
SICV – Snapshot Isolation with

Co-Located Versions

8/22/2012

Robert Gottstein,

Ilia Petrov,

Alejandro Buchmann
{lastname}@dvs.tu-darmstadt.de

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 1

Introduction

 FlashyDB

MVCC

 Snapshot Isolation

 Co-Located Versions

 Block Pre-Allocation

 Tuple Permutation

 Leverage Flash Memory

 Delay Knee-Point

 Average Response Times lower

 Throughput Higher

8/22/2012 | Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 2

Structure of the presentation

1. Differences: SSD – HDD

2. Snapshot Isolation

 Algorithm

3. Transaction Management

 Algorithmic Description

 Example

4. Experimental Results

5. Summary

8/22/2012 | Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 3

1. Differences: SSD – HDD

8/22/2012 | Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 4

30

300

3000

30000

4 8 16 32 64 128 256

R
a
n

d
o

m
 T

h
ro

u
g

h
p

u
t

[I
O

P
S

]

Blocksize [KB]

SSD - Write

SSD - Read

Flash Storage vs. Magnetic Storage

Performance

 HDD: symmetric; high Latency; big block; rotational moving parts

 SSD: asymmetric; low Latency; FTL; No InPlace Updates; small

block; access patterns; Intrinsic Parallelism; IOPS/$ vs. GB/$…

8/22/2012

0

20

40

60

80

100

120

140

160

180

200

220

240

260

8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB

S
e
q

u
e
n

ti
a
l

T
h

ro
u

g
h

p
u

t
 [

M
B

/s
]

Blocksize [KB]

SSD MB/s write SSD MB/s read

HDD MB/s read HDD MB/s write

Impact on algorithmic and architectural DBMS

assumptions?

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 5

Flash Storage vs. Magnetic Storage

Algorithms

 Algorithms for Transactional Management are build on HDD properties

 Suitable for SSD but not optimal (HDD: “Rand. Reads as fast as Rand. Writes”)

Multi Version Concurrency Control (MVCC)

 Snapshot Isolation [1] (SI)

 „In SI a Transaction Ti executes against ist own snapshot (view) of the database“

Comprised of committed data (before Start of Ti) and its own data

 Implemented in Oracle, Postgres, SQL Server…

 Reads are never blocked

 Leverage SSD read performance

8/22/2012

Optimization at which points?

How does SI work?

[1] Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil,

E., and O'Neil, P. 1995. A critique of ANSI SQL isolation

levels. In Proc. The ACM SIGMOD‘05 (San Jose, California,

United States, May 22 - 25, 1995)

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 6

2. Snapshot Isolation

8/22/2012 | Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 7

Snapshot Isolation

Algorithm

8/22/2012

 Timestamps on Transactions and Tuples

 BOTi = timestamp(Begin_Ti) (assume = TIDi)

 Ri[X]; Wi[Y]; Wi[X]; Ri[Y]

 EOTi = Commit  timestamp(End_Ti)

 Ri [X] – read last version of X committed before Ti started

 NO READ locks

 X.Vit_xmin < BOTi

 If Ti already modified a data item  sees its own version e.g. X.Vo rather than X.Vi

 Wi [X]–Concurrent transactions, modifying the same data item cannot commit

 First-Committer-Wins-Rule (compare writesets) or

 First-Updater-Wins-Rule (X-Locks)

 Update a tuple  create a new Version and invalidate the old version (t_xmax)

Tuple X

X.Vm(t_xmin=123, t_xmax=134)

Tuple X

X.Vo(t_xmin=134, t_xmax=null)

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 8

Snapshot Isolation

Co-Located Versions

 Extend SI„s transaction management to create a tuple permutation

that:

 better fits the properties of the SSD

 reduces random writes that are the result of the concurrent execution

 Extension of the transaction management to redistribute tuples through

a pre-allocation of buffer pages (blocks) per transaction (permutation)

 Avoid unnecessary random writes which are based on the concurrent execution

of multiple transactions without restricting concurrency

8/22/2012

Multi Transaction Processing?

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 9

3. Transaction Management

8/22/2012 | Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 10

8/22/2012

Transaction Management

Snapshot Isolation

 Original Algorithm in PostgreSQL

Use

FSM?

Is Space

in LRI

Block?

Found

free

Space?

Look for Free

Space in

Relation Block

Return Block

Number

Extend Relation

with new Block

Look for free Space

in Blocks of the

Relation

no bulk insert

No

No

No

Yes

Yes

Yes

FSM=Free-Space-Map

LRI= Least-Recently-Inserted

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 11

Transaction Management

Example Snapshot Isolation

Start(Ti),Start(Tj),

Wi[W],Wj[Y],Commit[Tj],Wi[X], Commit[Ti],Start[Th],Start[Tk],Rk[W],Rk[X],Rk[Y],Wk[Y],Commit[Tk],Rh[Y],Commit[Rh]

8/22/2012

Transaction TID Query

Ti
123

INSERT INTO Rel (col1, col2, col3)

VALUES (4, Lufthansa, London),

(5, Lufthansa, Seattle);

Tj
124

INSERT INTO Rel (col1, col2, col3)

VALUES(6, Lufthansa, Frankfurt);

Th
129

SELECT * FROM Rel WHERE

col3=Frankfurt;

Tk
131

UPDATE col2=Condor WHERE

col3=Frankfurt;

Rel Col1 Col2 Col3

Tuple W

W.Vi (t_xmin=123, t_xmax=null)

Tuple X

X.Vi (t_xmin=123, t_xmax=null)

Tuple Y

Y.Vk (t_xmin=131, t_xmax=null)

Ti

Tj

Tk

B
lo

c
k
 O

1

B
lo

c
k
 O

2

W.Vi (t_xmin=123,

t_xmax=null)

Y.Vj (t_xmin=124,

t_xmax=)

X.Vi (t_xmin=123,

t_xmax=null)

Y.Vk (t_xmin=131,

t_xmax=null)

Tuple Y

Y.Vj (t_xmin=124, t_xmax=)

131

null131

null
Th

Write Count

Requests

BlockO1 BlockO2

12 13 2

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 12

8/22/2012

Transaction Management

Snapshot Isolation with Co-Located Versions

 SI-CV in PostgreSQL

Is entry in

Barray?

Use

FSM?

Create New entry

in Barray with

Invalid Block-Nr.

Return Block

Number

no bulk insert

No

No

Yes

Yes

Yes

Extend Relation

with new Block

Is Page in

FSM with free

Space that

isn„t used by

Barray?
Set Block-Nr

in Barray

No

FSM=Free-Space-Map

Barray= Array of Block Numbers

(Transaction | Relation | Block Nr)

Mapping of Transaction to Block

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 13

Transaction Management

Example SI with Co-Located Versions

Start(Ti),Start(Tj),

Wi[W],Wj[Y],Commit[Tj],Wi[X], Commit[Ti],Start[Th],Start[Tk],Rk[W],Rk[X],Rk[Y],Wk[Y],Commit[Tk],Rh[Y],Commit[Rh]

8/22/2012

Rel Col1 Col2 Col3

Tuple W

W.Vi (t_xmin=123, t_xmax=null)

Tuple X

X.Vi (t_xmin=123, t_xmax=null)

Tuple Y

Y.Vk (t_xmin=131, t_xmax=null)

Ti

Tj

Tk

B
lo

c
k
 1

B
lo

c
k
 2

W.Vi (t_xmin=123,

t_xmax=null)

Y.Vj (t_xmin=124,

t_xmax=)

X.Vi (t_xmin=123,

t_xmax=null)
Y.Vk (t_xmin=131,

t_xmax=null)

Tuple Y

Y.Vj (t_xmin=124, t_xmax=)
131

131
null

Th

Write Count

Requests

Block 1 Block 2

Transaction Relation - Block Nr.

null

Ti 123Tk 131 Rel - Block 1

Rel - Block 2Tj 124

Rel - Block 2

11 2

Transaction TID Query

Ti
123

INSERT INTO Rel (col1, col2, col3)

VALUES (4, Lufthansa, London),

(5, Lufthansa, Seattle);

Tj
124

INSERT INTO Rel (col1, col2, col3)

VALUES(6, Lufthansa, Frankfurt);

Th
129

SELECT * FROM Rel WHERE

col3=Frankfurt;

Tk
131

UPDATE col2=Condor WHERE

col3=Frankfurt;

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 14

4. Experimental Results

8/22/2012 | Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 15

System Setup

 PostgreSQL 8.4.2 on Linux Server, Ubuntu 64bit

 Intel Core 2 Duo 3GHz with 512MB Ram

 Intel X25-E/64GB SSD and Hitachi HDS72161 7200RPM SATA2 HDD

 On Disk Write Cache enabled

 IO Scheduling noop for SSD; deadline for HDD; No Swapping

 DBT2 TPC-C Benchmark

 Nominal DB Size ~ 31 GB after data generation and import

 20 DB Connections and 20 Terminals per Warehouse

 increasing amount of Warehouses

 Intention: Increasing Concurrency with each run

 2 hour duration for each test

8/22/2012 | Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 16

NOTPMs on SSD – SI vs. SI-CV

 Each Point = Average NOTPMs

 Range [160, 300] Warehouses

 Increase transactional load after

each run

 more Transactions  larger effect

of collocation/ preallocation

 Equal up to 180 Warehouses

 Deterioration in Throughput above

240 Warehouses on SI

 Collocation saves random writes

8/22/2012

SI-CV performs better under heavy

loads.

Performance increases with higher

amount of transactions.

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 17

Order Status Relation on SSD

 Ordinate: Amount of order status transactions (absolute)

 Leverages SSD random read performance

8/22/2012

Read Performance of SI-CV equally good or better.

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 18

Average Response Time on SSD

 Under-committed System

 Enough free resources: SI & SI-CV

perform equally well

 < 180 Warehouses

 Increase of Load bringt SI into

thrashing

 > 230 Warehouses

 SI-CV able to maintain avg. resp.

times <5sec for a wider band of

warehouses

 above the knee of SI

8/22/2012

Resp. times in over-committed

system significantly lower

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 19

Space Consumption

 Hypothesis: Preallocation uses/ needs more Space

 Blocks may not be filled optimally

 Normalized „per Warehouse “ Values

 Reason: NOTPM count of SI-CV is higher when using the same amount of

warehouses, therefore space consumption per Warehouse alone is not

meaningful

 Used the value that shows the highest difference at 280 Warehouses

 Maximum increase in space utilization after 2 hours

0.0016% per Warehouse

 Insertion of Bulk Loads not affected

8/22/2012

SI-CV almost as space efficient as SI.

| Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 20

5. Summary

 SI-CV performs better under heavy load conditions, when the system is

I/O-Bound  Up to 30%

 Relative performance of SI-CV increases with higher number of

transactions

 Response time in over-committed system significantly lower than that of

SI, therefore „shifting the knee“

 Pre-Allocation strategy per Transaction almost as space efficient as SI

 Additional space utilization marginal  justified performance advantage

 Read performance of SI-CV in comparison to SI equally good or better

8/22/2012 | Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 21

Thank You…

www.dvs.tu-darmstadt.de/research/flashydb

8/22/2012 | Databases and Distributed Systems | Robert Gottstein, Ilia Petrov, Alejandro Buchmann | 22

