_cash IN Boolean obtained in Frame 1 indicating trade is for cash (1) or on margin (0).

trade_qty IN Quantity of securities traded, which was obtained from Frame 1

type_name IN Trade type name, which was obtained in Frame 1.

acct_bal OUT Customer account’s cash balance (needed for one of the isolation tests)

status OUT Code indicating the execution status for this frame.

Trade-Result_Frame-6 Pseudo-code: Settle the trade

{

// Local Frame Variables

Declare cash_type char(40)

if (trade_is_cash) then

cash_type = “Cash Account”

else

cash_type = “Margin”

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 223 of 271

Trade-Result_Frame-6 Pseudo-code: Settle the trade

insert into

SETTLEMENT (

SE_T_ID,

SE_CASH_TYPE,

SE_CASH_DUE_DATE,

SE_AMT

)

values (

trade_id,

cash_type,

due_date,

se_amount

)

if (trade_is_cash) then {

update

CUSTOMER_ACCOUNT

set

CA_BAL = CA_BAL + se_amount

where

CA_ID = acct_id

insert into

CASH_TRANSACTION (

CT_DTS,

CT_T_ID,

CT_AMT,

CT_NAME

)

values (

trade_dts,

trade_id,

se_amount,

type_name + " " + trade_qty + " shares of " + s_name

)

}

select

acct_bal = CA_BAL

from

CUSTOMER_ACCOUNT

where

CA_ID = acct_id

commit transaction

}

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 224 of 271

10.6.8.9 Trade-Result Transaction Frame 7 of 7

The seventh Frame is responsible for submitting a pending limit order that has been triggered. It is
therefore independent of the prior six frames and performs as a separate database transaction.

The database access methods used in Frame 7 are a mixture Add, Modify, Remove and Return.

The VGenTxnHarness controls the execution of Frame 7 as follows:

{

if (trigger_id != 0) then

{

 invoke (Trade-Result_Frame-7)

 eAction = eMEEProcessOrder

 // Send the trade to the Market Exchange Emulator (MEE)

 SendToMarketFromHarness (

 bid_price,

 symbol,

 trade_id,

 trade_qty,

 trade_type_id,

 eAction

}

}

Parameter Direction Description

status_submitted IN The string ID value for the STATUS_TYPE Submitted status.

trigger_id IN The Trade ID for the pending trade that has triggered and needs to be to be
submitted to the MEE. Trade ID is the primary key of the TRADE table.

bid_price OUT Requested bid/ask price for triggered limit trade.

num_found OUT Number of TRADE rows found to trigger.

status OUT Code indicating the execution status for this frame.

symbol OUT Security symbol for triggered limit trade.

trade_id OUT Trade ID of triggered limit trade.

trade_qty OUT Requested share quantity.

trade_type_id OUT Trade type of triggered limit trade.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 225 of 271

Trade-Result_Frame-7 Pseudo-code: Submit the triggered limit trade

{

declare now_dts DATETIME

start transaction

get_current_dts(now_dts)

select TR_T_ID,

TR_BID_PRICE,

TR_S_SYMB,

TR_TT_ID,

TR_QTY

from

TRADE_REQUEST

where

TR_T_ID = trigger_id

num_found = row_count

delete TRADE_REQUEST

where TR_T_ID = trigger_id

update TRADE

set T_DTS = now_dts,

T_ST_ID = status_submitted

where T_ID = trigger_id

insert TRADE_HISTORY (TH_T_ID, TH_DTS, TH_ST_ID)

 values (trigger_id, now_dts, status_submitted)

commit transaction

10.6.9 The Trade-Status Transaction

The Trade-Status Transaction is designed to emulate the process of providing an update on the status of
a particular set of trades. It is representative of a customer reviewing a summary of the recent trading
activity for one of their accounts.

Trade-Status is invoked by VGenDriverCE. It consists of a single Frame. For the given account ID, Trade-
Status returns the trade ID and status of the 50 most recent trades.

10.6.9.1 Trade-Status Transaction Parameters

The inputs to the Trade-Status Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Trade-Status Interfaces Module/Data Structure

CE Input generation GenerateTradeStatusInput()

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 226 of 271

Transaction Input/Output Structure TTradeStatusTxnInput
TTradeStatusTxnOutput

Frame 1 Input/Output Structure TTradeStatusFrame1Input
TTradeStatusFrame1Output

Trade-Status Transaction Parameters:

Parameter Direction Description

acct_id IN
A single customer is chosen non-uniformly by customer tier, from the range of
available customers. A single customer account id, as defined by CA_ID in
CUSTOMER_ACCOUNT, is chosen at random, uniformly, from the range of
customer account ids for the chosen customer.

status OUT Code indicating the execution status for this transaction.

status_name[] OUT A list of character strings, each character string as defined by ST_NAME in
STATUS_TYPE, representing the current status of a trade.

trade_id[] OUT A list of numbers, each number as defined by T_ID in TRADE, assigned by the
brokerage or exchange to identify the specific trade being requested.

10.6.9.2 Trade-Status Transaction Database Footprint

The Trade-Status Database Footprint is as follows:

Trade-Status Database Footprint

Table Column
Frame

1

BROKER B_NAME Return

CUSTOMER
C_F_NAME Return

C_L_NAME Return

EXCHANGE EX_NAME Return

SECURITY S_NAME Return

STATUS_TYPE ST_NAME Return

TRADE

T_CHRG Return

T_DTS Return

T_EXEC_NAME Return

T_ID Return

T_QTY Return

T_S_SYMB Return

TRADE_TYPE TT_NAME Return

Transaction Control Start
Commit

10.6.9.3 Trade-Status Transaction Frame 1 of 1

The database access methods used in Frame 1 are all Returns.

The VGenTxnHarness controls the execution of Frame 1 as follows:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 227 of 271

{

invoke (Trade-Status_Frame-1)

if (num_found <> max_trade_status_len) then

{

 status = -911

}

}

Trade-Status Frame 1 of 1 Parameters:

Parameter Direction Description

acct_id IN
A single customer is chosen non-uniformly by customer tier, from the range of
available customers. A single customer account id, as defined by CA_ID in
CUSTOMER_ACCOUNT, is chosen at random, uniformly, from the range of
customer account ids for the chosen customer.

broker_name OUT A character string, as defined by B_NAME in BROKER, representing the name of
the broker who executes transactions on behalf of the customer

charge[] OUT A list of numbers, each number as defined by T_CHRG in TRADE, representing
the cost of executing the trade as charged by the broker.

cust_f_name OUT A character string, as defined by C_F_NAME in CUSTOMER, representing the
first name of the customer who owns the account (acct_id).

cust_l_name OUT A character string, as defined by C_L_NAME in CUSTOMER, representing the
last name of the customer who owns the account (acct_id).

ex_name[] OUT
A list of character strings, each character string as defined by EX_NAME in
EXCHANGE, representing the name of the security exchange where the security
is traded.

exec_name[] OUT
A list of character strings, each character string as defined by T_EXEC_NAME in
TRADE, representing the name of the person who initiated the trade on behalf of
the customer (c_f_name, c_l_name).

num_found OUT Number of TRADE rows found.

s_name[] OUT A list of character strings, each character string as defined by S_NAME in
SECURITY, representing the name of the security as listed with the exchange.

status OUT Code indicating the execution status for this frame.

status_name[] OUT A list of character strings, each character string as defined by ST_NAME in
STATUS_TYPE, representing the current status of the trade.

symbol [] OUT
A list of character strings, each character string as defined by S_SYMB in
SECURITY, representing the specific security, as listed with the exchange, being
traded in the trade.

trade_dts[] OUT A list of dates and times, each data and time as defined by T_DTS in TRADE, at
which the Trade-Request was processed by the broker.

trade_id[] OUT A list of numbers, each number as defined by T_ID in TRADE, assigned by the
brokerage or exchange to identify the specific trade being requested.

trade_qty[] OUT A list of numbers, each number as defined by T_QTY in TRADE, representing
the quantity of the security being traded in the Trade-Request.

type_name[] OUT
A list of character strings, each character string as defined by TT_NAME in
TRADE_TYPE, representing the type of trade being executed on behalf of the
customer.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 228 of 271

Trade-Status_Frame-1 Pseudo-code: Retrieve information on the 50 most recent
trades

{

start transaction

// Only want 50 rows, the 50 most recent trades for this customer account

select first 50 row

trade_id[] = T_ID,

trade_dts[] = T_DTS,

status_name[] = ST_NAME,

type_name[] = TT_NAME,

symbol[] = T_S_SYMB,

trade_qty[] = T_QTY,

exec_name[] = T_EXEC_NAME,

charge[] = T_CHRG,

s_name[] = S_NAME,

ex_name[] = EX_NAME

from

TRADE,

STATUS_TYPE,

TRADE_TYPE,

SECURITY,

EXCHANGE

where

T_CA_ID = acct_id and

ST_ID = T_ST_ID and

TT_ID = T_TT_ID and

S_SYMB = T_S_SYMB and

EX_ID = S_EX_ID

order by

T_DTS desc

num_found = row_count

select

cust_l_name = C_L_NAME,

cust_f_name = C_F_NAME,

broker_name = B_NAME

from

CUSTOMER_ACCOUNT,

CUSTOMER,

BROKER

where

CA_ID = acct_id and

C_ID = CA_C_ID and

B_ID = CA_B_ID

commit transaction

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 229 of 271

Trade-Status_Frame-1 Pseudo-code: Retrieve information on the 50 most recent
trades

}

10.6.10 The Trade-Update Transaction

The Trade-Update Transaction is designed to emulate the process of making minor corrections or
updates to a set of trades. This is analogous to a customer or broker reviewing a set of trades, and
discovering that some minor editorial corrections are required. The various sets of trades are chosen such
that the work is representative of:
• reviewing general market trends
• reviewing trades for a period of time prior to the most recent account statement
• reviewing past performance of a particular security

Trade-Update is invoked by VGenDriverCE. It consists of three mutually exclusive Frames. Each Frame
employs a different technique for looking up historical trade data. Minor corrections are made to the
retrieved data.

Frame 1 accepts a list of trade IDs. Information for each of the trades in the list is returned. The executor’s
name for each trade is modified.

Frame 2 accepts a customer account ID, a start timestamp, end timestamp and a number of trades (N) as
inputs. The Frame returns information for the first N trades for the specified customer account between
the start and end timestamps (inclusive). The settlement cash type for each trade is modified.

Frame 3 accepts a security symbol, a start timestamp, end timestamp and a number of trades (N) as
inputs. The Frame returns information for the first N trades for the given security between the start and
end timestamps (inclusive). For cash trades the description of the Transaction is modified.

10.6.10.1 Trade-Update Transaction Parameters

The inputs to the Trade-Update Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp. The data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Trade-Update Interfaces Module/Data Structure

CE Input generation GenerateTradeUpdateInput()

Transaction Input/Output
Structure

TTradeUpdateTxnInput
TTradeUpdateTxnOutput

Frame 1 Input/Output Structure TTradeUpdateFrame1Input
TTradeUpdateFrame1Output

Frame 2 Input/Output Structure TTradeUpdateFrame2Input
TTradeUpdateFrame2Output

Frame 3 Input/Output Structure TTradeUpdateFrame3Input
TTradeUpdateFrame3Output

Trade-Update Transaction Parameters:

Parameter Direction Description

acct_id IN Customer account ID. Used when frame_to_execute is 2, otherwise set to 0.

end_trade_dts IN

Used in Frame 2 as the end point in time for identifying a particular trade for an
account.
Used in Frame 3 as the end point in time for identifying trades for a particular
symbol.
 For Frame 1, this parameter is ignored, so it is set to an empty date.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 230 of 271

frame_to_execute IN Identifies which of the mutually exclusive frames to execute.

max_acct_id IN Maximum account identifier, used in Frame 3, otherwise set to 0.

max_trades IN Maximum number of trades to find. The default value (20) is defined in the
TTradeUpdateSettings structure in DriverParameterSettings.h.

max_updates IN Maximum number of trades to be modified. The default value (20) is defined in
the TTradeUpdateSetting structure in DriverParameterSettings.h.

start_trade_dts IN

Used in Frame 2 as the point in time for identifying a particular trade for an
account.
Non-uniform over pre-populated interval.
Used in Frame 3 as the point in time for identifying trades for a particular
symbol.
Uniform over pre-populated interval.
For Frame 1, this parameter is ignored, so it is set to an empty date.

symbol IN Used in Frame 3 as the security symbol for which to find trades. Uniformly
chosen over all securities. For the other frames, symbol is set to the empty string.

trade_id[] IN
Array of non-uniform randomly chosen trade IDs used by Frame 1 to identify a
set of particular trades. For the other frames, array elements are set to 0. For
Frame 1, max_trades indicates how many elements are to be used in the array.

frame_executed OUT Confirmation of which frame was executed.

is_cash[] OUT Indicates whether the trades were cash transactions.

is_market[] OUT Indicates whether the trades used in Frame 1 were market order trades.

num_found OUT Number of trade rows found for frames 1, 2 and 3.

num_updated OUT Number of trade rows modified for frames 1, 2 and 3.

status OUT Code indicating the execution status for this transaction.

trade_list[] OUT List of trade IDs found in Frames 2 and 3.

10.6.10.2 Trade-Update Transaction Database Footprint

The Trade-Update Database Footprint is as follows:

Trade-Update Database Footprint

Table Column
Frame

1* 2* 3*

CASH_TRANSACTION

CT_AMT Return* Return* Return*

CT_DTS Return* Return* Return*

CT_NAME Return* Return* Modify*
Return*

SECURITY S_NAME Return

SETTLEMENT

SE_AMT Return Return Return

SE_CASH_DUE_DATE Return Return Return

SE_CASH_TYPE Return Modify
Return Return

TRADE

T_BID_PRICE Return Return
T_CA_ID Return

T_DTS Reference Reference

T_EXEC_NAME Modify
Return Return Return

T_ID Return Return

T_IS_CASH Return Return Return

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 231 of 271

T_QTY Return

T_S_SYMB Reference

T_TRADE_PRICE Return Return Return

T_TT_ID Return

TRADE_HISTORY
TH_DTS Return Return Return

TH_ST_ID Return Return Return

TRADE_TYPE
TT_IS_MRKT Return
TT_NAME Return

Transaction Control Start
Commit

Start
Commit

Start
Commit

10.6.10.3 Trade-Update Transaction Frame 1 of 3

The first Frame is responsible for retrieving information about the specified array of trade IDs and
modifying some data from the TRADE table.

The VGenTxnHarness controls the execution of Frame 1 as follows:
{

if(frame_to_execute == 1)

{

 invoke (Trade-Update_Frame-1)

 if (num_found != max_trades) then

 {

 status = -1011

 }

 if (num_updated != max_updates) then

 {

 status = -1012

 }

 frame_executed = 1

}

[...]

Trade-Update Frame 1 of 3 Parameters:

Parameter Direction Description

max_trades IN
Number of valid array elements in trade_id[]. The default value (20)
is set in TTradeUpdateSettings.MaxRowsFrame1 in
DriverParameterSettings.h.

max_updates IN
Maximum number of TRADE rows to modify. The default value (20)
is set in TTradeUpdateSettings.MaxRowsToUpdateFrame1 in
DriverParameterSettings.h. Must be <= max_trades.

trade_id[] IN The array of trade IDs picked non-uniformly over the set of pre-
populated trades.

bid_price[] OUT The requested unit price.

cash_transaction_amount[] OUT Amount of the cash transaction.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 232 of 271

cash_transaction_dts[] OUT Date and time stamp of when the transaction took place.

cash_transaction_name[] OUT Description of the cash transaction.

exec_name[] OUT Name of the person who executed the trade.

is_cash[] OUT Flag that is non-zero for a cash trade, zero for a margin trade.

is_market[] OUT Flag that is non-zero for a market trade, zero for a limit trade.

num_found OUT Number of TRADE rows returned; should be the same as max_trades.

num_updated OUT Number of TRADE rows that were modified; should be the same as
max_updates.

settlement_amount[] OUT Cash amount of settlement.

settlement_cash_due_date[] OUT Date by which customer or brokerage must receive the cash.

settlement_cash_type[] OUT Type of cash settlement involved: cash or margin.

status OUT Code indicating the execution status for this frame.

trade_history_dts[][3] OUT Array of timestamps of when the trade history was updated.

trade_history_status_id[][3] OUT Array of status type identifiers.

trade_price[] OUT Unit price at which the security was traded.

Trade-Update_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array and modify some of the TRADE rows.

{

declare i int

declare ex_name char(49)

start transaction

num_found = 0

num_updated = 0

for (i = 0; i++; i < max_trades) do {

// Get trade information

if (num_updated < max_updates) then {

// Modify the TRADE row for this trade.

select

ex_name = T_EXEC_NAME

from

TRADE

where

T_ID = trade_id[i]

num_found = num_found + row_count

if (ex_name like “% X %”) then

select ex_name = REPLACE (ex_name, “ X “, “ “)

else

select ex_name = REPLACE (ex_name, “ “, “ X “)

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 233 of 271

Trade-Update_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array and modify some of the TRADE rows.

update

TRADE

set

T_EXEC_NAME = ex_name

where

T_ID = trade_id[i]

num_updated = num_updated + row_count

}

// Will only return one row for each trade

select

bid_price[i] = T_BID_PRICE,

exec_name[i] = T_EXEC_NAME,

is_cash[i] = T_IS_CASH,

is_market[i] = TT_IS_MRKT,

trade_price[i] = T_TRADE_PRICE

from

TRADE,

TRADE_TYPE

where

T_ID = trade_id[i] and

T_TT_ID = TT_ID

// Get settlement information

// Will only return one row for each trade

select

settlement_amount[i] = SE_AMT,

settlement_cash_due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_type[i] = SE_CASH_TYPE

from

SETTLEMENT

where

SE_T_ID = trade_id[i]

// get cash information if this is a cash transaction

// Will only return one row for each trade that was a cash transaction

if (is_cash[i]) then {

select

cash_transaction_amount[i] = CT_AMT,

cash_transaction_dts[i] = CT_DTS,

cash_transaction_name[i] = CT_NAME

from

CASH_TRANSACTION

where

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 234 of 271

Trade-Update_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array and modify some of the TRADE rows.

CT_T_ID = trade_id[i]

}

// read trade_history for the trades

// Will return 2 or 3 rows per trade

select first 3 rows

trade_history_dts[i][] = TH_DTS,

trade_history_status_id[i][] = TH_ST_ID

from

TRADE_HISTORY

where

TH_T_ID = trade_id[i]

order by

TH_DTS

} // end for loop

commit transaction

}

10.6.10.4 Trade-Update Transaction Frame 2 of 3

The second Frame returns information for the first N trades executed for the specified customer account
between a specified start time and end time and modifies the SETTLEMENT row for each trade returned.
If the specified start time is too close to the specified end time, then it is possible that fewer than N trades
may be returned and SETTLEMENT rows modified.

The VGenTxnHarness controls the execution of Frame 2 as follows:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 235 of 271

[...]

else if(frame_to_execute == 2)

{

 invoke (Trade-Update_Frame-2)

if (num_updated != num_found) then

 {

 status = -1021

 }

if (num_updated < 0) then

 {

 status = -1022

 }

if (num_found > max_trades) then

 {

 status = -1022

 }

 if (num_updated == 0) then

 {

 status = +1021

 }

 frame_executed = 2

}

[...]

Trade-Update Frame 2 of 3 Parameters:

Parameter Direction Description

acct_id IN

A single customer is chosen non-uniformly by customer tier, from
the range of available customers. A single customer account id, as
defined by CA_ID in CUSTOMER_ACCOUNT, is chosen at
random, uniformly, from the range of customer account ids for the
chosen customer.

end_trade_dts IN Point in time at which to stop the search for N trades.

max_trades IN
Maximum number of trades to return. The default value (20) is set
in TTradeUpdateSettings.MaxRowsFrame2 in
DriverParameterSettings.h.

max_updates IN
Maximum number of SETTLEMENT rows to modify. The default
value (20) is set in
TTradeUpdateSettings.MaxRowsToUpdateFrame2 in
DriverParameterSettings.h.

start_trade_dts IN Point in time from which to search for N trades.

bid_price[] OUT The requested unit price.

cash_transaction_amount[] OUT Amount of the cash transaction.

cash_transaction_dts[] OUT Date and time stamp of when the transaction took place.

cash_transaction_name[] OUT Description of the cash transaction.

exec_name[] OUT Name of the person who executed the trade.

is_cash[] OUT Flag that is non-zero for a cash trade, zero for a margin trade.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 236 of 271

num_found OUT Number of trade rows returned.

num_updated OUT Number of SETTLEMENT rows that were modified.

settlement_amount[] OUT Cash amount of settlement.

settlement_cash_due_date[] OUT Date by which customer or brokerage must receive the cash.

settlement_cash_type[] OUT Type of cash settlement involved: cash or margin.

status OUT Code indicating the execution status for this frame.

trade history[][3] OUT Array of timestamps of when the trade history was updated.

trade_history_status_id[][3] OUT Array of status type identifiers.

trade_list[] OUT Trade ID actually used for retrieving data.

trade_price[] OUT Unit price at which the security was traded.

Trade-Update_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time and modify
some of the SETTLEMENT rows.

{

declare i int

declare cash_type char(40)

start transaction

// Get trade information

// Will return between 0 and max_trades rows

select first max_trades rows

bid_price[] = T_BID_PRICE,

exec_name[] = T_EXEC_NAME,

is_cash[] = T_IS_CASH,

trade_list[] = T_ID,

trade_price[] = T_TRADE_PRICE

from

TRADE

where

T_CA_ID = acct_id and

T_DTS >= start_trade_dts and

T_DTS <= end_trade_dts

order by

T_DTS asc

num_found = row_count

num_updated = 0

// Get extra information for each trade in the trade list.

for (i = 0; i < num_found; i++) {

if (num_updated < max_updates) then {

// Modify the SETTLEMENT row for this trade.

select

cash_type = SE_CASH_TYPE

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 237 of 271

Trade-Update_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time and modify
some of the SETTLEMENT rows.

from

SETTLEMENT

where

SE_T_ID = trade_list[i]

if (is_cash[i]) then {

if (cash_type == “Cash Account”) then

cash_type = “Cash”

else

cash_type = “Cash Account”

}

else

if (cash_type == “Margin Account”) then

cash_type = “Margin”

else

cash_type = “Margin Account”

}

update

SETTLEMENT

set

SE_CASH_TYPE = cash_type

where

SE_T_ID = trade_list[i]

num_updated = num_updated + row_count

}

// Get settlement information

// Will return only one row for each trade

select

settlement_amount[i] = SE_AMT,

settlement_cash_due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_type[i] = SE_CASH_TYPE

from

SETTLEMENT

where

SE_T_ID = trade_list[i]

// get cash information if this is a cash transaction

// Should return only one row for each trade that was a cash transaction

if (is_cash[i]) then {

select

cash_transaction_amount[i] = CT_AMT,

cash_transaction_dts[i] = CT_DTS

cash_transaction_name[i] = CT_NAME

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 238 of 271

Trade-Update_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time and modify
some of the SETTLEMENT rows.

from

CASH_TRANSACTION

where

CT_T_ID = trade_list[i]

}

// read trade_history for the trades

// Will return 2 or 3 rows per trade

select first 3 rows

trade_history_dts[i][] = TH_DTS,

trade_history_status_id[i][] = TH_ST_ID

from

TRADE_HISTORY

where

TH_T_ID = trade_list[i]

order by

TH_DTS

} // end for loop

commit transaction

}

10.6.10.5 Trade-Update Transaction Frame 3 of 3

The third Frame returns information for the first N trades for a given security between a specified start
time and end time and modifies the related CASH_TRANSACTION row for each trade returned. If the
specified start time is too close to the specified end time, then it is possible that fewer than N trades may
be returned and CASH_TRANSACTION rows modified.
.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 239 of 271

The VGenTxnHarness controls the execution of Frame 3 as follows:
[...]

else if(frame_to_execute == 3)

{

 invoke (Trade-Update_Frame-3)

 if (num_found == 0) then

 {

 status = +1031

 }

 if (num_found > max_trades) then

 {

 status = +1032

 }

 frame_executed = 3

}

}

Trade-Update Frame 3 of 3 Parameters:

Parameter Direction Description

end_trade_dts IN Point in time at which to stop search.

max_acct_id IN Maximum customer account identifier.

max_trades IN Number of trades to find. The default value (20) is set in
TTradeUpdateSettings.MaxRowsFrame3 in DriverParameterSettings.h.

max_updates IN
Number of CASH_TRANSACTION rows to modify. The default value
(20) is set in TTradeUpdateSettings.MaxRowsToUpdateFrame3 in
DriverParameterSettings.h.

start_trade_dts IN Point in time from which to start search.

symbol IN Security for which to find trades.

acct_id[] OUT Array of accounts for which the trades were done.

cash_transaction_amount[] OUT Amount of the cash transaction.

cash_transaction_dts[] OUT Date and time stamp of when the transaction took place.

cash_transaction_name[] OUT Description of the cash transaction.

exec_name[] OUT Array of name of the person who executed each of the trades.

is_cash[] OUT Flag that is non-zero for a cash trade, zero for a margin trade.

num_found OUT Number of TRADE rows returned.

num_updated OUT Number of CASH_TRANSACTION rows modified.

price[] OUT Array of the price that was paid in each trade.

quantity[] OUT Array of the quantity of security bought in each trade.

s_name[] OUT Name of the security traded.

settlement_amount[] OUT Cash amount of settlement.

settlement_cash_due_date[] OUT Date by which the customer or brokerage must receive the cash.

settlement_cash_type[] OUT Type of cash settlement involved: cash or margin.

status OUT Code indicating the execution status for this frame.

trade_dts[] OUT Array of the timestamps for when the trade was requested.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 240 of 271

trade_history_dts[][3] OUT Array of timestamps of when the trade history was updated.

trade_history_status_id[][3] OUT Array of status type identifiers.

trade_list[] OUT Array of T_IDs found.

type_name[] OUT Array of the trade type name for each trade.

trade_type[] OUT Array of the trade type for each trade.

Trade-Update_Frame-3 Pseudo-code: Get a list of N trades executed for a
certain security starting from a given point in time and modify some of the
CASH_TRANSACTION rows.

{

declare i int

declare ct_name char(100)

start transaction

// Will return between 0 and max_trades rows.

select first max_trades rows

acct_id[] = T_CA_ID,

exec_name[] = T_EXEC_NAME,

is_cash[] = T_IS_CASH,

price[] = T_TRADE_PRICE,

quantity[] = T_QTY,

s_name[] = S_NAME,

trade_dts[] = T_DTS,

trade_list[] = T_ID,

trade_type[] = T_TT_ID,

type_name[] = TT_NAME

from

TRADE,

TRADE_TYPE,

SECURITY

where

T_S_SYMB = symbol and

T_DTS >= start_trade_dts and

T_DTS <= end_trade_dts and

TT_ID = T_TT_ID and

S_SYMB = T_S_SYMB

// The max_acct_id “where” clause is a hook used for engineering purposes

// only and is not required for benchmark publication purposes.

// and

//T_CA_ID <= max_acct_id

order by

T_DTS asc

num_found = row_count

num_updated = 0

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 241 of 271

Trade-Update_Frame-3 Pseudo-code: Get a list of N trades executed for a
certain security starting from a given point in time and modify some of the
CASH_TRANSACTION rows.

// Get extra information for each trade in the trade list.

for (i = 0; i < num_found; i++) {

// Get settlement information

// Will return only one row for each trade

select

settlement_amount[i] = SE_AMT,

settlement_cash_due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_type[i] = SE_CASH_TYPE

from

SETTLEMENT

where

SE_T_ID = trade_list[i]

// get cash information if this is a cash transaction

// Will return only one row for each trade that was a cash transaction

if (is_cash[i]) then {

if (num_updated < max_updates) then {

// Modify the CASH_TRANSACTION row for this trade.

select

ct_name = CT_NAME

from

CASH_TRANSACTION

where

CT_T_ID = trade_list[i]

if (ct_name like “% shares of %”) then

ct_name = type_name[i] + “ “ + quantity[i] + “ Shares of “ + s_name[i]

else

ct_name = type_name[i] + “ “ + quantity[i] + “ shares of “ + s_name[i]

update

CASH_TRANSACTION

set

CT_NAME = ct_name

where

CT_T_ID = trade_list[i]

num_updated = num_updated + row_count

}

select

cash_transaction_amount[i] = CT_AMT,

cash_transaction_dts[i] = CT_DTS

cash_transaction_name[i] = CT_NAME

from

CASH_TRANSACTION

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 242 of 271

Trade-Update_Frame-3 Pseudo-code: Get a list of N trades executed for a
certain security starting from a given point in time and modify some of the
CASH_TRANSACTION rows.

where

CT_T_ID = trade_list[i]

}

// read trade_history for the trades

// Will return 2 or 3 rows per trade

select first 3 rows

trade_history_dts[i][] = TH_DTS,

trade_history_status_id[i][] = TH_ST_ID

from

TRADE_HISTORY

where

TH_T_ID = trade_list[i]

order by

TH_DTS asc

} // end for loop

commit transaction

}

10.6.11 The Data-Maintenance Transaction

The Data-Maintenance Transaction is designed to emulate the periodic modifications to data that is
mainly static and used for reference. This is analogous to updating

Data-Maintenance is invoked by VGenDriverDM. It consists of one Frame. This Transaction runs once
per minute. It simulates periodic modifications to data tables that are mainly used for reference by the
other Transactions. The Driver provides as input the name of the table to be modified by the
Transaction.

Each time this Transaction is run the Driver alters the next table in the list. This means that each table in
the list will only get altered once every twelve minutes.

The following is the list of table names that can be passed as arguments to this Transaction:
• ACCOUNT_PERMISSION
• ADDRESS
• COMPANY
• CUSTOMER
• CUSTOMER_TAXRATE
• DAILY_MARKET
• EXCHANGE
• FINANCIAL
• NEWS_ITEM
• SECURITY
• TAXRATE

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 243 of 271

• WATCH_ITEM

The Data-Maintenance Transaction consists of a single Frame.

The intent of the Transaction is to alter data tables that would not otherwise be written to by the
benchmark. The VGenTxnHarness will pick the next table in the list to alter, each time this Transaction
is run.
Below is a description of what kind of alteration is done to each table when that table is selected:

1. ACCOUNT_PERMISSION - The VGenTxnHarness will pass a customer account identifier to the
Data-Maintenance Transaction. Each customer account will have at least one row in the
ACCOUNT_PERMISSION table. The first ACCOUNT_PERMISSION row for the customer will be
found (The Sponsor may decide which row is first). That row in the ACCOUNT_PERMISSION table
will have an Access Control List (AP_ACL). That access control list will be updated to 1111 if it is not
already 1111. If the access control list is already 1111, the access control list will be updated to 0011.

2. ADDRESS – 67% of the time VGenTxnHarness will pass a customer identifier to the Data-
Maintenance Transaction. The other 33% of the time VGenTxnHarness will pass a company
identifier to the Data-Maintenance Transaction. That customer’s or company’s ADDRESS will be
modified. The AD_LINE2 will be set to “Apt. 10C” or to “Apt. 22” if it was already “Apt. 10C”.

3. COMPANY – The VGenTxnHarness will pass a company identifier to the Data-Maintenance
Transaction. That company’s Standard and Poor credit rating will be updated to “ABA” or to “AAA”
if it was already “ABA”.

4. CUSTOMER – The VGenTxnHarness will pass a customer identifier to the Data-Maintenance
Transaction. The ISP part of that customer’s second email address (C_EMAIL_2) will be updated to
“@mindspring.com” or to “@earthlink.com” if it was already “@mindspring.com”.

5. CUSTOMER_TAXRATE – The VGenTxnHarness will pass a customer identifier to the Data-
Maintenance Transaction. The country tax rate will be modified cyclically to the next rate in the set
{“US1”, “US2”, “US3”, “US4”, “US5”} or in the set {“CN1”, “CN2”, “CN3”, “CN4”}, depending on
the customer’s country.

6. DAILY_MARKET – The VGenTxnHarness will pass a security symbol, a day of the month, and a
random number (positive or negative) to the Data-Maintenance Transaction. All rows in
DAILY_MARKET with matching symbol and day of the month will be updated by adding the
random number to DM_VOL.

7. EXCHANGE – The VGenTxnHarness will not pass any additional information to the Data-
Maintenance Transaction. There are only four rows in the EXCHANGE table. Every row will have
its EX_DESC updated. If EX_DESC does not already end with “LAST UPDATED “ and a date and
time, that string will be appended to EX_DESC. Otherwise the date and time at the end of EX_DESC
will be updated to the current date and time.

8. FINANCIAL – The VGenTxnHarness will pass a company identifier to the Data-Maintenance
Transaction. That company’s FI_QTR_START_DATEs will be updated to the second of the month
or to the first of the month if the dates were already the second of the month.

9. NEWS_ITEM – The VGenTxnHarness will pass a company identifier to the Data-Maintenance
Transaction. The NI_DTS for that company’s news items will be updated by one day.

10. SECURITY – The VGenTxnHarness will pass in a security symbol. That security’s S_EXCH_DATE
will be incremented by one day.

11. TAXRATE – The EGenTxnHarness will pass in tax rate identifier to the Data-Maintenance
Transaction. That tax rate’s TX_NAME will be updated so that a substring will be toggled between
“Tax” and “tax”.

12. WATCH_ITEM – The EGenTxnHarness will pass in a customer identifier to the Data-Maintenance
Transaction. The middle security in the customer’s WATCH_ITEM list will be selected. It will be

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 244 of 271

modified to be the next symbol in the SECURITY table that is not already in the customer’s
WATCH_ITEM list.

10.6.11.1 Transaction Parameters

The inputs to the Data-Maintenance Transaction are generated by the VGenDriverDM in DM.cpp. The
data structures defined in TxnHarnessStructs.h must be used to communicate the input and output
parameters.

Data-Maintenance Interfaces Module/Data Structure

Input generation GenerateDataMaintenanceInput()

Transaction Input/Output Structure TDataMaintenanceTxnInput
TDataMaintenanceTxnOutput

Frame 1 Input/Output Structure TDataMaintenanceFrame1Input
TDataMaintenanceFrame1Output

Data-Maintenance Transaction Parameters:

Parameter Direction Description

acct_id IN

A single customer is chosen non-uniformly by customer tier, from the
range of available customers. A single customer account id, as
defined by CA_ID in CUSTOMER_ACCOUNT, is chosen at random,
uniformly, from the range of customer account ids for the chosen
customer. This input is used when table_name is
“ACCOUNT_PERMISSION”, otherwise it is set to 0.

c_id IN

A number randomly selected from the possible customer identifiers
as defined by C_ID in CUSTOMER table using a uniform
distribution. This input is always used when table_name is
“CUSTOMER”, or “CUSTOMER_TAXRATE”. This input (instead of
co_id) is used 67% of the time when table_name is “ADDRESS”.
Otherwise this input is set to 0.

co_id IN

A number randomly selected from the possible company identifiers
as defined by CO_ID in COMPANY table using a uniform
distribution. This input is always used when table_name is
“COMPANY”, “FINANCIAL” or “NEWS_ITEM”. This input (instead
of c_id) is used 33% of the time when table_name is “ADDRESS”.
Otherwise this input is set to 0.

day_of_month IN

A number randomly selected from 1 to 31 with a uniform
distribution. This input is only used when table_name is
“DAILY_MARKET”, otherwise it is set to 0. When table_name is
“DAILY_MARKET” all the rows with this day of the Month in
DM_DATE are modified.

symbol IN
A string containing a Security Symbol. The security symbol string
follows the definition of S_SYMB in the SECURITY table. This input
is only used when table_name is “DAILY_MARKET”, or
“SECURITY”, otherwise it is set to empty string.

table_name IN

A string containing the name of the table to be altered. Valid values
are “ACCOUNT_PERMISSION”, “ADDRESS”, “COMPANY”,
“CUSTOMER”, “CUSTOMER_TAXRATE”, “DAILY_MARKET”,
“EXCHANGE”, “FINANCIAL”, “NEWS_ITEM”, “SECURITY”. This
input is always used.

vol_incr IN
A randomly selected positive or negative number. This number is
only used when the table_name is “DAILY_MARKET”, otherwise
vol_incr is set to 0 and ignored. When table_name is
“DAILY_MARKET” this number is added to DM_VOL.

status OUT Code indicating the execution status of this transaction.

10.6.11.2 Data-Maintenance Transaction Database Footprint

This Transaction includes a mix of Reference, Modify, Remove and Add operations. The Transaction
implementation would potentially require access to the following database tables and columns.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 245 of 271

Data-Maintenance Database Footprint

Table Name Column
Frame

1

ACCOUNT_PERMISSION

AP_ACL Reference *
Modify *

AP_CA_ID Reference *

Count(*) Reference *

ADDRESS
AD_ID Reference *

AD_LINE2 Reference *
Modify (1 row)*

COMPANY

CO_AD_ID Reference*

CO_ID Reference *

CO_SP_RATE Reference *
Modify (1 row)*

CUSTOMER

C_AD_ID Reference *

C_EMAIL_2 Reference *
Modify (1 row)*

C_ID Reference *

CUSTOMER_TAXRATE
CX_C_ID Reference *

CX_TX_ID
Reference*
Modify (1 row)*

DAILY_MARKET

DM_DATE Reference *

DM_S_SYMB Reference *

DM_VOL Reference *
Modify *

EXCHANGE
EX_DESC Reference *

Modify *

Count(*) Reference *

FINANCIAL

FI_CO_ID Reference *

FI_QTR_START_DATE Reference *
Modify *

Count(*) Reference *

SECURITY
S_EXCH_DATE Modify *

S_SYMB Reference *

NEWS_ITEM
NI_DTS Modify *

NI_ID Reference *

TAXRATE
TX_ID Reference *

TX_NAME Reference *
Modify *

WATCH_ITEM
WI_S_SYMB

Reference *
Modify *

WI_WL_ID Reference *

Transaction Control Start
Commit

10.6.11.3 Data-Maintenance Transaction Frame 1 of 1

The VGenTxnHarness controls the execution of Frame 1 as follows:

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 246 of 271

{

invoke (Data-Maintenance_Frame-1)

}

Data-Maintenance Frame 1 of 1 Parameters:

Parameter Direction Description

acct_id IN

A single customer is chosen non-uniformly by customer tier, from
the range of available customers. A single customer account id, as
defined by CA_ID in CUSTOMER_ACCOUNT, is chosen at
random, uniformly, from the range of customer account ids for the
chosen customer. This input is used when table_name is
“ACCOUNT_PERMISSION”, otherwise it is set to 0.

c_id IN

A number randomly selected from the possible customer identifiers
as defined by C_ID in CUSTOMER table using a uniform
distribution. This input is always used when table_name is
“CUSTOMER”, or “CUSTOMER_TAXRATE”. This input (instead of
co_id) is used 67% of the time when table_name is “ADDRESS”.
Otherwise this input is set to 0.

co_id IN

A number randomly selected from the possible company identifiers
as defined by CO_ID in COMPANY table using a uniform
distribution. This input is always used when table_name is
“COMPANY”, “FINANCIAL” or “NEWS_ITEM”. This input
(instead of c_id) is used 33% of the time when table_name is
“ADDRESS”. Otherwise this input is set 0.

day_of_month IN

A number randomly selected from 1 to 31 with a uniform
distribution. This input is only used when table_name is
“DAILY_MARKET”, otherwise it is set to 0. When table_name is
“DAILY_MARKET” all the rows with this day of the Month in
DM_DATE are modified.

symbol IN
A string containing a Security Symbol. The security symbol string
follows the definition of S_SYMB in the SECURITY table. This input
is only used when table_name is “DAILY_MARKET”, or
“SECURITY”, otherwise it is set to empty string.

table_name IN

A string containing the name of the table to be altered. Valid values
are “ACCOUNT_PERMISSION”, “ADDRESS”, “COMPANY”,
“CUSTOMER”, “CUSTOMER_TAXRATE”, “DAILY_MARKET”,
“EXCHANGE”, “FINANCIAL”, “SECURITY”. This input is always
used.

vol_incr IN
A randomly selected positive or negative number. This number is
only used when the table_name is “DAILY_MARKET”, otherwise
vol_incr is set to 0 and ignored. When table_name is
“DAILY_MARKET” this number is added to DM_VOL.

status OUT Code indicating the execution status of this Frame.

Data-Maintenance Frame 1 Pseudo-code: Update a table

/* Check which table is to be updated. */

if (strcmp(table_name, “ACCOUNT_PERMISSION”)==0) {

//ACCOUNT_PERMISSION

//Update the AP_ACL to “1111” or “0011” in rows for a

//customer account of c_id.

acl = NULL

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 247 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

select first 1 row

acl = AP_ACL

from

ACCOUNT_PERMISSION

where

AP_CA_ID = acct_id

order by

AP_ACL DESC

if (acl != “1111”) then {

update

ACCOUNT_PERMISSION

set

AP_ACL=”1111”

where

AP_CA_ID = acct_id and

AP_ACL = acl

} else { /*ACL is “1111” change it to “0011” */

update

ACCOUNT_PERMISSION

set

AP_ACL = ”0011”

where

AP_CA_ID = acct_id and

AP_ACL = acl

}

} else if (strcmp(table_name,”ADDRESS”)==0) {

// ADDRESS

// Change AD_LINE2 in the ADDRESS table for

// the CUSTOMER with C_ID of c_id or the COMPANY with CO_ID of co_id.

line2 = NULL

ad_id = 0

// Customer ID provided

if (c_id != 0) {

select

line2 = AD_LINE2,

ad_id = AD_ID

from

ADDRESS, CUSTOMER

where

AD_ID = C_AD_ID and

C_ID = c_id

}

// Company ID provided

else {

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 248 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

select

line2 = AD_LINE2,

ad_id = AD_ID

from

ADDRESS, COMPANY

where

AD_ID = CO_AD_ID and

CO_ID = co_id

}

if (strcmp(line2, “Apt. 10C”) != 0) {

update

ADDRESS

set

AD_LINE2 = “Apt. 10C”

where

AD_ID = ad_id

} else {

update

ADDRESS

set

AD_LINE2 = “Apt. 22”

where

AD_ID = ad_id

}

} else if (strcmp(table_name,”COMPANY”)==0) {

// COMPANY

// Update a row in the COMPANY table identified

// by co_id, set the company’s Standard and Poor

// credit rating to “ABA” or to “AAA”.

sprate = NULL

select

sprate = CO_SP_RATE

from

COMPANY

where

CO_ID = co_id

if (strcmp(sprate, “ABA”) != 0) {

update

COMPANY

set

CO_SP_RATE = “ABA”

where

CO_ID = co_id

} else {

update

COMPANY

set

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 249 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

CO_SP_RATE = “AAA”

where

CO_ID = co_id

}

} else if (strcmp(table_name, “CUSTOMER”) == 0) {

// CUSTOMER

// Update the second email address of a CUSTOMER

// identified by c_id. Set the ISP part of the customer’s

// second email address to “@mindspring.com”

// or “@earthlink.com”.

email2 = NULL

len = 0

lenMindspring = strlen(“@mindspring.com)

select

email2 = C_EMAIL_2

from

CUSTOMER

where

C_ID = c_id

len = strlen(email2)

if (((len – lenMindspring) > 0) and

(strcmp(substr(email2,len-lenMindspring,

lenMindspring),”@mindspring.com”) == 0)) {

update

CUSTOMER

set

C_EMAIL_2 = substring(C_EMAIL_2, 1,

 charindex(“@”,C_EMAIL_2)) + ‘earthlink.com’

where

C_ID = c_id

} else { /* set to @mindspring.com */

update

CUSTOMER

set

C_EMAIL_2 = substring(C_EMAIL_2, 1,

 charindex(“@”,C_EMAIL_2)) + ‘mindspring.com’

where

C_ID = c_id

}

} else if (strcmp(table_name, “CUSTOMER_TAXRATE”) == 0) {

// CUSTOMER_TAXRATE

// Find the customer’s current country tax rate code.

// Calculate cyclically the next tax rate code for the customer’s country.

// Update to the new country tax rate code.

declare old_tax_rate char(3),

 new_tax_rate char(3),

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 250 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

 tax_num int

select

old_tax_rate = CX_TX_ID

from

CUSTOMER_TAXRATE

where

CX_C_ID = c_id and

(CX_TX_ID like “US%” or CX_TX_ID like “CN%”)

if (left(old_tax_rate,2) = “US”) {

if (old_tax_rate = “US5”) {

new_tax_rate = “US1”

}

else { // Change string US<n> to US<n+1> for n=1, 2, 3, 4

tax_num = CODE(right(old_tax_rate,1)) – CODE(“0”) + 1

new_tax_rate = “US” + CHAR(tax_num + CODE(“0”))

}

else {

if (old_tax_rate = “CN4”) {

new_tax_rate = “CN1”

}

else { // Change string CN<n> to CN<n+1> for n=1, 2, 3

tax_num = CODE(right(old_tax_rate,1)) – CODE(“0”) + 1

new_tax_rate = “CN” + CHAR(tax_num + CODE(“0”))

}

}

update

CUSTOMER_TAXRATE

set

CX_TX_ID = new_tax_rate

where

CX_C_ID = c_id and

CX_TX_ID = old_tax_rate

} else if (strcmp(table_name, “DAILY_MARKET”) == 0) {

// DAILY_MARKET

// A security symbol, a day in the month and a

// random positive or negative number are passed into

// the Data-Maintenance function, when table_name

// is DAILY_MARKET. The DM_VOL column in the DAILY_MARKET

// table will be updated by adding the random positive or

// negative number.

// The rows to be updated are those for the security

// whose symbol was passed in, and for that day in the

// month that was passed in.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 251 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

update

DAILY_MARKET

set

DM_VOL = DM_VOL + vol_incr

where

DM_S_SYMB = symbol

and substring ((convert(char(8),DM_DATE,3),1,2) = day_of_month

} else if (strcmp(table_name, “EXCHANGE”) == 0) {

// EXCHANGE

// Other than the table_name, no additional

// parameters are used when the table_name is EXCHANGE.

// There are only four rows in the EXCHANGE table. Every

// row will have its EX_DESC updated. If EX_DESC does not

// already end with “LAST UPDATED “ and a date and time,

// that string will be appended to EX_DESC. Otherwise the

// date and time at the end of EX_DESC will be updated

// to the current date and time.

rowcount = 0

select

rowcount = count(*)

from

EXCHANGE

where

EX_DESC like “%LAST UPDATED%”

if (rowcount == 0) {

update

EXCHANGE

set

EX_DESC = EX_DESC + “ LAST UPDATED “ + getdatetime()

} else {

update

EXCHANGE

set

EX_DESC = substring(EX_DESC,1,

len(EX_DESC)-len(getdatetime())) + getdatetime()

}

} else if (strcmp(table_name,”FINANCIAL”) == 0) {

// FINANCIAL

// Update the FINANCIAL table for a company identified by

// co_id. That company’s FI_QTR_START_DATEs will be

// updated to the second of the month or to the first of

// the month if the dates were already the second of the

// month.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 252 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

rowcount = 0

select

rowcount = count(*)

from

FINANCIAL

where

FI_CO_ID = co_id and

substring(convert(char(8),

FI_QTR_START_DATE,2),7,2) = “01”

if (rowcount > 0) {

update

FINANCIAL

set

FI_QTR_START_DATE = FI_QTR_START_DATE + 1 day

where

FI_CO_ID = co_id

} else {

update

FINANCIAL

set

FI_QTR_START_DATE = FI_QTR_START_DATE – 1 day

where

FI_CO_ID = co_id

}

} else if (strcmp(table_name, “NEWS_ITEM”) == 0) {

// NEWS_ITEM

// Update the news items for a specified company.

// Change the NI_DTS by 1 day.

update

NEWS_ITEM

set

NI_DTS = NI_DTS + 1day

where

NI_ID = (

select

NX_NI_ID

from

NEWS_XREF

where

NX_CO_ID = @co_id)

} else if (strcmp(table_name,”SECURITY”) == 0) {

// SECURITY

// Update a security identified symbol, increment

// S_EXCH_DATE by 1 day.

update

SECURITY

set

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 253 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

S_EXCH_DATE = S_EXCH_DATE + 1day

where

S_SYMB = symbol

}

commit transaction

}

10.6.12 The Trade-Cleanup Transaction

The Trade-Cleanup Transaction is used to cancel any pending or submitted trades from the database.
The Sponsor may use VGenTxnHarness to call Trade-Cleanup or may invoke the Transaction by other
means.

Trade-Cleanup is used to bring the database to a known state before the start of a Test Run.

The Trade-Cleanup Transaction consists of a single Frame. The Trade-Cleanup Transaction may be
implemented using more than one Database Transaction.

10.6.12.1 Trade-Cleanup Transaction Parameters

The inputs to the Trade-Cleanup Transaction are supplied by the Sponsor. The data structures defined
in TxnHarnessStructs.h must be used to communicate the input and output parameters.

Trade-Cleanup Interfaces Module/Data Structure

Transaction Input/Output Structure TTradesCleanupTxnInput
TTradesCleanupTxnOutput

Frame 1 Input/Output Structure TTradesCleanupFrame1Input
TTradesCleanupFrame1Output

Trade-Cleanup Transaction Parameters:

Parameter Direction Description

st_canceled_id IN Identifier for the “Canceled” trade order status – passed in for ease of
benchmarking.

st_pending_id IN Identifier for the “Pending” trade order status – passed in for ease of
benchmarking.

st_submitted_id IN Identifier for the “Submitted” trade order status – passed in for ease of
benchmarking.

trade_id IN The trade identifier to be used as the start for handling outstanding submitted
and/or pending limit trades.

status OUT Code indicating the execution status for this transaction.

10.6.12.2 Trade-Cleanup Transaction Database Footprint

The Trade-Cleanup Database Footprint is as follows:

Trade-Cleanup Database Footprint

Table Column
Frame

1

TRADE T_DTS Modify

 T_ID Reference

 T_ST_ID Modify

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 254 of 271

TRADE_HISTORY Row(s) Add

TRADE_REQUEST
Row(s) Remove

TR_T_ID Reference

Transaction Control Start
Commit

10.6.12.3 Trade-Cleanup Transaction Frame 1 of 1

The database access methods used in Frame 1 are a mixture of References, Modifies, Removes and
Adds.

If VGenTxnHarness is used to invoke the Frame, it controls the execution of Frame 1 as follows:
{

invoke (Trade-Cleanup_Frame-1)

}

Trade-Cleanup Frame 1 of 1 Parameters:

Parameter Direction Description

st_canceled_id IN Identifier for the “Canceled” trade order status – passed in for ease of
benchmarking.

st_pending_id IN Identifier for the “Pending” trade order status – passed in for ease of
benchmarking.

st_submitted_id IN Identifier for the “Submitted” trade order status – passed in for ease of
benchmarking.

trade_id IN The trade identifier to be used as the start for handling outstanding submitted
and/or pending limit trades.

status OUT Code indicating the execution status for this frame.

Trade-Cleanup_Frame-1 Pseudo-code: cancel pending and submitted trades

{

start transaction

Declare t_id TRADE_T

Declare tr_t_id TRADE_T

Declare now_dts DATETIME

/* Find pending trades from TRADE_REQUEST */

declare pending_list for

select

TR_T_ID

from

TRADE_REQUEST

order by

TR_T_ID

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 255 of 271

Trade-Cleanup_Frame-1 Pseudo-code: cancel pending and submitted trades

open pending_list

/* Insert a submitted followed by canceled record into TRADE_HISTORY, mark the trade

canceled and delete the pending trade */

do until (end_of_pending_list) {

fetch from

pending_list

into

tr_t_id

 get_current_dts (now_dts)

insert into

TRADE_HISTORY (

TH_T_ID, TH_DTS, TH_ST_ID

)

values (

tr_t_id, // TH_T_ID

now_dts, // TH_DTS

st_submitted_id // TH_ST_ID

)

update

TRADE

set

T_ST_ID = st_canceled_id,

T_DTS = now_dts

where

T_ID = tr_t_id

insert into

TRADE_HISTORY (

TH_T_ID, TH_DTS, TH_ST_ID

)

values (

tr_t_id, // TH_T_ID

now_dts, // TH_DTS

st_canceled_id // TH_ST_ID

)

} //end of pending_list

/* Remove all pending trades */

delete

from

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 256 of 271

Trade-Cleanup_Frame-1 Pseudo-code: cancel pending and submitted trades

TRADE_REQUEST

/* Find submitted trades, change the status to canceled and insert a canceled record

into TRADE_HISTORY*/

declare submit_list for

select

T_ID

from

TRADE

where

T_ID >= trade_id and

T_ST_ID = st_submitted_id

open submit_list

do until (end_of_submit_list) {

fetch from

submit_list

into

t_id

get_current_dts (now_dts)

/* Mark the trade as canceled, and record the time */

update

TRADE

set

T_ST_ID = st_canceled_id

T_DTS = now_dts

where

T_ID = t_id

insert into

TRADE_HISTORY (

TH_T_ID, TH_DTS, TH_ST_ID

)

values (

t_id, // TH_T_ID

now_dts, // TH_DTS

st_canceled_id // TH_ST_ID

)

} //end of submit_list

commit transaction

}

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 257 of 271

Trade-Cleanup_Frame-1 Pseudo-code: cancel pending and submitted trades

10.7 VGen

10.7.1 Overview

VGen is one of the modules of the Benchmark Kit, and is a TPC provided software package designed to
facilitate the implementation of TPCx-HCI. VGen provides:
• consistent data generation independent of the underlying environment
• Transaction generation and Frame flow control management
• project build and makefile templates

This clause covers the constraints and regulations governing the use of VGen. For detailed information
on VGen, what features and functionality it provides and how the TPCx-HCI Benchmark Kit uses those
features and functionality see Clause 10 .

10.7.2 VGen Terms

10.7.2.1 VGen is a TPC provided software environment that is used in the TPC provided Benchmark Kit
implementation of the TPCx-HCI benchmark. The software environment is logically divided into three
packages: VGenProjectFiles, VGenInputFiles, and VGenSourceFiles. The software packages provide
functionality to use: VGenLoader to generate the data used to populate the database, VGenDriver to
generate transactional data and VGenTxnHarness to control frame invocation.

10.7.2.2 VGenProjectFiles is a set of TPC provided files used to facilitate building the VGen packages in a Test
Sponsor's environments.

10.7.2.3 VGenInputFiles is a set of TPC provided text files containing rows of tab-separated data, which are
used by various VGen packages as “raw” material for data generation.

10.7.2.4 VGenSourceFiles is the collection of TPC provided C++ source and header files.

10.7.2.5 VGenLoader is a binary executable, generated by using the methods described in VGenProjectFiles
with source code from VGenSourceFiles. When executed, VGenLoader uses VGenInputFiles to
produce a set of data that represents the initial state of the TPCx-HCI database.

 VGenDriver comprises the following parts:

• VGenDriverCE provides the core functionality necessary to implement a Customer
Emulator.

• VGenDriverMEE provides the core functionality necessary to implement a Market
Exchange Emulator.

• VGenDriverDM provides the core functionality necessary to implement the Data-
Maintenance Generator.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 258 of 271

10.7.2.6 VGenDriver provides core transactional functionality (e.g. Transaction Mix and input generation)
necessary to implement a Driver. VGenTxnHarness defines a set of interfaces that are used to control
the execution of, and communication of inputs and outputs, of Transactions and Frames.

10.7.2.7 VGenLogger logs the initial configuration and any re-configuration of VGenDriver and VGenLoader,
and compares current configuration with the TPCx-HCI prescribed defaults.

10.7.3 Compliant VGen Versions

10.7.3.1 The TPC Policies Clause 5.3.1 requires that the version of the specification and VGen must match. The
VGen version can be determined by calling the GetVGenVersion function provided in
VGen/src/VGenVersion.cpp file.

10.7.3.2 VGen is intended to produce correct data. The TPCx-HCI Benchmark Kit ensures that the random
distribution of all data values, inputs and Transaction Mix frequencies produced by VGen is compliant
with all constraints documented in the specification (e.g. Transaction Mix, execution rules, population
constraints, etc.).

10.7.3.3 Any existing errors in a compliant version of VGen, as provided by the TPC, are deemed to be in
compliance with the specification. Therefore, any such errors may not serve as the basis for a
compliance challenge.

10.7.3.4 VGen is written in ISO C/C++ based on the following standards:

• ISO/IEC 9899:1999 Programming Language C
• ISO/IEC 14882:2003 Programming Language C++

Failure of a C/C++ compiler to properly compile VGen because of the compiler’s non-conformance with
the above standards does not constitute a bug or error in VGen.

10.7.4 VGenInputFiles

Modification of VGenInputFiles provided by the TPC is not permitted.

10.7.5 VGenSourceFiles

Modification of VGenSourceFiles provided by the TPC is not allowed, except as permitted by clause
10.7.3.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 259 of 271

10.7.6 VGenLoader

10.7.6.1 The data for a compliant TPCx-HCI database must be generated by VGenLoader. The version of
VGenLoader used must be compliant with the version of the specification the Result is being
published under, as listed in clause 10.7.3.

10.7.6.2 It is presumed that VGenLoader produces the correct number of rows for each TPCx-HCI table.
However due to the random nature of the data generated by VGenLoader, the data may not be
compliant with Clause 2 of this specification. In that event the test database is considered invalid.

10.7.6.3 If VGenLoader generates an empty string, an empty string should be loaded in the database.

10.7.7 VGenDriver

10.7.7.1 All VGenLogger output must be reported in the Supporting Files. If any VGenLogger output contains
“NO”, indicating the correct default values were not used, the benchmark Result is not compliant.

10.7.7.2 Sponsors must use a constructor for each object class (CCE, CMEE, or CDM) that does not have
RNGSEED parameter(s).

10.7.7.3 Sponsors must ensure that the values provided for the UniqueID parameters to the constructors for
each object group (CCE, CMEE or CDM) are unique within each object group.

10.7.7.4 The Transaction inputs are generated by the VGenDriverCE, VGenDriverMEE and VGenDriverDM
classes. Each CE, MEE and DM instance must be instantiated using consistent values for some global
inputs, and must use the same values used by all VGenLoader instances during the initial data
generation.

The contents of VGenInputFiles used by all VGenLoader instances (when building the database) and
by all CE, MEE and DM instances (when running against the database) must be the VGenInputFiles for
the version of TPCx-HCI that is used in the benchmark publication.

10.7.7.5 VGenDriverCE

10.7.7.5.1 A compliant CE implementation must use VGenDriverCE.

10.7.7.6 VGenDriverMEE

10.7.7.6.1 A compliant MEE implementation must use VGenDriverMEE.

10.7.7.7 VGenDriverDM

10.7.7.7.1 A compliant Data-Maintenance Generator must use VGenDriverDM.

10.7.7.7.2 One, and only one, instance of the Data-Maintenance Generator is required and allowed during a
Test Run.

10.7.8 VGenTxnHarness

10.7.8.1 A compliant TPCx-HCI implementation must use VGenTxnHarness.

10.7.9 VGen User’s Guide

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 260 of 271

10.7.9.1 Overview

VGen is a TPC provided software package. It is designed to facilitate the implementation of TPCx-HCI.
This appendix provides information on how a Test Sponsor is to use the features and functionality of
VGen. The definitions, descriptions, constraints and regulations governing the use of VGen are captured
in Clause 1.5.
Comment: Some of the following sections assume the reader has a good understanding of object-oriented
design and programming techniques using ANSI C++.

10.7.9.2 VGen Directory

10.7.9.2.1 VGen is distributed in a single directory hierarchy. The following diagram shows the overall VGen
directory hierarchy.

Figure A.a - Hierarchy of VGen Directory

• bin – default target directory for executable binary files
• flat_in - contains flat input files
• flat_out - default target directory for flat file output
• inc – contains header files
• inc/win – Windows specific header files
• lib – default target directory for library files
• obj – default target directory for object files
• prj – contains project files
• src – contains source files
• src/win – Windows specific source files

10.7.9.3 VGenProjectFiles

10.7.9.3.1 VGenProjectFiles are located in the VGen/prj directory. These files can be used to facilitate building
VGen components in various environments.

• Windows
A set of Visual Studio 2003 files are provided. VGen.sln is the top level solution file and brings
in all of the necessary .prj files.

• U*x

VGen

bin flat_in flat_out lib obj prj inc

win

src

win

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 261 of 271

A make file (makefile) is provided to facilitate building the VGen components using a make
utility. The makefile is known to work with GNU make, but other flavors of make may require
some editing of the makefile.

10.7.9.4 VGenInputFiles

10.7.9.4.1 VGenInputFiles are located in the VGen/flat_in directory. These files are text files containing rows of
tab-separated data. The files are used by VGenLoader to create the data to populate the database and by
VGenDriver components to generate valid input for Transactions. The generated data is based on knowing the
contents of the input files (“raw” material) and the overall scaling factors (Scale Factor, Configured Customers,
Initial Trade Days).

10.7.9.5 VGenSourceFiles

10.7.9.5.1 VGenSourceFiles are located in VGen/inc, VGen/src and their associated sub-directories.

10.7.9.5.2 VGenSourceFiles contain TPC-provided ANSI C++ code to be used in a compliant TPCx-HCI
implementation. Functionality is provided to facilitate:

• population of a TPCx-HCI compliant database
• implementation of a TPCx-HCI compliant environment

This functionality is described in subsequent sections.

10.7.9.6 VGenLoader

10.7.9.6.1 The task of populating a compliant TPCx-HCI database can be broken into two parts:

• generating compliant data records
• loading the records into the database

Comment: The Sponsor is responsible for coming up with scripts to create the database and tables and to
apply the required constraints.

10.7.9.6.2 Data generation is a DBMS-neutral task, whereas database population is obviously very DBMS-
specific. Therefore, VGenLoader is architected honoring this separation as follows. VGenSourceFiles contain
class definitions that provide abstractions of the TPCx-HCI tables. These table classes are known collectively as
VGenTables and they encapsulate the functionality needed to generate the data for each of the TPCx-HCI tables.
Many of the classes in VGenTables are dependent on VGenInputFiles for “raw material” used in data record
generation. VGenLoader therefore makes VGenInputFiles available to VGenTables, and uses VGenTables to
generate TPCx-HCI compliant data records.

10.7.9.6.3 In order to support the DBMS-specific nature of loading the generated data, VGenLoader makes use
of a virtual base class CBaseLoader to “load” the data. This provides a controlled interface from the DBMS-
neutral data generation portion of VGenLoader to the DBMS-specific data loading portion of VGenLoader.
DBMS-specific code is encapsulated in subclasses that inherit from and provide an implementation of the virtual
CBaseLoader class. (Note: CBaseLoader is actually a template, where the one template parameter is the row type
corresponding to the particular TPCx-HCI table being loaded.) VGenLoader provides two alternative
implementations of CBaseLoader.

10.7.9.6.4 The loader functionality provided by VGenLoader doesn’t actually load a database directly, but
rather produces output flat files. One text file is produced for each TPCx-HCI table. These files contain rows of
data values, where the data values are separated by “|”. To use this functionality, define the compile-time
variable COMPILE_FLAT_FILE_LOAD when building VGenLoader and use the “-l FLAT” switch when running
VGenLoader.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 262 of 271

This mode of loader functionality is designed to work with bulk-loader tools which populate a database
with the contents of a set of flat files. Due to variations in the expected format of certain data types, it is
possible to configure VGenLoader via compile-time variables to change the format of certain data types
in the output flat files. The data types, compile-time variables and possible values are listed in the
following table:

Data Type Compile-Time
#define Possible Values

DATETIME DATETIME_FORMAT See CDateTime::ToStr() in src/DateTime.cpp

DATE DATE_FORMAT See CDateTime::ToStr() in src/DateTime.cpp

TIME TIME_FORMAT See CDateTime::ToStr() in src/DateTime.cpp

BOOLEAN BOOLEAN_TRUE Any string constant representing a TRUE Boolean value. String
constants must be quoted.

BOOLEAN BOOLEAN_FALSE Any string constant representing a FALSE Boolean value. String
constants must be quoted.

10.7.9.6.5 A full listing of VGenLoader switches can be seen by building VGenLoader using VGenProjectFiles
and then running VGenLoader with the “-?” switch.

10.7.9.7 VGenDriver

10.7.9.7.1 A TPCx-HCI Test Sponsor is responsible for implementing a compliant TPCx-HCI Driver (Clause 4). The
TPC provides VGenDriver to facilitate implementation of a compliant Driver and to standardize certain key platform-
independent parts of the Driver.

10.7.9.7.2 VGenDriver comprises the following three parts.

• VGenDriverCE is any and/or all instantiations of the CCE class (see VGenSourceFiles CE.h and
CE.cpp).VGenDriverMEE is any and/or all instantiations of the CMEE class (see VGenSourceFiles
MEE.h and MEE.cpp).

• VGenDriverDM is the single instantiation of the CDM class (see VGenSourceFiles DM.h and
DM.cpp).

10.7.9.7.3 VGenDriver, like VGenLoader, makes use of VGenInputFiles and VGenTables in data generation.
This provides data generation coherency between database population time and Test Run time.

10.7.9.7.4 The Sponsor is responsible for providing a suitable implementation of the Trade-Cleanup Transaction
(see Clause 10.6.12). Trade-Cleanup may be implemented as a separate, standalone procedure or as part of
VGenDriverDM.

10.7.9.8 VGenLogger

10.7.9.8.1 VGenLogger is used by VGenDriver and VGenLoader to log their configuration and any re-
configuration. Although not strictly required, the Test Sponsor is expected to override/provide a
SendToLoggerImpl implementation for recording VGenLogger’s output. For details see
VGen/inc/VGenLogger.h.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 263 of 271

10.7.9.9 Implementing a CE using VGenDriverCE

10.7.9.9.1 Sending data to and receiving data from the SUT is very platform-specific functionality. Its
implementation depends on the underlying communication protocol and hardware used. Likewise, measuring
the Transaction’s Response Time is also platform-specific – depending on what timing mechanisms are provided
by the underlying software and hardware.

However, the Transaction Mix (deciding which Transaction to perform next) and generating the
Transaction input data is very platform-neutral. Therefore, VGenDriverCE encapsulates this
functionality and provides a standardized implementation for it across all TPCx-HCI implementations.

10.7.9.10 Implementing a MEE using VGenDriverMEE

10.7.9.10.1 Sending data to and receiving data from the SUT is very platform-specific functionality. Its
implementation depends on the underlying communication protocol and hardware used. Likewise, measuring
the Transaction’s Response Time is also platform-specific – depending on what timing mechanisms are provided
by the underlying software and hardware.

However, emulating the internal stock exchange functionality, and generating the Transaction input data
for Trade-Result and Market-Feed is very platform-neutral. Therefore, VGenDriverMEE encapsulates
this functionality and provides a standardized implementation for it across all TPCx-HCI
implementations.

Comment: A proper MEE implementation must to able to adjust to changing rates of trade requests and
be able to turn-around trade requests into new Trade-Result Transactions in a timely fashion. Similarly,
a proper MEE implementation must be able to adjust to changing rates of Trade-Results and must initiate
Market-Feed Transactions in a timely fashion.

10.7.9.11 Implementing a Data-Maintenance Generator using VGenDriverDM

10.7.9.11.1 Sending data to and receiving data from the SUT is very platform-specific functionality. Its
implementation depends on the underlying communication protocol and hardware used. Likewise, measuring
the Data-Maintenance Transaction’s Response Time is also platform-specific – depending on what timing
mechanisms are provided by the underlying software and hardware.

However, generating the Transaction input data for the Data-Maintenance Transaction is very platform-
neutral. Therefore, VGenDriverDM encapsulates this functionality and provides a standardized
implementation for it across all TPCx-HCI implementations.

10.7.9.12 VGenTxnHarness

VGenTxnHarness comprises any and/or all instantiations of:
• CBrokerVolume class excluding the Sponsor provided implementation of

CBrokerVolumeDBInterface (see VGenSourceFile TxnHarnessBrokerVolume.h)
• CCustomerPosition class excluding the Sponsor provided implementation of

CCustomerPositionDBInterface (see VGenSourceFile TxnHarnessCustomerPosition.h)
• CDataMaintenance class excluding the Sponsor provided implementation of

CDataMaintenanceDBInterface (see VGenSourceFile TxnHarnessDataMaintenance.h)
• CMarketFeed class excluding the Sponsor provided implementation of CMarketFeedDBInterface

(see VGenSourceFile TxnHarnessMarketFeed.h)
• CMarketWatch class excluding the Sponsor provided implementation of CMarketWatchDBInterface

(see VGenSourceFile TxnHarnessMarketWatch.h)
• CSecurityDetail class excluding the Sponsor provided implementation of

CSecurityDetailDBInterface (see VGenSourceFile TxnHarnessSecurityDetail.h)

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 264 of 271

• CTradeCleanup class excluding the Sponsor provided implementation of
CTradeCleanupDBInterface (see VGenSourceFile TxnHarnessTradeCleanup.h)

• CTradeLookup class excluding the Sponsor provided implementation of CTradeLookupDBInterface
(see VGenSourceFile TxnHarnessTradeLookup.h)

• CTradeOrder class excluding the Sponsor provided implementation of CTradeOrderDBInterface
(see VGenSourceFile TxnHarnessTradeOrder.h)

• CTradeResult class excluding the Sponsor provided implementation of CTradeResultDBInterface
(see VGenSourceFile TxnHarnessTradeResult.h)

• CTradeStatus class excluding the Sponsor provided implementation of CTradeStatusDBInterface
(see VGenSourceFile TxnHarnessTradeStatus.h)

• CTradeUpdate class excluding the Sponsor provided implementation of CTradeUpdateDBInterface
(see VGenSourceFile TxnHarnessTradeUpdate.h)

10.7.9.13 Functional Implementation

The following diagram gives a high level overview of a sample implementation of the TPCx-HCI
environment. A number of details have been omitted for clarity.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 265 of 271

Figure A.b - High Level Overview of a Sample Implementation
In the diagram above,
• dotted “lines” with arrows between TPC Provided objects represent input parameters
• dotted “lines” without arrows between TPC Provided objects represent input files from

VGenInputFiles
• Solid “lines” with arrows are calls

S
en
dT
oM
ar
ke
tF
ro
m
F
ra
m
e(
)

S
en
dT
oM
ar
ke
tF
ro
m
H
ar
ne
ss
()

Se
nd

To
M

ar
ke

t (
)

C
Se
nd
To
M
ar
ke
tIn
te
rfa
ce

D
B

M
S

Br
ok

er
Vo

lu
m

eF
ra

m
e1

Tr
ad

eO
rd

er
Fr

am
e1

Tr
ad

eO
rd

er
Fr

am
e6

M
ar

ke
tF

ee
dF

ra
m

e1

C
M
EE

Su
bm
itT
ra
de
R
eq
ue
st
()

C
M
EE
Pr
ic
eB
oa
rd

C
M
EE
Ti
ck
er
Ta
pe

C
M
EE
Tr
ad
in
gF
lo
or

M
ar

ke
tE

xc
ha

ng
eE

m
ul

at
or

M
ar

ke
tF

ee
d(

)
Tr

ad
eR

es
ul

t()

C
M
EE
SU
TI
nt
er
fa
ce

C
In
pu
tF
ile
sAc

ce
pt

Tr
ad

eR
eq

ue
st

()

C
Tr
ad
eO
rd
er

D
oT
xn
()

C
Tr

ad
eO

rd
er

D
BI

nt
er

fa
ce

D
oT

ra
de

O
rd

er
Fr

am
e1

()

Su
tT

ra
de

O
rd

er

D
oT

xn
()

D
oT

ra
de

O
rd

er
Fr

am
e6

()

C
us

to
m

er
Em

ul
at

or

Br
ok

er
Vo

lu
m

e(
)

C
us

to
m

er
Po

si
tio

n(
)

M
ar

ke
tW

at
ch

()
Se

cu
rit

yD
et

ai
l()

Tr
ad

eL
oo

ku
p(

)
Tr

ad
eO

rd
er

()
Tr

ad
eS

ta
tu

s(
)

Tr
ad

eU
pd

at
e(

)

C
C
ES
U
TI
nt
er
fa
ce

C
In
pu
tF
ile
s

TP
ar
am
et
er
Se
tti
ng
s

C
C
eT
xn
M
ix
G
en
er
at
or

C
C
eT
xn
In
pu
tG
en
er
at
or

C
C
E

D
oT
xn
()

C
Br
ok
er
Vo
lu
m
e

D
oT
xn
()

C
Br

ok
er

Vo
lu

m
eD

BI
nt

er
fa

ce

D
oB

ro
ke

rV
ol

um
eF

ra
m

e1
()

Su
tB

ro
ke

rV
ol

um
e

D
oT

xn
()

EG
en
/fl
at
_i
n/
*.t
xt

C
la

ss
 / O

bj
ec

t N
am

e

Pu
bl

ic
 M

em
be

rs

Pr
iv

at
e

M
em

be
rs

Pr
ot

ec
te

d
M

em
be

rs

C
M
ar
ke
tF
ee
d

D
oT
xn
()

C
M

ar
ke

tF
ee

dD
BI

nt
er

fa
ce

D
oM

ar
ke

tF
ee

dF
ra

m
e1

()

Su
tM

ar
ke

tF
ee

d

D
oT

xn
()

D
riv

er

SU
T

1

1a
1b

1c

1d 2

2a

2b
2c

3 3 3

3a 3a 3a3b 3b 3b

4

Le
ge

nd TP
C

 P
ro

vi
de

d

Sp
on

so
r P

ro
vi

de
d

C
om

m
er

ci
al

 P
ro

du
ct

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 266 of 271

1. The Test Sponsor is responsible for implementing a Customer Emulator per Clauses 10.7.7.5 and
10.7.9.8.

a. CInputFiles is a class provided as part of VGen used for loading into memory the VGenInputFiles
used by other classes in VGen. The Test Sponsor is responsible for instantiating a CInputFile object
correctly and passing a pointer to it into the CCE constructor. See
VGen/inc/InputFlatFilesStructure.h.

b. TParameterSettings is a TPC provided structure that can be used to alter the behavior of
VGenDriver. Use of this structure for a compliant run is not required; it is provided to facilitate
prototyping and engineering work. See VGen/inc/DriverParamSettings.h.

c. CCESUTInterface is a TPC provided pure virtual class that defines an interface used by the CCE
class. It is the Sponsor’s responsibility to subclass CCESUTInterface and provide the necessary
implementation. This implementation is responsible for sending a Transaction request to the SUT,
measuring the Transaction’s Response Time and logging all necessary data, including the Tile
and the Group of the transaction. A pointer to the Sponsor’s implementation of the
CCESUTInterface must be passed into the CCE constructor. See VGen/inc/CESUTInterface.h.

d. CCE is a TPC provided class that must be used when implementing a Customer Emulator. It is the
Sponsor’s responsibility to provide pointers to a CInputFile object and CCESUTInterface object
when constructing the CCE object. The process of running a test is effectively looping around a call
to CCE::DoTxn(). When DoTxn() is called, the CCE object will determine which Transaction to
perform, generate the necessary input data for the Transaction and pass that data to the Sponsor’s
implementation of CCESUTInterface for execution. See VGen/inc/CE.h.

13. The Test Sponsor is responsible for implementing a Market Exchange Emulator per Clauses 10.7.7.6
and 10.7.9.10.

a. CSecurityFile is a class provided as part of VGen used for loading VGen/flat_in/SecurityFile.txt
into memory. The Test Sponsor is responsible for instantiating a CSecurityFile object and passing
a pointer to it into the CMEE constructor. See VGen/inc/SecurityFile.h.

b. CMEESUTInterface is a TPC provided pure virtual class that defines an interface used by the CMEE
class. It is the Sponsor’s responsibility to subclass CMEESUTInterface and provide the necessary
implementation. This implementation is responsible for sending a Transaction request to the SUT,
measuring the Transaction’s Response Time and logging all necessary data, including the Tile
and the Group of the transaction. A pointer to the Sponsor’s implementation of the
CMEESUTInterface must be passed into the CMEE constructor. See
VGen/inc/MEESUTInterface.h.

c. CMEE is a TPC provided class that must be used when implementing a Market Exchange
Emulator. It is the Sponsor’s responsibility to provide pointers to a CSecurityFile object and
CMEESUTInterface object when constructing the CMEE object. During a Test Run, the Sponsor’s
Market Exchange Emulator is responsible for accepting requests from the Sponsor’s
SendToMarket implementation running on the SUT and passing these requests to the CMEE object
via SubmitTradeRequest(). In addition, the Sponsor’s Market Exchange Emulator is responsible
for keeping a timer and calling CMEE::GenerateTradeResult() as necessary. See VGen/inc/MEE.h.

14. The Test Sponsor is responsible for implementing functionality on the SUT to accept Transaction
request over a network connection from the Sponsor’s CCESUTInterface and CMEESUTInterface
implementations. Note that the diagram depicts individual network connections for each Transaction
type but the Sponsor is free to implement a single connection capable of handling any/all types of
Transactions. Upon receiving a Transaction request from the Driver, the Sponsor’s code is
responsible for calling DoTxn() on the appropriate VGenTxnHarness object (3a). After returning
from the call to DoTxn() the Sponsor’s code is responsible for sending the Transaction’s output back
to the Driver. See VGen/inc/TxnHarnessBrokerVolume.h – TxnHarnessTradeUpdate.h.
The Sponsor is responsible for providing implementations for the following classes used by
VGenTxnHarness.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 267 of 271

• CBrokerVolumeDBInterface

• CCustomerPositionDBInterface

• CMarketFeedDBInterface

• CMarketWatchDBInterface

• CSecurityDetailDBInterface

• CTradeLookupDBInterface

• CTradeOrderDBInterface

• CTradeResultDBInterface

• CTradeStatusDBInterface

• CTradeUpdateDBInterface

• These classes are responsible for implementing the Frames invoked by VGenTxnHarness.
15. CSendToMarketInterface is a TPC provided class that includes a pure virtual member function

SendToMarket(). The Sponsor is responsible for subclassing CSendToMarketInterface and providing
an implementation for SendToMarket(). This implementation is responsible for sending trade
requests to the Sponsor’s MEE implementation running on the Driver. A pointer to the Sponsor’s
implementation of CSendToMarketInterface must be passed into the constructor for the
VGenTxnHarness objects CTradeOrder and CMarketFeed.

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 268 of 271

10.7.9.14 TPC Defined Interfaces

Connector Attachment Point Interface (Class::Method)

VGenDriver Driving and Reporting

CCE::DoTxn()
CMEE::SubmitTradeRequest()
CDM::DoTxn()
CDM::DoCleanupTxn()

VGenDriver VGenDriver Connector

CCESUTInterface::BrokerVolume()
CCESUTInterface::CustomerPosition()
CMEESUTInterface::MarketFeed()
CCESUTInterface::MarketeWatch()
CCESUTInterface::SecurityDetail()
CCESUTInterface::TradeLookup()
CCESUTInterface::TradeOrder()
CMEESUTInterface::TradeResult()
CCESUTInterface::TradeStatus()
CCESUTInterface::TradeUpdate()
CDMSUTInterface::DataMaintenance()
CDMSUTInterface::TradeCleanup()

VGenTxnHarness VGenTxnHarness
Connector

CBrokerVolume::DoTxn()
CCustomerPosition::DoTxn()
CMarketFeed::DoTxn()
CMarketWatch::DoTxn()
CSecurityDetail::DoTxn()
CTradeLookup::DoTxn()
CTradeOrder::DoTxn()
CTradeResult::DoTxn()
CTradeStatus::DoTxn()
CTradeUpdate::DoTxn()
CDataMaintenance::DoTxn()
CTradeCleanup::DoTxn()

VGenTxnHarness Frame Implementation

CBrokerVolumeDBInterface::DoBrokerVolumeFrame1()
CCustomerPositionDBInterface::DoCustomerPositionFrame1/2/3()
CMarketFeedDBInterface ::DoMarketFeedFrame1()
CMarketWatchDBInterface::DoMarketWatchFrame1/2/3()
CSecurityDetailDBInterface::DoSecurityDetailFrame1()
CTradeLookupDBInterface::DoTradeLookupFrame1/2/3/4()
CTradeOrderDBInterface::DoTradeOrderFrame1/2/3/4/5/6()
CTradeResultDBInterface::DoTradeResultFrame1/2/3/4/5/6()
CTradeStatusDBInterface::DoTradeStatusFrame1
CTradeUpdateDBInterface::DoTradeUpdateFrame1/2/3/4()
CTradeResultDBInterface::DoTradeResultFrame1/2/3/4/5/6()
CDataMaintenanceDBInterface::DoDataMaintenanceFrame1()
CTradeCleanupDBInterface::DoTradeCleanupFrame1()

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 269 of 271

Appendix A. EXECUTIVE SUMMARY STATEMENT

A.1 Sample Executive Summary Statement

ABC Hyperia XP100
Virtuosa Nirvana 10.1

TPCx-HCI 1.0
TPC Pricing 0.0.0

Report Date:
Nov 29, 2017

Availability Date TPCx-HCI Throughput Price/Performance Total System Cost
Dec 32, 2099 655.35 tpsHCI 0 USD/tpsHCI $0 USD

System Under Test Configuration Overview
Virtualization Software Guest VM OS Processor Description Memory Size

Virtuosa Nirvana 10.1 Nirvana OS-V 1.0
XYZ HyperFast 2121
3.99GHz, 64MB L3
2/64/64 (proc/core/thr)

512 GB

Server
Model: ABC Hyperia XP100

• 2x XYZ HyperFast 2121 Processor 3.99GHz (2/64/64)
• 16x 32GB DDR3 1866 MHz DIMMs
• 4x ABC Storage Array P123/4GB, one per DB VM
• 2x 128GB SFF SAS 15K dual-port HDD (boot)
• 2x 10Gb Ethernet (onboard)

Clients

• 4x ABC WS123 Workstation
• 2x XYZ KindaFast 1010 Processor 1.99GHz (2/16/16)
• 2x 8GB PC3-8500 DIMMs
• 2x 128GB SFF SAS 15K HDD
• 2x 1Gb Ethernet (onboard)

Storage:

• 4x ABC D9000 Disk Enclosure (one per DB VM)
• 32x ABC 512GB SFF SLC SATA 2.5-inch SSD, 8 per

enclosure
• Priced: 24x 512GB 15K SFF HDD

Network:

• ABC LinkUp E9000 24-port 1/10 Network Switch
• 8x 1Gb ports used, 2x 10Gb ports used

ABC Hyperia XP100
Virtuosa Nirvana 10.1

TPCx-HCI 1.0

TPC-Pricing 0.0.0

Report Date Nov 29, 2017

Availability Date Dec 32, 2099

Description Part Number Vend Unit Price Qty. Extended
Price

3-Yr Maint
Price

Server Hardware

 Subtotal
Server Software

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 270 of 271

 Subtotal
Storage

 Subtotal
Client Hardware

 Subtotal
Client Software

 Subtotal
Infrastructure

 Subtotal
Discounts

 Subtotal

Vendor Legend:

Notes:
1: Prices and descriptions included couldn't be more random

Total Price $0 $0

Total Discounts $0 $0

Grand Total $0 $0

3-yr Total Cost of Ownership $0

tpsHCI 655.35

$ USD/tpsHCI $0

ABC Hyperia XP100
Virtuosa Nirvana 10.1

TPCx-HCI 1.0
TPC Pricing 0.0.0

Report Date:
Nov 29, 2017

Guest VM Details

Database Manager Memory (GB -
Total)

vCPUs
(Total) DB Initial Size Customers

Configured
Customers

Active
DEF MoreSQL 1.0 128 GB 12 555,345,678,901 125,000 125,000

Transaction Response Times (in seconds)
Transaction Type Min Avg 90th% Max

Trade-Order 0.003 0.025 0.048 0.440
Trade-Result 0.004 0.037 0.072 0.477
Trade-Lookup 0.001 0.105 0.206 0.758
Trade-Update 0.012 0.135 0.255 0.701
Trade-Status 0.001 0.012 0.023 0.400
Customer-Position 0.002 0.017 0.033 0.383
Broker-Volume 0.002 0.012 0.022 0.391
Security-Detail 0.003 0.025 0.048 0.423
Market-Feed 0.002 0.009 0.016 0.107
Market-Watch 0.000 0.012 0.024 0.440
Data-Maintenance 0.003 0.020 0.046 0.125

Transaction Mix
Transaction Type Transaction Count Mix Percentage

Trade-Order 405,742 10.030
Trade-Result 393,212 9.720
Trade-Lookup 365,118 9.026

TPC Express Benchmark™ HCI (TPCx-HCI) Specification, Revision 1.1.7 - Page 271 of 271

Trade-Update 40,552 1.002
Trade-Status 730,283 18.053
Customer-Position 608,569 15.044
Broker-Volume 158,299 3.913
Security-Detail 648,920 16.042
Market-Feed 4,800 0.119
Market-Watch 689,743 17.051
Data-Maintenance 80 N/A

Total Transactions 4,045,238
Measurement Interval 00:10:00
Business Recovery Time 12:34:56
Data Accessibility Test Resilience
Recovery Time 12:34:56

Redundancy Level Details All storage was configured with redundancy level 1
Auditor

