
Meikel Poess, Tilmann Rabl, Michael Frank, and Manuel Danisch

Third TPC Technology Conference on Performance Evaluation & Benchmarking
August 29, 2011

 Motivation

 Parallel Data Generation Framework PDGF

 PDGF Implementation for TPC-H

 Verification of PDGF’s TPC-H implementation

 Conclusion

2

 Introduced in 1999 (based on TPC-D)
 182 benchmark publications and counting
 8 Tables
 61 columns
 Third normal form
 Scaled by SF

 SF = 1 … 100,000

 Needs to generate
data quickly

3

 Is TPC-H’s current data generator

 Inherited from TPC-D

 Implemented in ANSI-C

 Ported to 20 different platforms

4

 Designed at the University of Passau by Tilmann Rabl
 Was first presented at TPCTC 2010
 Is a generic data generator written in Java
 Can be configured to generate any RDBMS schema
 Can be configured to generate most data types and

distributions
 Numbers, strings, dates, etc

 Uniform, Gaussian, etc.
 Is extensible
 Generates data in parallel (within the same address

space and across address spaces)

5

 Parallel Data Generation Framework (PDGF)

 XML files for configuration
 Reflects SQL schema

▪ Tables
▪ Attributes

 Seed
 Size
 Scale factor
 Output

 Plug-in mechanism
 Generators
 Distributions
 Output

<schema>

…

<tables>

<table name="ORDERS">

<size>1500000</size>

<fields>

<field name="O_ORDERKEY">

<type>java.sql.Types.INTEGER</type>

<generator name="O_OrderKey">

</generator>

</field>

…

 Hierarchical seeding
 Seeds can be cached
 Generation of n-th value with n-th random

number
 Easy reference generation
 Embarrassingly parallel

Customer
Row # CustKey Name …

Table RNG

1

2

3

seed t_id

Column RNGseed c_id

Row RNGseed r_id

Text Appended with Digit(rn)rn

CustomerTableGenerator

 Contains platform specific
implementations is prone
to platform specific bugs

 Needs to be compiled by each
vendor on each platform

 Only implements the TPC-H
schema

 Has values and data
distributions hardcoded

 Generates data in parallel
within an address space and
across address spaces

 Is implemented in Java
Platform independent

 Can be shipped in byte code
 Can implement any RDBMS

schema, including TPC-H
 Separates schema and data

definition from core data
generator

 Generates data in parallel
within an address space and
across address spaces

9

 Clause 4: Scaling and database population:
 Row counts
 Detailed data specification for all columns

▪ 8 Data primitives
▪ 15 Several special cases

Primitive
#Col
umns

Example Column Sample output

Unique Value[min,max] 7 O_ORDERKEY unique within [SF * 1,500,000] 12398709

Date[min,max] 4 O_Orderdate=Date[1992-01-01,1998-08-02] 1995-05-26

Phone Number 2 S_Phone=Phone Number 16-421-927-9442

Random String [instructions] 6 L_Shipinstruct=Random String [instructions] TAKE BACK RETURN

Random Value [min,max] 12 S_Nationkey=Random Value [0,24] 23

Random v-string 2 S_Address=Random v-String [10,40] vs50U4?e5i

Text Append with Digit 5 S_Name=Text Appended with Digit ["Supplier", S_Suppkey] Supplier5628

Text String 8 PS_Comment=Text String [49,198] dependencies beyo

10

 15 Special Cases
 Constants, e.g.

▪ O_SHIPPRIORITY set to 0

 Intra row dependencies , e.g.
▪ L_LINESTATUS set the following value: "O" if L_SHIPDATE >

CURRENTDATE "F" otherwise.

 Intra table dependencies , e.g.
▪ O_ORDERSTATUS set to the following value:

▪ "F" if all lineitems of this order have L_LINESTATUS set to "F".
▪ "O" if all lineitems of this order have L_LINESTATUS set to "O".
▪ "P" otherwise.

 Intra table dependencies , e.g.
▪ L_EXTENDEDPRICE = L_QUANTITY * P_RETAILPRICE (where

L_PARTKEY=P_PARTKEY)

11

 Uniformly distributed within start and end date
 PDGF uses millisecond representation
 Standard generator, uses Java date formating

 Generation
 Pick random number between start and end date

 Special cases
 L_Shipdate: 121 days after O_Orderdate
 Special generator: Calculate reference, add 121 days
 Similarly: L_Receiptdate, L_Commitdate

12

13

 Inter-table dependencies
 Calculated over all lineitems with same

L_Orderkey

 sum(L_Extendedprice*(1+L_Tax)*(1-L_Discount))
 L_Extendedprice
 L_Quantity * P_Retailprice where L_Partkey =

P_Partkey

 Solved with PDGF reference generation
<field name="O_TOTALPRICE">

<type>java.sql.Types.DECIMAL</type>

<generator name="O_TotalPrice">

</generator>

</field>

 Mandatory requirements:
 Row counts: Need to match exactly according to SF
Simple row count

 Derived fields: Need to match exactly according to
specification
 Possibly require complex joins

 All other fields: Need to be statistically equivalent
We use coefficient of variation (CoV)

 Our Approach is to use compliance queries
written in SQL

14

 Cardinalities for Orders, Customer, Supplier,
Part, Partsupp, Nation, Region are specified
in the TPC-H specification

Can be checked with simple “select count(*)”

15

 Cardinality of Lineitem is defined as:
 For each row in the Orders table, a random

number of rows within [1 .. 7] exist in Lineitem

 Need to test three characteristics:
1. Join Frequency

▪ 1 through 7

2. Coefficient of the frequency distribution
▪ 0.000197 for DBgen and 0.000002 for PDGF

3. Row count
▪ DBGEN=600,037,902 rows and PDGF 600,000,000

▪ 0.006317% difference

16

17

Column

CoV of dates Date Range DBgen Date Range PDGF

DBgen PDGF Min Max #distinc

t

Min Max #distin

ct

O_Orderdate 0.0038

8
0.00398

1992-01-

01

1998-08-02
2406

1992-01-

01

1998-08-

02
2406

L_Shipdate 0.1797

0
0.17969

1992-01-

02

1998-12-01
2526

1992-01-

02

1998-12-

01
2526

L_Commitdate 0.1276

2
0.12763

1992-01-

31

1998-10-31
2466

1992-01-

31

1998-10-

31
2466

L_Receiptdate 0.2088

8

0.20887 1992-01-

03

1998-12-31 2555 1992-01-

03

1998-12-

31

2555

SELECT MIN(O_Orderdate)

,MAX(O_Orderdate)

,count(distinct O_Orderdate)

FROM Orders;

SELECT STDDEV(c)/AVG(c)

FROM (SELECT O_Orderdate,count(*) c

FROM Orders

GROUP BY O_Orderdate);

SELECT COUNT(*)

FROM(SELECT O1.O_Orderkey OK,

SUM(L1.L_Extendedprice*(1+L1.L_Tax)*(1-L1.L_Discount)) TP

FROM Lineitem L1,Orders O1

WHERE L1.L_Orderkey=O1.O_Orderkey

GROUP BY O1.O_Orderkey),Orders O2

WHERE OK<>O2.O_Orderkey And O2.O_Totalprice<>TP;

18

This query returns zero rows if the data is correct

 DBGEN shows a wide range for the CoV of various
columns:
 E.g. CoV of the distribution of lineitem to orders is 0.000197

while the CoV of L_Partkey is 0.15503.
 It is up to the TPC to decide whether these CoV are specification

conforming
 For our comparison it is only important whether the data

PDGF generates has the same or better CoV
 For most columns the CoV of PDGF data is better than

that of DBGEN data
 For few columns DBGEN generates data with a better

CoV:
 E.g. Ps_Supplycost shows a CoV of 0.31573 with PDGF and

0.03469 with DBGEN
 Detailed data is in the paper

19

 TPC-H data set
 Data sizes: 1 GB, 10 GB, 100 GB

 Single node (8 cores)
 2 Intel Xeon QuadCore processors, 16GB RAM

20

 Demonstrated that PDGF is a viable
alternative to DBGEN

 PDGF has many advantages over DBGEN

 Generic

 Java based

 Could be used as THE data generation
framework in the TPC

 Generate updates
 Extend framework to generate queries
 Analyze and potentially fix mismatch with

TPC-H data
 Implement other TPC benchmarks

22

