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Abstract. The TPC has been developing a publicly available, end-to-end ben-
chmarking kit to run the new TPC-V benchmark, with the goal of measuring the 
performance of databases subjected to the variability and elasticity of load de-
mands that are common in cloud environments. This kit is being developed 
completely from scratch in Java and C++ with PostgreSQL as the target data-
base. Since the TPC-V workload is based on the mature TPC-E benchmark, the 
kit initially implements the TPC-E schema and transactions. In this paper, we 
will report on the status of the kit, describe the architectural details, and provide 
results from prototyping experiments at performance levels that are representa-
tive of enterprise-class databases. We are not aware of other PostgreSQL ben-
chmarking results running at the levels we will describe in the paper. We will 
list the optimizations that were made to PostgreSQL parameters, to hard-
ware/operating system/file system settings, and to the benchmarking code to 
maximize the performance of PostgreSQL, and saturate a large, 4-socket server. 

Keywords: Database performance, virtualization, PostgreSQL, cloud  
computing. 

1 Introduction 

1.1 TPC-V Benchmark 

In this paper, we will describe the architecture of the TPC-V benchmark, give a 
progress report on its implementation, and present the performance results collected so 
far. TPC-V measures the performance of a server running virtualized databases. It is 
similar to previous virtualization benchmarks in that it has many VMs running differ-
ent workloads. It is also similar to previous TPC benchmarks in that it uses the schema 
and transactions of the TPC-E benchmark. But TPC-V is unique since unlike previous 
virtualization benchmarks, it has a database-centric workload, and models many prop-
erties of cloud servers, such as multiple VMs running at different load demand levels, 
and large fluctuations in the load level of each VM. Unlike previous TPC benchmarks, 
TPC-V will have a publicly-available, end-to-end benchmarking kit. 
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We will start with a short introduction to virtualization, give a brief background on 
the properties and the development process of the benchmark, then describe the archi-
tecture of the kit, and conclude with some of the performance results obtained so far. 

1.2 Virtualization 

Virtualization on the Intel x86 architecture was pioneered in late 1990s [2, 3, 4], and 
has grown to become a mainstream technology used in enterprise datacenters. Today, 
virtualization is the fundamental technology that enables cloud computing. So, there 
is strong demand for a database-centric virtualization performance benchmark with 
cloud computing characteristics. In response to this demand, a TPC subcommittee 
was formed in 2010 to develop a benchmark with the following properties: 

1. Models a database-centric workload 
2. Exercises the virtualization layer 
3. Has a moderate number of VMs (as opposed to modeling a pure consolidation 

scenario with a large number of VMs) 
4. Emulates a mix of Transaction Processing and Decision Support workloads 
5. A heterogeneous mix of low load volume and high load volume VMs 
6. Has a healthy storage and networking I/O content 
7. Models the elastic load-level variations of cloud VMs 

The complete description of the benchmark specification, the details of the load 
variation, performance metrics, and other properties of the benchmark are detailed in 
[1, 5]. In this paper, we will describe the new developments and prototyping results. 

2 Other Virtualization Benchmarks 

2.1 Consolidation Benchmarks 

The early virtualization benchmarks were representative of the consolidation envi-
ronment where many low volume workloads that had been running on individual 
servers would be consolidated onto a single server using virtualization. The earliest 
example is VMmark [14] which is a de facto standard with hundreds of publication on 
several succeeding versions of the benchmark. An industry standard follow-on is 
SPECvirt_sc2010 [7] which incorporates modified versions of three SPEC workloads 
(SPECweb2005_Support, SPECjAppServer2004 and SPECmail2008) and drives 
them simultaneously to emulate virtualized server consolidation environments, much 
like VMmark 1.0 did. To date, there have been 33 publications on SPECvirt_sc2010. 
The SPECvirt_sc2013 [9] benchmark was released in 2013 with 2 publications so far. 

2.2 TPC-VMS 

In 2012, the TPC released the TPC-VMS [7] (TPC Virtual Measurement Single Sys-
tem) benchmark, which emulates a simple consolidation scenario of 3 identical data-
bases. The 4 workloads used in TPC-VMS are the TPC-C [10], TPC-E [11], TPC-H 
[12], and TPC-DS [13] benchmarks. By leveraging existing TPC benchmarks,  
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TPC-VMS does not require development of a new kit. It is expected that the ease of 
benchmarking afforded by use of existing kits will result in vendors publishing TPC-
VMS results while the more feature-rich TPC-V benchmark is being developed.  

3 TPC-V Architecture 

3.1 TPC-E as a Starting Point 

We decided early on to base the TPC-V workload on the existing TPC-E [11] bench-
mark. The long pole in benchmark development is often the development of the 
schema and the transactions, as well as writing a crisp, detailed specification that lays 
out the detailed documentation required for audit and publication procedures. By 
borrowing the Data Definition Language (DDL) and Data Manipulation Language 
(DML) of TPC-E, we were able to start the prototyping of TPC-V much earlier than is 
typical of TPC benchmarks. And by using the TPC-E functional specification docu-
ment as the starting point, we only had to focus on what is new in TPC-V. TPC-V is 
fundamentally a different benchmark from TPC-E with different characteristics, yet 
gained years of development time by using TPC-E as the foundation. 

3.1.1 Differences with TPC-E 
Like TPC-E, TPC-V has 33 tables and 12 transactions, and very similar DDL and 
DML. However, there are differences in table cardinalities and the transaction mix, 
mostly to make the benchmarks non-comparable and for ease of benchmarking [1]. 

3.1.2 VGen 
EGen, a publicly available program, generates the raw data that is used to populate a 
TPC-E database. It is also linked with the benchmarking kit to produce the run time 
transaction parameters. This ensures that query arguments match what has been loaded 
into the database. It also governs the generation of many run-time parameters, such as 
the transaction mix frequencies and random numbers. Besides making it easier to de-
velop benchmarking kits, this guarantees adherence to the benchmark specification 

TPC-V follows this model by using a VGen module that is based on EGen,  
modified to conform to the TPC-V specification. As will be detailed in section 3, the  
TPC-V benchmarking kit must produce different volumes of load to different VMs 
(section 3.2), and vary this load at different phases of the benchmark run (section 3.4). 
We realized early on that driving the load to different VMs independently and at-
tempting to keep them in sync at run time would be nearly impossible. Instead, all of 
these relationships are maintained by VGen. It distributes transactions over VMs fol-
lowing the numerical quantities specified in a configuration file, and also varies the 
load based on the elasticity parameters in that file. Using a deck of cards method, 
VGen ensures that the load ratios among the many VMs are maintained at the values 
specified in the configuration file. If one VM is running slower than expected, the load 
to other VMs is automatically reduced such that the specified ratios are maintained. 
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Fig. 2. A TPC-V server with 4 Groups and 12 VMs 

Group A, Set 1 VM1 A1 VM2 VM3 A1

Group B, Set 1 VM1 B1 VM2 B1 VM3 B1 

Group C, Set 1 VM1 C1 VM2 C1 VM3 C1 

Group D, Set 1 VM1 D1 VM2 D1 VM3 D1 

 

Fig. 1. Components of a TPC-V Set 

3.2 Heterogeneous Load 

The basic building block of TPC-V is a Set of 3 VMs. Tier A VM1 receives transac-
tions from the driver system and runs the database client code, similar to the Tier A of 
a TPC-E benchmark configuration [11]. VM1 directs the two Decision Support trans-
actions to the DSS VM2, and the other transactions to the OLTP VM3. Each VM has 
an independent database instance that resides on that VM’s virtual disk drives. 

3.3 Multiple Sets and Groups 

Fig. 2 represents the simplest TPC-V configuration of a server with 4 Groups, each 
with one Set of 3 VMs for a total of 12 VMs. To emulate the heterogeneous nature of 
VMs in a cloud environ-
ment, each Group handles 
a different proportion of 
the overall load. Averaged 
over the full measurement 
interval, Groups A, B, C, 
and D receive  
10%, 20%, 30%, and 40% 
of the overall load, respec-
tively. The sizes of the 
independent databases in 
the 4 VMs (represented by 
table cardinalities) follow 
the same proportions. The 
4 Groups are driven inde-
pendently; the driver mod-
ule is required to ensure 
that the load proportions 
remain as specified. 

Tier B VM2,
DSS queries

Tier B VM3, 
OLTP transactions

Tier A VM1, app logic code

Stored procedure calls

Transactions 
arriving from the 

driver system 

Virtual disks Virtual disks
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Fig. 3. Overlapping ranges for valid numbers of Sets 
per Group 

Table 1. Valid numbers of Sets for various 
throughputs  

From tpsV To tpsV  
No. of 
Sets

100 1600 1

400 25,600 2

6,300 409,500 3

102,400 6,553,600 4

1,638,400 104,857,600 5

26,214,000 Infinity  6
 

The number of Sets per 
Group in TPC-V grows as the 
overall throughput grows. So, 
e.g., at a throughput level of 
4,000 tpsV, the sponsor is re-
quired to configure 2 Sets per 
Group. For Group A, each of 
the two Sets supplies 5% of the 
overall throughput; a similar 
calculus applies to the other 
three Groups. The growth in the 
number of Sets per Group is 
sub-linear: a 10X throughput 
growth might result in a 2X 
increase in the number of Sets per Group. This is characteristic of database servers in 
the cloud. 

Rather than requiring an exact number of Sets for every throughput value, we al-
low two possible Set counts for most throughput ranges, as shown in Table 1 and Fig. 
3. This was done for ease of benchmarking. Without this allowance, if a test sponsor 
were targeting a throughput that is near the value at which the number of Sets per 

Group changes, a slight change up or 
down in the eventual throughput would 
necessitate rebuilding the testing infra-
structure with a different number of 
VMs. 

So, for example, 25,600 tpsV is the 
crossing point from 2 to 3 Sets per 
group. If the sponsor expects to achieve 
25,600 tpsV, builds a 3-Sets-per-Group 
configuration with 36 VMs and 24 data-
bases, but reaches only 24,000 tpsV, 
there is no need to reconfigure platform 
with fewer VMs since the specification 
allows 3 Sets per Group down to 6,300 

tpsV. The sponsor only needs to repopulate the databases, scaled to the correct 
throughput. 

3.4 Elasticity 

A feature of TPC-V is that the load of each Set rises and falls during the measurement 
interval. This represents the elastic nature of workloads present in cloud data centers, 
and the resource allocation policies required to handle such elasticity. The overall 
load presented to the System Under Test remains constant during the Measurement 
Interval, but the contribution from each Set varies by as much as a factor of 7X every 
12 minutes, e.g., the rise of the contribution of Group A from 5% to 35% in Elasticity 
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Table 2. Phase-to-phase variation of load received by 
individual Groups 

Elasticity 
Phase 

Group 
A 

Group 
B 

Group 
C 

Group 
D 

1 10% 20% 30% 40% 

2 5% 10% 25% 60% 

3 10% 5% 20% 65% 

4 5% 10% 5% 80% 

5 10% 5% 30% 55% 

6 5% 35% 20% 40% 

7 35% 25% 15% 25% 

8 5% 65% 20% 10% 

9 10% 15% 70% 5% 

10 5% 10% 65% 20% 

Average 10% 20% 30% 40% 

Phase 7. When the contribu-
tion of a Group changes, the 
contribution of all individual 
Sets in that Group change to 
the same degree. Table 2 
and Fig. 4 show how much 
each Set contributes to the 
overall throughput in each 
12-minute Elasticity Phase. 

4 Reference Kit 

 Benchmarking kits for TPC 
benchmarks have always 
been provided by test spon-
sors, typically by DBMS 
vendors who tailor their kits 
to their own databases. Al-
though we would have liked 

a DBMS vendor to provide a benchmarking kit for TPC-V, due to lack of such a 
commitment, the subcommittee accepted the challenge of developing its own kit. This  
turned out to be a positive development as it will result in the TPC releasing its first 
publicly available, complete end-to-end benchmarking kit which can be used by sys-
tem vendors, researchers, and end users alike. The details of this decision making, 
comparison with other benchmarking kits, and a block diagram of the kit components 
can be found in [1]. Fig. 5 shows how the various elements of the TPC-V reference 
kit map to the components of the tested configurations.  

 
Fig. 4. Distribution of overall load over the 4 Groups versus time 
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Fig. 5. Single-set Reference Driver Components Representation 

4.1 V-Gen Functionality Development 

The primary focus in implementing V-Gen functionality has been in adding multi-
group, multi-set, multi-phase support. And while multi-group and multi-set and multi-
phase have been described previously, the multi-iteration support has been added in 
order to be able to run as many ten-phase intervals as desired in a single test. The 
tester will then be able to choose any sequential ten phases in the multi-interval test 
run as the measurement set.  The ability to choose such a measurement set is being 
added to a reporter process, which is also new to the kit. And lastly, the runtime result 
polling has been modified to provide group mix data that displays performance on a 
per-group basis in addition to the previous per-transaction basis. 

4.2 Card Deck for Multi-group, Multi-set and Multi-phase Support 

 As described previously, multi-group and multi-set support has been implemented in 
the reference driver by having every CE process connect to each vconnector process 
in every group and every set. In doing so, we are able to use a card deck to assure the 
proper mix of transactions across these groups and sets. This deck is created for each 
CE load generating thread and is shuffled at the beginning of the run. Each time the 
CE starts a new request, it takes a card from this deck to determine the group and set 
ID of the vconnector process to whom it should direct the request, and once the bot-
tom of the deck is reached, it simply starts back at the top. 

Likewise, different phases have different transaction mixes, so we have a separate 
card deck for each of the ten phases that contains the proper mix of transactions for 
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that phase. At a phase change, the deck from which the cards are pulled is also 
changed to the corresponding deck with the correct request mix. 

4.3 Result Reporting 

A reporter class is under development to help with processing the mix logs. It is cur-
rently capable of combining CE mix logs from multiple CE processes into a merged 
log that can be used to extract the needed data for a benchmark report. One such piece 
of information that it currently offers is that after combining the CE mix logs, it 
creates a CSV file with the total number of transactions that occurred in each 30-
second interval from the start of the ramp-up-phase to the end of the ramp-down 
phase of the full benchmark run. This code should require minimal modification to 
provide similar and more granular information on transaction totals over time based 
on transaction type, group, set, iteration, phase, or even per-client-thread transaction 
information.  

Of course, to be able to accurately combine CE mix log files, you have to have in-
formation about the runtime configuration used to generate those logs. So at the end 
of a benchmark run, the reporter also creates a runtime.properties file that contains the 
necessary information. This file is also passed to the reporter when it is invoked. 

4.4 Runtime Polling 

The addition of groups and sets to TPC-V resulted in the need for group- and  
set-specific polling information. So in addition to the previous per-transaction-type 

---------------------------------------------------------------------------- 
                    Txn Rate   Resp Time   Txn Pct   Pass Count   Fail Count 
TRADE_ORDER      :      8.36      0.0077     11.33         1487           18  
TRADE_RESULT     :      0.00           0      0.00            0            0  
TRADE_LOOKUP     :      6.60      0.4995      8.95         1188            0  
TRADE_UPDATE     :      1.66      0.6165      2.25          299            0  
TRADE_STATUS     :     15.94      0.0074     21.60         2869            0  
CUSTOMER_POSITION:     10.67      0.0076     14.46         1920            0  
BROKER_VOLUME    :      4.09      0.0402      5.54          736            0  
SECURITY_DETAIL  :     11.68      0.0067     15.83         2102            0 
MARKET_FEED      :      0.00           0      0.00            0            0  
MARKET_WATCH     :     14.78      0.0104     20.04         2661            0  
DATA_MAINTENANCE :      0.00           0      0.00            0            0  
TRADE_CLEANUP    :      0.00           0      0.00            0            0  
---------------------------------------------------------------------------- 
 
---------------------------------------------------------- 
              Group 1     Group 2     Group 3     Group 4  
Txn Total:        664        1329        3316        7971   
Txn Pct  :       5.00       10.01       24.97       60.02   
Resp Time:     0.0957      0.0771      0.0705      0.0624   
Fail Cnt :          2           2           3          11   
---------------------------------------------------------- 
 
Iteration 2 Phase 2 Aggregate Txn Rate: 73.78 

Fig. 6. Sample polling output 
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polling information, per-group polling information has been added. So now a sample 
polling output might look like the output in Fig. 6. This additional information lets 
you know whether you are meeting the transaction mix requirements for each group, 
as well as the average response times and failure counts for each vconnector process. 

4.5 MEE Development 

As already noted, the MEE currently implements the Market Feed and Trade Result 
transactions as required for TPC-E. However, the nature of the MEE is such that it 
places constraints on implementation design for TPC-V. For example, we cannot 
design the MEE such that a single MEE process connects to all groups and sets as we 
do with the CE. This is because when transactions from the CE that trigger MEE 
transactions occur, they do not identify themselves by their group and set. Thus when 
the MEE generates a transaction in response to the CE trigger, it would have no way 
of knowing which vconnector process should be the recipient of this transaction. 

Due to this design constraint, we need a MEE paired specifically with each vcon-
nector process so that any CE request that triggers and MEE transaction will always 
be sent to the correct recipient. At this point, this could mean a separate MEE process 
is started for each vconnector process, but ideally we hope to be able to have one 
MEE process handle requests for all four groups in each set using separate transaction 
handling threads and requiring only unique connections for each of these four MEE 
threads. This is not a requirement, though having fewer processes for the prime client 
to coordinate with is certainly desirable. 

4.6 TPC-E Functionality 

Since TPC-E is the starting point of this benchmark, and since it is a simpler, single-
system benchmark, we used it as the design center of the first implementation of the 
reference kit. Although a complete, compliant TPC-E kit is not a goal of this project, 
the early prototype has been used to provide a glimpse of PostgreSQL running the 
TPC-E workload. Although we have been experimenting with multiple Sets and VMs 
following the TPC-V architecture, the workload has been mostly based on TPC-E. 

5 Current Status of the Benchmark and the Reference Kit 

The TPC-V reference benchmarking kit is nearly complete as of this writing. Below 
are the functionalities that are completed: 

- A Driver module that generates TPC-E or TPC-V transactions, and distributes 
them over any number of Set and Groups of VMs in case of TPC-V (see sec-
tion 3). It also implements the TPC-V elasticity feature 

- A VGen module based on the TPC-V schema, transaction mix, etc. 
- The Customer Emulator module 
- The Market Exchange Emulator module for TPC-E transactions 
- The vconnector module that performs all the database accesses 
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- The DDL and DML scripts for PostgreSQL 9.2 
- Linux shell scripts to launch all these programs, collect data and statistics, and 

produce results metrics 

The functionalities that remain to be completed are: 

- Modifying the MEE, stored procedures, and DML calls such that the Trade-
Result and Market-Feed transactions conform to the TPC-V specification 

- The Data-maintenance transaction (a non-critical component) 
- Extensive prototyping results for verification and testing of the reference kit 
- Porting of the reference kit to multiple environments 

6 Results from Prototyping Experiments 

6.1 Introduction 

Most of the results presented here were obtained before the MEE functionality was 
added to the kit. So they are not an accurate representation of eventual TPC-V per-
formance. However, we expect the two missing transactions to have similar profiles 
to the 8 transactions implemented. The current functionality is sufficient to study how 
efficiently PostgreSQL executes the TPC-E/TPC-V queries, as well as an analysis of 
whether the hypervisor used in the study was able to handle the variability and elastic-
ity of the load that TPC-V places on the system. For the remainder of this section, we 
will refer to transactions per second or tps to denote the total number of transactions 
processed. This should not be confused with the tpsV metric, which only counts the 
Trade-Result transactions, which make up only a 10% fraction of the total transaction 
volume. Trade-Result is issued by the MEE module, which was not developed in time 
for our initial measurements. Hence we count all 8 transactions, and report that as tps. 

6.2 Benchmarking Configuration 

The system under test was a 4-socket HP ProLiant DL580 G7 server with 2.40GHz 
Intel Xeon E7-4870 (WestmereEX) CPUs. To put this in perspective, HP has pub-
lished a TPC-E result of 2,454 tpsE1 on this system. The highest TPC-E result is 
5,457 tpsE on an IBM System X3850 X5 server2. So the server we are using for pro-
totyping is a large, high-end server. The storage was two EMC VNX5700 disk arrays. 
38 EFDs (EMC term for SSDs) in a RAID5 configurations  were used for the DSS 
VMs, which have the lion’s share of disk I/O. 88 spinning disk drives in a RAID 1 
configuration were used for the OLTP VMs, which have lower I/O requirements. The 
software stack was vSphere 5.1, RHEL 6.1, PostgreSQL 9.2.2 and unixODBC 2.2.14. 

The benchmark was configured with 1 Set for each of the 4 Groups, for a total of 
12 VMs. The driver system was the 13th VMs on the system. The database size is 
expressed in Load Units, each LU representing 1,000 rows in the Customers table. 
The cardinalities of the other 32 tables are either fixed, or are proportional to the 
number of Customers. 

                                                           
1  As of 6/21/2013. Complete details available at http://www.tpc.org/4046 
2  As of 6/21/2013. Complete details available at http://www.tpc.org/4063 
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Table 3. Configuration info for VMs 

 VM 
A1 

VM 
A2 

VM 
A3 

VM 
B1 

VM 
B2 

VM 
B3 

VM 
C1 

VM 
C2 

VM 
C3 

VM 
D1 

VM 
D2 

VM 
D3 

DB size in 
LUs 

- 50 50 - 100 100 - 150 150 - 200 200 

DB size in 
GB 

- 336 328 - 670 654 - 1004 980 - 1308 1328 

Memory in 
GB 

2 88 39 2 146 54 2 220 68 2 278 78 

vCPUs 3 4 12 5 8 24 6 12 30 8 16 40 
 
Table 3 shows various configuration parameters for the 12 VMs. VM1s have very 

little memory usage, and their CPU usage is about 1/8th of the total CPU load. VM2s 
have modest processing needs, but we had to allocate most of the memory to them to 
cache more of the database and reduce the I/O load. VM3s didn’t need as much mem-
ory since their I/O was already low, but were allocated about 60% of the total 
processing power.  It is worth noting that, much like real cloud database VMs, al-
though the CPU resources were overcommitted (more virtual CPUs in the VMs than 
physical CPUs on the server), the total memory allocated to the 12 VMs is 979GB, on 
a server with 1TB of memory. This is common for database VMs since overcommit-
ting memory can result in paging, with disastrous results for database performance. 

Virtual CPUs and Elasticity 
The number of virtual CPUs, however, totals 168, well above the 80 logical CPUs (40 
cores X 2 hyperthreads per core) on the server. This overcommitting is common in 
cloud environments since the number of virtual CPUs configured into a VM should be 
adequate for its peak demand. But not all VMs peak at the same time. So as long as 
the total load does not exceed 80 CPUs’ worth, we can overcommit the virtual CPUs. 

6.3 1-Phase and 10-Phase Runs 

As mentioned in section 3.4, TPC-V requires the load received by each Group to vary 
over ten 12-minute elasticity phases. As we will see in section 6.4, this posed a chal-
lenge in our environment due to storage bandwidth limitations. So we ran some expe-
riments with a single phase (i.e., constant proportioning of load across Sets for the 
duration of the run) to study the performance characteristics of the database, the oper-
ating, the hypervisor, and the hardware. We also ran experiments with 10 phases to 
specifically study the ability of the system under test to respond to load elasticity, and 
to determine whether the TPC-V benchmarking kit is able to deterministically distri-
bute the load over the Sets even when some Sets are strained under the load. 

In a 1-phase run with 4 Groups, the throughput was 4,191 transactions per second3.  
In the CPU utilization graphs in Fig. 7, the Y axis is the total CPU utilization of each 

                                                           
3  As mentioned in section 6.1, this transactions per second metric should not be confused 

with the tpsV metric, which would have been as much as an order of magnitude smaller. 
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Fig. 7. CPU utilization of individual VMs for a single-phase run 

 
Fig. 8. Total CPU usage and throughput of a single-phase run 
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VM. An 8-vCPU VM would register a utilization of 800% if all 8 vCPUs were fully 
utilized. All of these metrics are measured on virtual CPUs on the guest VMs. 

Fig. 8 shows throughput and the sum of CPU utilizations of individual VMs. It 
might appear that the system is not fully saturated, but that’s due to the artifacts of 
hyperthreading when we collect statistics on the guest OS. Hypervisor and hardware 
counters register between 85% and 95% utilization on the CPU cores. 
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6.4 Throughput versus Other Performance Metrics for 10-Phase Runs 

We also ran the benchmark with the load variation depicted in Fig. 4. As Fig. 9 
shows, the CPU utilizations of individual VMs varied during the 2-hour runs, as did 
the overall throughput, shown in Fig. 10. However, the benchmarking kit ensured that 
the contributions of each Group remained exactly as prescribed in Table 2. 

In this case, the throughput dropped drastically during some phases. The reason for 
this drop was the inability of the storage to cope with the changes in load. Briefly, the 

 
Fig. 9. CPU utilizations of individual VMs for a run with 10 elasticity phases 

 

 
Fig. 10. Total CPU usage and throughput for a run with 10 elasticity phases 
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overall load, and hence the overall I/O requirements, remain constant over the execu-
tion time. Hence, if the storage is shared by all VMs in a striped format, the variations 
in load should not have the large impact that we observed. However, our storage was 
split in two groups: LUNs for Groups A and B were striped across one set of SSD 
disks, and LUNs for Groups C and D on a second set of SSD drives. 

When in Phase 4 the load of the Group D is at its maximum, the second storage ar-
ray was unable to satisfy the needs of that Group. One can overlay Fig. 4 and Fig. 10, 
and see that whenever Group C or Group D is at or near peak contribution to the 
overall throughput, performance goes down because we are unable to utilize excess 
capacity left in the first storage array dedicated to Groups A and B. In other words the 
benchmark is working exactly as intended: it is exposing a problem in the resource 
management of the underlying platform. 

6.5 Results with a Full, End-to-End Kit 

As pointed out in section 6.1, most of the results reported here were from a kit that did 
not have the MEE module, i.e., it was missing the important Trade-Result and Mar-
ket-Feed transactions. In the months leading to this publication, we were able to take 
runs with a functional MEE, and could measure performance with the full comple-
ment of the 10 transactions (the Data-Maintenance transaction, which does not impact 
performance, has not been implemented). As we had predicted, the overall perfor-
mance in terms of average milliseconds/transaction and the overall execution profile 
did not change very much. The addition of the two new transactions only changed the 
frequency percentages of the mix of transactions. 

Early results look encouraging. We took runs with the TPC-E workload on a 16-
way VM on the server described in section 6.2. We observed a throughput of roughly 
140 tpsE at 80% CPU utilization on a 16-vCPU VM. So we are at ~9.1 millise-
conds/tpsE. The published result with a commercial DBMS for this 80-way server is 
2,454 tpsE, i.e. ~3.3 milliseconds/tpsE. Since our results are on a VM, there is a virtu-
alization overhead of roughly 10% to consider. Also, our database was oversized, and 
our I/O rate is as much as 8 times the I/O rate of the commercial database due to 
PostgreSQL not having the Clustered Index feature of the commercial database. Con-
sidering all this, and assuming we can compare 16-way and 80-way results, perfor-
mance is respectable for this early stage of prototyping. 

6.6 PostgreSQL Tuning 

Our current throughput level is close to 5,000 tps, summed over 4 Sets with 12 VMs. 
The audited result for this system is 2,454 tpsE, which only counts Trade-Result 
transactions. So running TPC-E with a commercial DBMS, it really processes 24,545 
transactions per second. So we are nearly 5X off that mark. To make a direct compar-
ison, we need to run a single VM with the complete TPC-E workload, including the 2 
MEE transactions. But based on the data collected so far, we can see that many tuning 
opportunities exist, especially in the I/O rate. It appears that due to not having clus-
tered indexes, PostgreSQL issues nearly 4 times as many I/Os per transaction as the 
TPC-E design goal. This is our primary focus area for the next phase of this project. 
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Table 6. Effects of increasing WAL_segments 

Checkpoint metric 12    
segments 

5,120 
segments 

checkpoints_timed 0 1
checkpoints_req 15 0
buffers_checkpoint 4,437,177 956,174
buffers_clean 14,069 852,893
buffers_backend 46,297 39,297
buffers_alloc 24,831,473 23,749,499

 

File System Parameters  
An optimization recommend in [6] is separate file systems for data and Write-Ahead 
Log (WAL), because of the more strict cache flushing semantics for the log. Initially, 
an ext4 file system held both log and data, mounted with noatime,nodiratime, 
nobarrier,. We then created a pg-xlog ext3 file system, mounted with noatime, 
nodiratime,data=writeback. The log virtual disks of all VMs were placed 
on a LUN with only 4 disk drives, yet all experienced fast disk latencies. The result 
was a 6.5% increase in the throughput of the 4-Group, single-phase runs to 4,769 tps. 

Checkpointing 
Two parameters manage the checkpoint frequency of PostgreSQL. A new checkpoint 
is initiated either when a checkpoint has not occurred in checkpoint_timeout 
minutes, or when checkpoint_segments 16MB WAL segments have been used 
since the last checkpoint. We increased checkpoint_timeout from the default of 
3 minutes to 30, and checkpoint_segments from the default of 3 to 128, believ-
ing 128 checkpoint_segments were enough, even for the largest VM, to let 
checkpointing be governed by checkpoint_timeout. Tests, however, showed 
that we were checkpointing as often as once every 2 minutes. We needed to increase 
checkpoint_segments to 1,920 segments on the largest VM; we used 5,120 to 
be safe. This change gave us a 2% improvement to 4,841 tps. Table 6 has the back-

ground writer stats section of the 
pgstatspack outputs before and after 
the change for 30-minute runs. The 
checkpoints_timed and check-
points_req counts show that origi-
nally, there were 15 checkpoints 
triggered because the database had 
used all the WAL segments, and 
none due to reaching the checkpoint 
frequency timer. After increasing 
the number of WAL segments, we 
see only a single time-triggered 
checkpoint. 

Table 4. I/O stats for DSS VM with one and two 2 file 

  wrqm/s r/s w/s rkB/s wkB/s avgrq avgqu await 

1 FS Data+log 1830 11151 2767 138602 33956 25 30 2.14 

2 FS data 2406 12350 2278 181902 18737 27 40 2.71 
log 343 0.34 134 1 17854 264 0.3 1.87 

 

Table 5. I/O stats for OLTP VM with one and two 2 file systems 

  wrqm/s r/s w/s rkB/s wkB/s avgrq avgqu await 

1 FS Data+log 403 542 476 7682 5552 27 5.1 4.75 

2 FS Data 194 860 145 15613 1357 34 6.3 6.29 
log 1 0.04 225 0.16 3066 27 0.3 1.15 
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7 Conclusions 

The TPC-V reference benchmarking kit, which is at the heart of the benchmark, is 
nearly complete. It provides all the novel properties of TPC-V: a heterogeneous com-
bination of workloads driven to many VMs, a deterministic distribution of load over 
the VMs regardless of how each VM handles the load, and dynamically varying the 
load levels to VMs to emulate the elasticity of load in the cloud. Using this kit, we 
have discovered several optimizations for a PostgreSQL implementation of TPC-V. 
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