
Meikel Poess, Tilmann Rabl, Michael Frank, and Manuel Danisch

Third TPC Technology Conference on Performance Evaluation & Benchmarking
August 29, 2011

 Motivation

 Parallel Data Generation Framework PDGF

 PDGF Implementation for TPC-H

 Verification of PDGF’s TPC-H implementation

 Conclusion

2

 Introduced in 1999 (based on TPC-D)
 182 benchmark publications and counting
 8 Tables
 61 columns
 Third normal form
 Scaled by SF

 SF = 1 … 100,000

 Needs to generate
data quickly

3

 Is TPC-H’s current data generator

 Inherited from TPC-D

 Implemented in ANSI-C

 Ported to 20 different platforms

4

 Designed at the University of Passau by Tilmann Rabl
 Was first presented at TPCTC 2010
 Is a generic data generator written in Java
 Can be configured to generate any RDBMS schema
 Can be configured to generate most data types and

distributions
 Numbers, strings, dates, etc

 Uniform, Gaussian, etc.
 Is extensible
 Generates data in parallel (within the same address

space and across address spaces)

5

 Parallel Data Generation Framework (PDGF)

 XML files for configuration
 Reflects SQL schema

▪ Tables
▪ Attributes

 Seed
 Size
 Scale factor
 Output

 Plug-in mechanism
 Generators
 Distributions
 Output

<schema>

…

<tables>

<table name="ORDERS">

<size>1500000</size>

<fields>

<field name="O_ORDERKEY">

<type>java.sql.Types.INTEGER</type>

<generator name="O_OrderKey">

</generator>

</field>

…

 Hierarchical seeding
 Seeds can be cached
 Generation of n-th value with n-th random

number
 Easy reference generation
 Embarrassingly parallel

Customer
Row # CustKey Name …

Table RNG

1

2

3

seed t_id

Column RNGseed c_id

Row RNGseed r_id

Text Appended with Digit(rn)rn

CustomerTableGenerator

 Contains platform specific
implementations  is prone
to platform specific bugs

 Needs to be compiled by each
vendor on each platform

 Only implements the TPC-H
schema

 Has values and data
distributions hardcoded

 Generates data in parallel
within an address space and
across address spaces

 Is implemented in Java
Platform independent

 Can be shipped in byte code
 Can implement any RDBMS

schema, including TPC-H
 Separates schema and data

definition from core data
generator

 Generates data in parallel
within an address space and
across address spaces

9

 Clause 4: Scaling and database population:
 Row counts
 Detailed data specification for all columns

▪ 8 Data primitives
▪ 15 Several special cases

Primitive
#Col
umns

Example Column Sample output

Unique Value[min,max] 7 O_ORDERKEY unique within [SF * 1,500,000] 12398709

Date[min,max] 4 O_Orderdate=Date[1992-01-01,1998-08-02] 1995-05-26

Phone Number 2 S_Phone=Phone Number 16-421-927-9442

Random String [instructions] 6 L_Shipinstruct=Random String [instructions] TAKE BACK RETURN

Random Value [min,max] 12 S_Nationkey=Random Value [0,24] 23

Random v-string 2 S_Address=Random v-String [10,40] vs50U4?e5i

Text Append with Digit 5 S_Name=Text Appended with Digit ["Supplier", S_Suppkey] Supplier5628

Text String 8 PS_Comment=Text String [49,198] dependencies beyo

10

 15 Special Cases
 Constants, e.g.

▪ O_SHIPPRIORITY set to 0

 Intra row dependencies , e.g.
▪ L_LINESTATUS set the following value: "O" if L_SHIPDATE >

CURRENTDATE "F" otherwise.

 Intra table dependencies , e.g.
▪ O_ORDERSTATUS set to the following value:

▪ "F" if all lineitems of this order have L_LINESTATUS set to "F".
▪ "O" if all lineitems of this order have L_LINESTATUS set to "O".
▪ "P" otherwise.

 Intra table dependencies , e.g.
▪ L_EXTENDEDPRICE = L_QUANTITY * P_RETAILPRICE (where

L_PARTKEY=P_PARTKEY)

11

 Uniformly distributed within start and end date
 PDGF uses millisecond representation
 Standard generator, uses Java date formating

 Generation
 Pick random number between start and end date

 Special cases
 L_Shipdate: 121 days after O_Orderdate
 Special generator: Calculate reference, add 121 days
 Similarly: L_Receiptdate, L_Commitdate

12

13

 Inter-table dependencies
 Calculated over all lineitems with same

L_Orderkey

 sum(L_Extendedprice*(1+L_Tax)*(1-L_Discount))
 L_Extendedprice
 L_Quantity * P_Retailprice where L_Partkey =

P_Partkey

 Solved with PDGF reference generation
<field name="O_TOTALPRICE">

<type>java.sql.Types.DECIMAL</type>

<generator name="O_TotalPrice">

</generator>

</field>

 Mandatory requirements:
 Row counts: Need to match exactly according to SF
Simple row count

 Derived fields: Need to match exactly according to
specification
 Possibly require complex joins

 All other fields: Need to be statistically equivalent
We use coefficient of variation (CoV)

 Our Approach is to use compliance queries
written in SQL

14

 Cardinalities for Orders, Customer, Supplier,
Part, Partsupp, Nation, Region are specified
in the TPC-H specification

Can be checked with simple “select count(*)”

15

 Cardinality of Lineitem is defined as:
 For each row in the Orders table, a random

number of rows within [1 .. 7] exist in Lineitem

 Need to test three characteristics:
1. Join Frequency

▪ 1 through 7

2. Coefficient of the frequency distribution
▪ 0.000197 for DBgen and 0.000002 for PDGF

3. Row count
▪ DBGEN=600,037,902 rows and PDGF 600,000,000

▪ 0.006317% difference

16

17

Column

CoV of dates Date Range DBgen Date Range PDGF

DBgen PDGF Min Max #distinc

t

Min Max #distin

ct

O_Orderdate 0.0038

8
0.00398

1992-01-

01

1998-08-02
2406

1992-01-

01

1998-08-

02
2406

L_Shipdate 0.1797

0
0.17969

1992-01-

02

1998-12-01
2526

1992-01-

02

1998-12-

01
2526

L_Commitdate 0.1276

2
0.12763

1992-01-

31

1998-10-31
2466

1992-01-

31

1998-10-

31
2466

L_Receiptdate 0.2088

8

0.20887 1992-01-

03

1998-12-31 2555 1992-01-

03

1998-12-

31

2555

SELECT MIN(O_Orderdate)

,MAX(O_Orderdate)

,count(distinct O_Orderdate)

FROM Orders;

SELECT STDDEV(c)/AVG(c)

FROM (SELECT O_Orderdate,count(*) c

FROM Orders

GROUP BY O_Orderdate);

SELECT COUNT(*)

FROM(SELECT O1.O_Orderkey OK,

SUM(L1.L_Extendedprice*(1+L1.L_Tax)*(1-L1.L_Discount)) TP

FROM Lineitem L1,Orders O1

WHERE L1.L_Orderkey=O1.O_Orderkey

GROUP BY O1.O_Orderkey),Orders O2

WHERE OK<>O2.O_Orderkey And O2.O_Totalprice<>TP;

18

This query returns zero rows if the data is correct

 DBGEN shows a wide range for the CoV of various
columns:
 E.g. CoV of the distribution of lineitem to orders is 0.000197

while the CoV of L_Partkey is 0.15503.
 It is up to the TPC to decide whether these CoV are specification

conforming
 For our comparison it is only important whether the data

PDGF generates has the same or better CoV
 For most columns the CoV of PDGF data is better than

that of DBGEN data
 For few columns DBGEN generates data with a better

CoV:
 E.g. Ps_Supplycost shows a CoV of 0.31573 with PDGF and

0.03469 with DBGEN
 Detailed data is in the paper

19

 TPC-H data set
 Data sizes: 1 GB, 10 GB, 100 GB

 Single node (8 cores)
 2 Intel Xeon QuadCore processors, 16GB RAM

20

 Demonstrated that PDGF is a viable
alternative to DBGEN

 PDGF has many advantages over DBGEN

 Generic

 Java based

 Could be used as THE data generation
framework in the TPC

 Generate updates
 Extend framework to generate queries
 Analyze and potentially fix mismatch with

TPC-H data
 Implement other TPC benchmarks

22

