TPC EXPRESS BENCHMARK ™ V (TPCx-V)

Standard Specification

Revision 2.1.8

June 2021

Transaction Processing Performance Council (TPC)
www.tpc.org
info@tpc.org
© 2021 Transaction Processing Performance Council

All Rights Reserved

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 1 of 271

Legal Notice

The TPC reserves all right, title, and interest to this document and associated source code as provided
under U.S. and international laws, including without limitation all patent and trademark rights therein.

Permission to copy without fee all or part of this document is granted provided that the TPC copyright
notice, the title of the publication, and its date appear, and notice is given that copying is by permission
of the Transaction Processing Performance Council. To copy otherwise requires specific permission.

No Warranty

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE INFORMATION CONTAINED HEREIN
IS PROVIDED “AS IS” AND WITH ALL FAULTS, AND THE AUTHORS AND DEVELOPERS OF THE WORK
HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES, DUTIES OR
CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF ACCURACY OR
COMPLETENESS OF RESPONSES, OF RESULTS, OF WORKMANLIKE EFFORT, OF LACK OF VIRUSES, AND OF
LACK OF NEGLIGENCE. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT,
QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO
THE WORK.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THE WORK BE LIABLE TO ANY OTHER PARTY FOR
ANY DAMAGES, INCLUDING BUT NOT LIMITED TO THE COST OF PROCURING SUBSTITUTE GOODS OR
SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT,
INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE,
ARISINGIN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THE WORK, WHETHER OR
NOT SUCH AUTHOR OR DEVELOPER HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Trademarks

TPC Benchmark, TPCx-V, and tpsV are trademarks of the Transaction Processing Performance Council.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 2 of 271

Acknowledgments

The TPC acknowledges the work and contributions of the TPC-V subcommittee member companies:
AMD, Dell, HPE, IBM, Intel, Microsoft, Oracle, Red Hat, Sybase, Unisys, and VMware. In particular, the
TPC acknowledges the work and contributions of Cecil Reames and Doug Johnson.

TPC Membership
(as of June 2018)

Full Members

iRctian. Q/ AMDZ1 T

Alibaba.com CISCO

FUffrsy | Hewerscars | HITACHI | 8414

Enterprise HUAWEI

inspur (intel) B® Microsoft NUTANI>S.

ORACLE ‘ redhat Transpare ﬁ) vmware

Associate Members

< . CAICT

PEEEEETR

@
C - U
International

Document Revision History

Date Version Description
12-Nov-2015 |1.0.0 Initial TPCx-V standard
24-Feb-2016 1.0.1 Add definitions for VM2 and VM3; minor general cleanups

Change Tile count formula
TR from isolation level L3 to L2

September- 200 Accommodate Pricing Spec 2.0
2017 Tighten definition of VMMS
Require disclosure of VMMS configuration and parameters for LCS
General cleanup
December 21.0 Nominal throughput is based on Active Customers; disclose Active Customers in the
2017 o Executive Summary

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 3 of 271

Delete references to VGenValidate
Delete references to Customer Patitioning

March 2018

Delete wording left-over from TPC-E that allowed extension of VGenLoader for direct
loading into the database

June 2018

No changes to the specification. Kit changed in response to bug fixes for FogBugz cases
2456, 2457, 2480, and 2522

August 2018

Add new TPC members

Remove references to extension to VGenLoader and 10.7.6.4, which is gone
In 5.6.4.1, all work must be performed at least once during Ramp-up
Measurement Interval is always 2 hours, 10 Phases

Delete 5.6.5.5; doesn’t apply to an Express Kit

Remove references to to partitioning and 3.2.2.1, which is gone

General clean up, fixing broken references

Remove Clauses (left over frpm TPC-E) that don’t apply to TPCx-V

December
2018

Modify the Specification and kit for FogBugz cases 2887, 2888, and 2889

April 2019

Minor fixes to Supporting Files Index table

Remove the dependency on version 9.3 of PostgreSQL; replace with any “supported”
version of PostgreSQL

August 2019

More clarity and detailed instructions in Clause 6.5.6

Add wording for Market-Feed frequency requirements in 5.3.1

Modify 5.5.1.2 and add 5.5.1.5 for Market-Feed response time requirements
Fix FogBugz cases:

e 2996 DM application continues to run past the end of the run, and produces
erroneous transaction records

e 3009 Check that we have 1,440 MF transactions per phase
e 3010 Market-Feed response time often fails the 90th percentile > average test

¢ 3014 In phases when the load of a group drops, runs often fail with too many TR
transactions

e 3015 Transaction load is not evenly divided among the Tier A database front-end
processes

e 3016 The xVAudit app fails at higher LU counts

¢ 3017 The kit does not catch all transactions with non-success return status codes

April 2020

Minor kit fixes

June 2021

Spec clean-up and additional clarifications in response to FogBugz cases 3193 & 3195:

e Fix what goes in Table 2-1 of FDR. In 8.3.2.1, ask the test sponsor to detail the
physical and virtual storage layout. A combo of words, table, and maybe a diagram

e In 8.3.8.1, say that Supporting Files Index doesn’t have to be detailed

e Add a comment to 1.5.8.1 to address what happens when someone tries a new rev
of PGSQL that will require a change to the kit to work.

¢ Add Clause 1.5.3 for the operating system, similar to 1.5.2 for DBMS
o Additional comments and clarifications in 4.3.4.1.1

e Be precise about “initial database size”. The sponsor must add up the actual used
space after the initial populating

Also kit fixes in reponse to FogBugz cases 3188-3189, 3191-3192, and 3194
o Compress more large stat files in finish_toll.sh
o Collect /etc/redhat-release

e Have /opt/VDb/pgsql/scripts/linux/setup.sh collect initial database sizes at the
conclusion of loading the database

¢ Have VDriver print a message when Test Run starts
e Gracefully handle rare Java error in VCE at the end of the run
¢ Add validation check for 5.7.1.3

Response times printed by VCE polling were wrong. Fix it

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 4 of 271

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 5 of 271

Typographic Conventions

The following typographic conventions are used in this specification:

Convention Description

Bold Bold type is used to highlight terms that are defined in this document

Italics type is used to highlight a variable that indicates some quantity whose value can be

ltalics assigned in one place and referenced in many other places.
Uppercase letters indicate database schema object names such as table and column names.
UPPERCASE In addition, most acronyms are in uppercase.
Diagram Color-Coding Conventions
Concept
Customer Light Green with down diagonal hashing
Broker Pale Blue with up diagonal hashing
Market Rose with horizontal hashing
Implementation
TPC Provided Code Turquoise Italics
Sponsor Provided Code Lavender Underline
Commercially Available Product |Light Yellow

Table of Contents

Clause 0 Preamble 12
0.1 TREFOAUCHION ... e ettt ettt e et e e et e e e e e e 12
0.1.1 The TPCX-HCIBENCAMATKccoiiiueriiiiiiiiiiie ettt ettt e ettt e e e s aae e e e e seenaaeeeesssasseeessesnsseeesessnsseeeesas 12
0.1.2 Goal 0f the TPCX-V DENCIMATKooiiiiiiiiiiiiiieiee ettt ettt e s ettt e e e e st e e e s sesaaeeeesesensaaeeeesas 12
0.1.3 ReStrictions and LIMIEATIONScocuviiiiiiieeiiie ettt e e eeeee et e e e eeateeeeesenaaeeessesnasaeeessssssseeesssssnsseessessssseeessas 13
0.2 General Implementation GUIAEIINES.....................ccoociioiiiiiiiie ettt ettt 13
0.3 General Measurement GUIARLINEScccc..o.ooueeeiiie ettt e e e eaae e 14
0.4 TPCX-V Kit QNA LICENSING........ccucvieiiiiiieieete ettt ettt bbbttt ettt eae e 15
Clause 1 Benchmark Overview 16
1.1 DIGSINILIONS ...ttt ettt ettt ettt et a ekt e ettt e Rt et e at bt ne e heent e bt aeeheebe st ebeett e teeneenes 16
1.2 Business and Application ERVIFORIMENL.................cccccuoviioeiieiiee ettt ettt eae ettt saeese st eseeseenseeneenes 39
1.3 TFANSACLION SUTNIATY ...ttt ettt ettt ettt ettt b e e bttt b et st b ettt ettt eaeeas 43
1.3.1 3 0) = A0 L1 ' 1 1< SRR 43
1.3.2 CUSTOMIET-POSITIONcuvvieiieieeeeiee ettt eee e et e e e et e e et e e eaeeeeetaeeeenneeeeseeeensseeeesseeeenseeeesseeeenseseenneeeeseeeann 43
1.3.3 A o o 2T« SRRSO 43

L TR Y 13 Y VA 1 1] o B 44
135 S@CUITEY-DIELAIL. ..ottt ettt st b e bbbttt et et e st eaeeaeebesbeebesaesaea 44
1306 TradE-LOOKUP ..c.vevimiiiiiieieiteiteiteteet sttt ettt ettt eb e bt se bt b e e st ettt et et e st e st eueebeebeebesbenbenaeas 44

L TN A b v Ve [O ¢ (<) TP 44
1.3.8 T (S AT U SRR 44

JC TN v Ve [7 11 1P 44
1.3.10 TTAAE-UPAALE ...ttt ettt ettt bbbt b e bttt b et se et et ettt be bt be b e 44
1.3.11 Daata-IMAINTENANCEcooeveiieeieeeiieee ettt ee e e ettt e e e e et e eeeesseateeeeseseaaateeessaaaaeeessasasstesssssssseessssnsseeessssraseeeesan 45
1.3.12 TTAAE-CIEANUP.cvevirtitiiterteet ettt ettt ettt a et e b e bt bt s bbb bt et et et e bt eaeebeebeebesbenee 45

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 6 of 271

1.4 MOAEL DESCHIPEION ...ttt ettt ettt ettt b e bbbttt ettt eaeees 46

1.4.1 Entity ReIatiONSNIPScovieeieiieieie ettt ettt et ettt e et et esseense s st ensesseensesseenseensenseensenseensenseenes 46
1.4.2 Differences between CUSTOMET TIETS.......ccviiviiiieeiieiiieeieeetee et eeteeeveesteeeteesteeebeesseessseesseesaseesssessseessesssessseeans 46
L I v Vo [T Y 0TS 46
1.4.4 Effects of Trading 0n HOIAINEScceeieiiiieieiieie ettt s e esaesseenae s e enseneeenes 47
15 TPCX-V BENCHIMATK KT ... et 47
L.5.1 KL COMNEINES ..ueiivieiieietieiie et eetee ettt et e et e eeteeeeveetaeetbe e beeesbe e seessbeessaeasseesssaasssessseesseenseessseanssessseasaesssseseesssennseens 47
T8) 271 TS 48
T B (G U 0TS 48
1.5.5 CONfIGUIAtION FILESeouiieeieiieiieii ettt ettt ettt et e st et e s st ense s st e s e sse e sessaenseensenseensenseensenseenes 48
1.5.6 Addressing Errors in the TPCx-V Benchmark Kit.........c.cccoooieiiriiiiiiiinieeces e 48
1.5.7 Process for Reporting Issues with the TPCx-V Benchmark Kit...........ccccocevinininininininiiienerncncncns 49
1.5.8 Submitting TPCx-V Benchmark Kit Enhancement SUZZESHIONScccveviirieriirieneriereeieie e 49
1.5.9 FULUIE Kit REICASES......iiiuiiiiieiiicieeiee ettt ettt et e et e et e s v e e steesebe e baeesseesbaeesbeesseessbeeseessseasaessseenseessseeseens 50
1.5.10 Common Kit With TPCX-HCTccc.ooiiiiiiiiiicieeeceeee ettt ettt e ve et e e veetee s beesreesabe e saesnseennes 50
Clause 2 Database Design, Scaling & Population 51
2.1 TRIPOAUCHION ... ettt e 51
211 DEIINIEIONS .ouvviiiiiiieeiiecite ettt ettt et e et e et e st e et e e s teeebe e teeeabe e sseasbeesssaasseessseasseensaessseassessseeasseasseenseeanseeseeans 51
2.2 TPCx-V Database Schema and Table DefiNitions.cocuuiriririiriiiiiiiiiiitetet sttt 51
22,1 Data TYPE DETINITIONS.eeveetieieeiieiertesiestertesteste st este et e steeste st e estesseessesseessesseesesseensesssensessseseessenseessenseensensennes 52
2.2.2 Meta-tyPe DETINITIONSeeuviriieiieiieieeiesteste sttt e et e e et et e ste st e este s st essesseessesseensesaeensesnsensessseseensenseensanseansenseenes 53
2.2.3 General SCREMA TEEIMSviiviiiiiiieeeiie ettt ettt et e et e et e eb e e teeetbeestaeebe e saeesseesseesaseessessseessseasseesessnseenseeans 54
2.2.4 CUSTOMET TADIES ..c.eviiuiiiiiiieiieciie ettt ettt et et et e e it e et e e tee et e e aaeeabeessseesseesseesseesseesaseasssessseesssessseensasanseenseeans 55
2.2.5 BIOKET TaDIES.....ueiieiiiiieiiieeieeeee ettt et ettt et e et e e te e e b e e ateeabeestaeeabe e sbeesbeebeesabeesaeesbe e taeerseeteeanreeraeans 59
2.2.6 IMATKEE TADIESveiiiiiiieciiecieeiee ettt et e e e bt e et e e te e et e e aaeeabeestaeeabe e taeeabe e baeeabeetaeaabeearaeesreetaeanreeseeans 62
2.2.7 DIMENSION TADIESccuviiiiiiiiiciii ettt ettt et et e et e e teeebeestaeebe e tbeesseessaesaseassessseeasseesseesesanseeseeans 67
2.3 TMPLEMENIALION RULES ..ottt ettt ettt a et e bt et ess e e sae e b e eseenbeeseebeeeeenns 69
24 TPCx-V Database Size and Table Cardinalityc.ccccooiuiiiirininiiiiiiiiiiiitit ettt 69
2.4.1 Initial Database SiZe REQUITEIMENLScccveriiiieiieieieeiesieeie ettt ettt st e se st essesseesseensesseessenseensenseenes 70
2.4.2 Test Run Database Size REQUITCIMENLScceeieriirieriieieieeiesieeie sttt eee st e sae st e sse st e sesseesseessesseessenseensenseenes 73
Clause 3 Transactions 74
3.1 TRIPOAUCHION ... ettt 74
3. 1.1 DEIINMITIONS .oviiiiietiicie ettt ettt e e et e st e eabeestbeeabe e aseeabe e sseeabeassaeeabeessbeesseasbaeeabaesaeenbeeraeeabeeraeenreennes 74
3.1.2 Database FOOtPIint DEfINITIONcecieiuerieiietieiieieste ettt ettt et e e st e e ss e e tesseenseeseensesseenseeneesseennenseennes 74
3.2 Transaction IMplementation RUIESc.cccoovueiiiiiiiee ettt ettt ettt ebe s ebe e 77
3.2.1 Frame IMPlemMENTAtION.cceevueiuieiieriieieeieeteettete et ete et esteete st estesseensesseensesseensesseensesseensesseansesseensesneenseensessesnses 77
3.3 TRE TFANSACLIONS ... ettt e et e e e et e e e e e enne e e 80
Clause 4 Description of SUT, Driver, and Network 82
4.1 OVEIVICW ... e ettt et 82
4.2 Example Test Configuration IMPIemMENTALIONScucoeiieiuiiieieeieeie ettt ettt ettt aeeaee b e 82
4.3 Further Requirements for SUT and Driver IMpIeMENtQLIONS................cccoeovecuioiiciiiiniiiiiiiineneneeesee et 83
4.3.1 Disclosure of Network CONfIGUIAIONcccercieruerieriieieiieiesie ettt et et esae st e ssestessesseessesnsesseessenseensenseenes 83
4.3.2 Synchronization OF TIMEccceeieriiriereiiere ettt et e st et et et e s et e s e st esesse e sesneessesssenseessenseensenseensensennes 83
4.3.3 SUT Implementation Limits on Operator INterventionccceceeerirerinenieneninieneneieeeeeeteeeie e 83
4.3.4 Valid CONTIGUIALIONSeeuviiieiieiieieeeestestestestestestessesetesteeseesseessesseessesseessesseensesseensesnsensessseseessensenssenseensensennes 83
Clause 5 Execution Rules & Metrics 87
5.1 TRIPOAUCHION ... ettt e e 87
51,1 DefiNition OFf TEIMNScccviiiiieeiiiiiieeieeit ettt ettt ete e st e ete et e e beestaeesbeessaeesseessseesseassseessaesseeaseessessseesssesssennses 87

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 7 of 271

5.2 Dynamic WOorkloQd VAFIQLION.cc.ccocouioiiiiiiiiiiiit ittt ettt 87

5.3 THANSACIION MUX......ooooeeiiiiiiiii ettt et e e e e e e e e e e e et e e e e e e et aaaaaereeeeeeeeeas 89
53,1 MiX REQUITEITIENLSooovieiieiieieiiieieciieiesttete et ettt eteesteteeste st e eseesseessesseensesseensesseensesseanseaseansesssenseeseenseensessesnses 89
5.3.2 Required Precision for Mix Percentage REPOItINgG........c.ccveieruieiiirieiierieieciieie ettt 89
RIRC T TN B 1 : BN\Y, B 11 0163 0 1 (o1 J R 90
G T I Ua S O] 1< 111 1o B USRS 90

5.4 TFANSACLION PAVAMICLEEScooooeeeeeeeeeeeeeeeeee ettt ettt a et e e e eeeeeas 90
54.1 Input Value MixX REQUITEIIENLScceeiruiriiriiriiriintiierienteteteteteit ettt sttt st sttt et et e ettt ebeebeebesbesbesbe e 90

5.5 RESPOISE TUMIE ...ttt ettt ettt et e s et b e e it et eseb e e bt e st e et e et et e enteenteas 91
5.5.1 LT oTe) 0 11T TSP 91

5.6 TEOST RUFL ...ttt et a it aaaaaas 94
5.6.1 DEfINItION OF TEIMNSevvieiieieeeieeeeeee et e e e et e et e e e et e e eaaeeeeaeeeenteeeeenseeeenseeeesneeeenseseenneeeenseeeanns 94
IOV D 17 1 1Tl 00} 4 1<) 1| AR 94
5.6.3 NV - D10 F:1o) (I o0 0] 01 1 10 o1 ISR 95
R T T |] 1 TSRS 96
5.6.5 MeasuremeEnt INTETVALoooiviiiiieie it ee et e et e e et e e e e e et e e esteeeeeaseeeeseeeesneeeenseseenneeeenseeeanns 96
RO D 17 1 11l € (0)" 2 1 + LR 97
5.6.7 Continuous Operation REQUITEIMENLcciruieiiieieiieiert ettt sttt e te sttt eseenseeseeseeseesseennesseennes 97
5.6.8 Performance & Database SI1ZEcccvieeeriiiiiee et ee et e e e e e e e e et e e e e enre e e e e reeeenes 98

5.7 REGUITEA REPDOFLING ... e ettt ettt ettt ettt e bt st e e st enteeseenaesae e b e eseenseeseebeeseenes 98
5.7.1 Reported TRIOUZNPUL.........cciiieiee ettt ettt ettt et e st esbe s s e ente st e enseeseenseeneensesneanseeneenseennes 98
5.7.2 TeSt RUN GIaPR....ceioieiieiecieee ettt ettt ettt et e e et e s st e nae s s e enbesseente et eenseeseanseentenseeneanseennenseennes 98
5.7.3 PrIMATY IMEITICS ..eevieuietieiesieeie et et te e et e et es e et e e est e st esee st eseesseensesseensesseensesseensesseanseaseenseeseansesneaseannenseanses 99

Clause 6 Transaction and System Properties (ACID) 100

6.1 ACID PFOPEILIES ...ttt ettt etttk b e bbbt ettt b e ettt ens 100

6.2 ATOMICTEY ROGUITEIIENEScce ettt ettt ettt ettt ettt e ae e st e s bt e et e bt esabeebeesnbeeneesabeens 100
6.2.1 AtomiCity Property DefiNitionccccueriirierieieieieeieie ettt ettt ettt e st e e st ensesneesesneessesnnensennnens 100
0.2.2 ALOMUCTEY TS .eeuieiiitieieiieie sttt et et ettt et e st e et e setebesaeesseese e s eessenseessesseensenseenseeseansesneensesneesesnsesennsens 101

6.3 CONSISIENCY ROGUITEINEIILSeeeeieieeeeete et ettt ee e e et e et e et e e be et e beest e be e st e eseenseeseeneeeseensesseenseeneensens 101
6.3.1 Consistency Property DefiNItion........c.occveciieieriiiierie ettt ae st e tesseessesneessesneessesnsens 101
6.3.2 CONSISLENCY CONAITIONSevieueeriieieeiietietiesieetesteete st etesseesesseessesseesseaseenseesseseassesseensesseensesseensesnsesesnsessennsens 101
6.3.3 CONSISTENCY TESES ...eeureeieieiiieiecieeteete sttt e et et et e st e eteseeetesseeseeseenseeseenseessesseensenseenseeseansesseensesneesesnsesennnens 101

6.4 ISOLALION REGUITEIMEILS ...ttt ettt et ettt b ettt sa ettt ettt eieas 102
6.4.1 Isolation Property DEfINItiONcceeieriirierieieeieie sttt sttt ettt et esae st e esae e st ensesneesesneesesnnesennnens 102
6.4.2 ISOLALION TESES...cccuviiieieieeeteie et ettt e eet e e e e e et e e et e eeaeeeeaeeeeeaseseenseeeeseeeeesseeeenseeeesseeentsesennneeeaseeeennreeann 103

6.5 DUrability REGUITEIERLSccoeeeieieieeit ettt ettt ettt et e b e e et e beeseeebeesaeeseenseeseenseeseenseeneannes 106
6.5.1 Definition OF COMIMILccviiiiiiieeeiie ettt e e e e e e e e eeteeeeeaeeeeeaseeeeneeeenseeeeenseeeenseeeenneeennreean 106
6.5.2 Definition of Single Point(s) Of FAIIUIEccceriiiiiiieiiciee ettt s 106
6.5.3 Definition of DUrable / DUIaDILItYccccuerieiirieierieie ettt ettt e saesneessesnaessesnnens 107
6.5.4 Durability Testing Rules and GUIAEIINES...........ccveruerieriirieieeiet ettt ae st e saeseessesnnesseennens 107
6.5.5 Definition 0f RECOVEIY TOIMIScueiuieiieiieiieieeiteie ettt ettt e st et e et e enaesseesee st eesseeseensesseensesneessesnsensennnens 108
6.5.6 Durability Test Procedure for Single Points of Failures...........cccccovoveiiirieiirenieieeeeeee e 109
6.5.7 Required Reporting fOr DUIabIlity........c.cccueriieiirieiieieie sttt ettt sttt e aeseeesaesnaessennnens 110

6.6 Data AccesSiDility REGUITEIEILSc.cceeeeeeieieeeie ettt eiee et ee ettt e eteeee et e se et e ebeeseesbeessesseenseeseenseeseeseeneennes 111
6.6.1 | D 1C3 i1 018 (o) o R o}l <) s 1 SRR 111
6.6.2 Data Accessibility Throughput ReqUITEMENtS...........ccoecuirieiiiiiiieeieieeeseee ettt sseennens 111
6.6.3 Failure of DUIAble MEIa........c..ooooouveiiiiie et e e et e e e e e e e eaeeeenteeseenneeeeneeeennreeenns 112
6.6.4 Required Reporting for Data AcCCeSSIDIIILY.....cc.evieiiirieierieie ettt sse e sseennens 114

Clause 7 Pricing 115

7.1 GOIEIT AL ...ttt et e et 115

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 8 of 271

7.2 Priced CONfIGUIALION..............ccccoriiiiiiiiiiiicee ettt ettt ettt ettt sttt ettt 115

7.3 On-line StOrage REGUIFEIENLc.cc.ccueciiiiiiiiiiiae ittt ettt ettt ettt ettt sttt eas 115
7.3.3 Archive Operation REQUITEIMENLccueeieriieieeiieieeiieie sttt ettt eae st e e aesseensesseensesneessesnnensennnens 115
7.3.4 Back-up Storage REQUITEIMENLSc.ccuieierieieiieieeiteieeeeteste et et esteesaesseente st eesaesseensesseensesneessesnsensesnsens 116

7.4 TPCx-V Specific PriCing REGUITEIENLS.c.ccccuveiiiaiiieiiiiate sttt ettt bttt sttt 116
7.4.1 Additional Operational COMPONENLSccueeveruierierierieeieriestesreseesteeeesseestesseessesseesesseesesseessesssessessessessens 116
742 AddItioNal SOTEWATE.......ccviiiiiiiiiiieecieeet ettt ettt et sb et b e ettt ettt eae bt eae b b ebes 116

7.5 COMPONEIE SUDSIITULION. ...ttt ettt et b et sttt sttt 116

7.6 REGUITEA REPDOFLIIG ...ttt ettt ettt e ae e b e st e be e s e ebeesseeteense et e enseeneeseeneannes 117

Clause 8 Full Disclosure Report 118

8.1 Full Disclosure Report REGUIFEIENLSc.cccoocueiiiieeieieee ettt et ettt enae bt enae st enbeeaeeseeneenes 118
L.l GENETAL TERIMIS ...ttt ettt b bbbt ekt s b et bbb e bt e st be bbb bes 118

8.2 Executive Summary SEAEEIENnt ...t 118
8.2.1 First Page of the Executive SUmMmary Statementccoeverieririerieeieneeiese et eeee et sae e sse e ssesnnens 118
8.2.2 Additional Pages of Executive SUMmary Statementccoccueruirierieeiierieieniieieseeeeeeeee e naesee e saessesnnens 119

8.3 Report Disclosure REGUITEIMENES...............ccooiiiiiiiiiiiieceee e 120
8.3.1 RePOIt INITOAUCHION.ieiiiieieceieieee ettt sttt e et e b e e s et e esse st e esaeeseensesneesesneesesnsensennnens 120
8.3.2 Clause 2 Database Design, Scaling & Population Related [tems...........cecieeierieiiinieciriee e 122
8.3.3 Clause 3 SUT, Driver, and Network Related Items.............ccoeviieiiiiiieiiecic ettt e 123
8.3.4 Benchmark Kit Related TtemS........ceoueuiriririiiieirie ettt et ebe e 123
8.3.5 Clause 5 Performance Metrics and Response Time Related Itemsccccveviieienierinieneeiere e 123
8.3.6 Clause 6 Transaction and System Properties Related Items............ceverierieiieniecieeieeec e 123
8.3.7 Clause 7 Pricing Related TtemS........c.coiriiiriiiiniiieeeeeetccte ettt 124
8.3.8 Supporting Files Index Tablec.ccccccooiiiiiiiiicccccceeecce e 124

8.4 SUPPOTEING FTIES ...ttt ettt h ekt h ettt b e ettt 124
8.4.1 SupportingFiles/INtroduction DITECLOTY.........cccuerieiiirierieeieriesierteeteieete st et et ete st eeae st ensesseensesneessesnsessesnnens 125
8.4.2 SupportingFiles/Clause2 DITECIOTYcovveuirieuiiieiiiteeiiteeieteeeeteseeteterestetestete st etesbetesbesesseseesessesessesessesassesessesesnas 125
8.4.3 SupportingFiles/Clause3 DITCCIOIYc.eeieriieiierieiieeiertesteriesteste st eteste e eeaesseensesseesseeseensesseensesneessesnsessesssens 125
8.4.4 SupportingFiles/Claused DITECIOIYc.eeueriieiierieieeeesiestertestesieste e seesteesae st esaesseesseeseessesseensesneessesnsensennsens 125
8.4.5 SupportingFiles/Clauses DITECIOIYc.eeieriieiierieieeterteseertestes e st et see st esae st enaesseesseeseessesseensesneessesnsensesnsens 125
8.4.6 SupportingFiles/Clausel DITECIOIYcccueriieierieieeieiteetertestes e et et ete e este st esaesseesseeseessesseensesneessesnsensesnnens 125

Clause 9 Audit 126

9.1 GENEFAL RULES ...ttt ettt ettt et e et eae e et e e tt e et e e eaaeeate e eabeeateeeaseeareeeaee e 126

9.2 Self-validation, Self-audit, and the role of the AUILOFcccooiviiiniiiiiiiiiiiiie e 127
9.2.1 Numerical validation by the Benchmark Kit............ccceoiriiiiiieiinieiieeseee et 128
0.2.2 AUAIE TOOIS ettt ettt ettt et b bbbtk h e a et bttt et s bt bt bbb 128

9.3 AUTEING he DATADASE ..ottt ettt ettt e bt e et e e eseenbe st enseeaeeseeneennas 128
9.3.1 Schema Related TEEIMS.ccueruiiiiiieiriireeeet ettt ettt st ettt ettt be bt ebe b enes 129
9.3.2 Population Related IEEIMSc..cuiuiiiiiriiiiiirtieere sttt sttt ettt ebe s 129

9.4 AUATLING 1hE TPANSACIIOMS. ..otttk ettt sttt ens 130

9.5 Auditing the SUT, DFiver Qnd NEIWOTEKS............cccoccueiiiieiieieee ettt ettt ettt eae st eeaeseeaeenseeneenes 130

9.6 Auditing BenCRIMAPK Ktoooiiiiiiiiieeee ettt 130

9.7 Auditing the Execution RUles And MEIFICSc.cccoocuiiieieiieieei ettt nse e 131
9.7.1 Pre-run Configuration TEEIMIScueeieiiieierieieet ettt sttt e st e st e enae e st ensesneesesneessesnsensennnens 131
9.7.2 Runtime Configuration TEEIMSccceriririririririierterteetet ettt sttt a et e et be et ebe b eaes 131
9.7.3 Runtime Data Generation ILEIMNSc.ceceriririririninereee ettt ettt ettt ettt ebe b 132
0.7.4 ReSPONSE TIME TLEIMIS.ceiiuiiiiieieieeieieeie ettt ettt st e st e e et e b e e st e seense st e esseeseensesseensesneesesnnesennsans 132
0.7.5 TRIrOUGHPUL TEEIMIS.eieieieeiieiecii ettt ettt ettt et e st e e st e e e se e s e esseseensesseenseeseansesseensesneensesnsensennnans 132

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 9 of 271

0.7.6 MaArKet-FEed IEEIMSoeioeeieeeeiie e e e e e e e e e et e e e aaeeeenseeeeneeeentaesennneeeenreeeennreeens 132

0.7.7 Data-Maintenance [LEIMSccveriirieiiieierieiest ettt ete st e e s ee b e s eeesbeesaesseessenseensesseensesseensesneesesnsesesnsens 132
0.7.8 StEAAY StAte IEOIMIS....c.eetieieieieie ettt ettt ettt et e st e st e st e s e e st e s e ese e s e esseseent et e enseeseenseeneeneeneeneenneseennens 132
0.7.9 Space Calculation TtEIMSccceiieriirieiieiese ettt et e st e et e et et e esaesteesse st eesaeeseensesseesesnnesesnsesennnens 133
9.8 AUATNG 1HE ACID TOSES ...ttt ettt b bbbttt b ettt 133
0.8.1 ALOMUCTEY TEEIIIS ...t ceieie ettt ettt ettt ettt e b e st e s e s se e s e esee st e esseseensenseenseeseensesneensesneensesnsesennsans 134
0.8.2 CONSISTENCY [EEIMISeetieiieieieiecieeie ettt et ettt et e st e e st etess e e se e s e e s e esee s eesseseensesseenseeseansesneensesneensesnsensennnens 134
0.8.3 ISOLALION TECIIIS .. .eeueieeieeieiie ettt ettt ettt et e st et e st e e b e s ae e s e s s e e s s e eseenseessenseensenseenseeneensesneensesneesesnsensennsans 134
0.8.4 Data AcCeSSIDIILY TEIIIS ..ottt sttt et ettt ettt 134
0.8.5 BUSINESS RECOVEIY TEIMS ..ottt sttt e et e ent et e esae e st ensesneensesneesesnnesennnens 134
9.9 AUTEING THE PFICIIZ ...ttt ettt et ettt et e bt s e et e e e e e bt e st e eae e s e eseenbeestenbeeaeeseeneennes 134
910 AUAGIAG hE FDR...........ooeieieeiiee ettt ettt ettt ettt e bt et e bt at e a e nb ettt ene et ne e te s et s 135
Clause 10 TPCx-V Benchmark Kit design document 136
10.1 Description of SUT, Driver, nd NEtWOFK.................ccooouieiiiiiiiieeeie ettt 136
10.1.2 Driver & System Under Test (SUT) DEfiNItionScccvevueriereirieiieiesieieseeteseeee e seesee e sneessesnesseennens 141
10.1.3 Further Requirements for SUT and Driver Implementationscccceecveeierieneenienieneseeneseeseeeesieenns 142
10.2 Driver Implementation AVCRIEECIUFESccccvciiciiiiiiiiiiitee ettt ettt ettt 143
10.2.1 The SIMPLE CE ...ttt ettt st e st e et e b e este st en s e st ensesseenseeneensesneensesnsensesnsesennnens 143
10.2.2 The Replicated CEoooiiieieiieeieeeee ettt sttt ettt ettt e st et e st e et e enseeneensesneesesneensesnsensennsens 144
10.2.3 Driver Reporting REQUITEIMENLSeecuieiieiieieieeieie ettt ettt ettt et e st essesneessesseensesnsensesnsensennnens 145
10.3 TIMPIEMENIALION RULES ...ttt ettt ettt ettt sa ettt ettt 145
10.3.3 TaDLE PaTtitiONING.ecueeieieetetieiestieteee et et et et ete st e ssesste st essaeseessesseensanseansesseensesseensesneensesnsensesnsensennsens 146
10.3.11 USET-DEfINed ODJECES. ... e uieiieieriieieciiee ettt ettt et ettt ettt e st ete s st e sesseensessaenseesaenseensenseensenseensesseenses 147
10.4 TNEEGFIEY RUIES ...ttt ettt ettt h e bt ettt bt b ettt eaeas 147
10.5 Data Access Transparency REGUITEIMENLSccccciiuiiiiiiiiiiiiiiiiiiieit ettt ettt 148
10.6 TRE THANSACTIONS ...ttt et ettt ettt e ettt e et e et e et e e as e et e e ett e e ateeetseenbeeeaseenseesaseeaseeeaee e 148
10.6.1 The BroKer-Volume TranSaCtiONc.eeeeruieierierierieetesestesseetesteetesseessesseessesseensesseessesseessesssessessessesssens 148
10.6.2 The Customer-Position TTANSACTIONc.eecvieierierierieeiesesteseetesteeeesteese st essesseessesseesesseensesnsessesnsessesnsens 151
10.6.3 The Market-Feed TranSaCtion...........vecueeieriirierieeiesiestesiestes e eteteeetesseessesseeseesseessesseensesseensesnsensesnsessesnsens 158
10.6.4 The Market-WatCh TTanSACtIONeccuieieriirieie ettt ettt ettt e s e st e sesseessesnsensesnnensennnens 161
10.6.5 The Security-Detail TTanSACTIONccuieieriieieieeieie ettt e ettt et et e s st essesseensesseensesnsensesnsessesnnens 165
10.6.6 The Trade-LooKup TIanSACIONc..ccueoveieiriririinienie sttt ettt ettt ettt st sttt se ettt eese st bt ebeenes 173
10.6.7 The Trade-Order TTANSACHIONccvecueeieriieieie ettt ettt ettt ete e este s et essesseenseeseensesseesesnsensesnsensesnnens 186
10.6.8 The Trade-Result TranSaCtiON.c.ccveiiieierieeierieeierie ettt et ete bt etesseesse s st ensesseensesseensesseensesnsensesnsessesnsens 204
10.6.9 The Trade-Status TraNSACTIONccuevtieiieieieeieieeterte et et et et ete st eetesteesses st essesseensesseensesseensesnsensesnsensesnsens 225
10.6.10 The Trade-Update TranSACIONcc.evuirteruiriintirterietetetetet ettt sttt ettt ettt et et eseere b b 229
10.6.11 The Data-Maintenance TTanSACtIONcecuieierierierieeeereetesteetesteetesteestesteessesseessesseesesseessesnsessesnsessesnsens 242
10.6.12 The Trade-Cleanup TTanSACTIONcoeruiruirtirerienteietetet ettt ettt ettt ettt ettt eseeseebe b e 253
10.7 PIG@IL......oceeeeeeeeeee ettt ettt ettt ettt a et h e h e h et bbb at st nteteeaseteene et eae b e b et ettt ensens 257
10.7.1 OVETVIEW ...ttt setetesteste et et e eete bt este st e e st e e st eneeestesseestensesaeesesstenseessenseense s e enseseenseeseenseeneensesneensesntensesnsensennsans 257
10.7.2 Y€ 3 T < T TSRS 257
10.7.3 COMPUANE VGEN VEISIONSeevieiieiieiieiieieeiieteetestestestesstessessaesseessesseessesseessesseensesssensesseessesnsessesssessessens 258
10.7.4 VGENINPULFILES ...ttt ettt et et e e s s e e tesse e seesaenseeseenseenaenseeneenseensesneennes 258
10.7.5 VGENSOULCEFILIES ...ttt ettt et ettt et e s st eaesse e tesseenseesaenseesaenseenaenseensaseensesneenses 258
10.7.6 Y€ 11 I 1a 1< PR SRRRR 259
10.7.7 Y€ 1311 5 1< TSRS 259
10.7.8 VGENTKNHAINESS........ceuvieiieteeiieriteie et tete st e e et ete et este e st eseeste s st estesseensesseensesseensessaensesssenseensanseensenseensesneenses 259
Appendix A. Executive Summary Statement 269
Al Sample Executive SUMMQAFY SIQEEMENLc..ccccuecuioiiiiiiiiieeete ettt ettt sttt e 269

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 10 of 271

Table of Figures

Business Model: Data Center il @ BOX............c.ccccuiouiiiiiiiiiiiiieiet ettt ettt ettt ettt sttt sttt 39
SIMPLIfIed VM COMPORERLS............cccoccieiiiiriisiiaiieiesteee ettt ettt ettt ettt et ettt eb et b e bbbttt et et eneeteeaes 40
Demands BY WOFKIOQUL...................cccooiiiniiiiiiiiiiiee ettt ettt ettt b ettt ettt 41
Business Model TranSaction FIOW...............ccccoeouioiiiiioiiiiiiiit ittt ettt ettt sttt ettt 42
APDIICALION COMPOMNERLS ...ttt ettt ettt e et ettt h e bt ekt bttt b b bt ettt et et ebeeaeeaeas 43
Frames Interfacing with the Harness and the Databaseccocviiiririiniioiiiiiiiiiieiit ettt 74
Figure 4.a - Sample Component of Physical Test CONfIGUIALION..............c..cccoeriioicoiiiiiiieiiteeet ettt 82
Figure 4.b — Valid number of Tiles versus ag@regare LUS.............ccccocuiriiiiiniiiiiiiieietet ettt 85
Figure 5.a - Dynamic [0 VAFIALIONc..ccoocuiiiiiei ettt ettt eae e eae et et se st e besseebeeseebeeneenes 88
Figure 5.b - Measuring ReSPONSE TUME.............cc.cccoeiaeieieeieiieee ettt ettt ettt ettt eae e ae e e s et enbesseeseeseebeeseanseeseenes 93
Figure 5c - Example of the Measured Throughput versus Elapsed Time Graph...............cccccoocuviiininiiniinincncnceeene, 99
Figure 8a - Example of Measured Benchmark CONfIGUIALIONccooveiiriiniiiiiiiiieiit ittt 121
Figure 10.a - Diagram of the Real-World OLTP ERVIFONIENL..............c..ccocoeiiiriiieieieieieiiet sttt 136
Figure 10.b - Abstraction of the Functional Components in an OLTP ENVIroRmMent..............c.cccccoccuvenienvininenencneenens 137
Figure 10.c - Functional Components of the Test CORfIQUFALION.ccceeeruirieieiiiiieiet ettt 138
Figure 10.d - Defined Components of the Test CONfIGUIQLIONcccccreruereriiniiiiiiiiieiet ettt 141
Figure 10.€ - The Simple CE............ccccooiiiiiiiiiieeee ettt ettt ettt b et sb e bttt ettt 144
Figure 10.f The RepliCated CE ...ttt ettt et b et bt bttt 145
Figure A.a - Hierarchy of VGen DIFECIOTY............cc.coucciiuioiioiiiiiit ittt ettt sttt sttt 260
Figure A.b - High Level Overview of a Sample IMplementalion.....................ccccoeeueeueoieoiioiiiiioiiiiiiiene e 265

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 11 of 271

0.1

0.1.1

0.1.2

CLAUSE 0 PREAMBLE

Introduction

TPC Express Benchmark V (TPCx-V) is an On-Line Transaction Processing (OLTP) workload utilizing
the latest technology for providing multiple concurrent operating and application environments running
on a platform. The workload is a mixture of read-only and update intensive transactions distributed
across multiple computing environments simulating the activities found in a conglomeration of complex
OLTP application environments. The database schema, data population, transactions, and
implementation rules have been designed to be broadly representative of modern OLTP systems running
in complex virtualized environments. The benchmark exercises a breadth of system components
associated with such environments, which are characterized by:

The simultaneous execution of multiple transaction types that span a breadth of complexity;
Moderate system and application execution time;

Multiple concurrently executing and isolated operating environments;

Heterogeneous resource requirements across operating environments;

Dynamic workload requirements across operating environments;

Flexible resource allocation;

A balanced mixture of disk input/output and processor usage;

Transaction integrity (ACID properties);

O P NN D=

A mixture of uniform and non-uniform data access through primary and secondary keys;

—_
o

. A mixture of heterogeneous and homogenous database and application environments;

. Multiple databases with many tables with a wide variety of sizes, attributes, and relationships with
realistic content;

—_
—_

12. Contention on data access and update;
13. Stringent Quality of Service requirements.

The TPCx-V operations are modeled as follows:

1. The operating environments and their databases are continuously available 24 hours a day, 7 days a
week, for data processing from multiple Sessions with full access to the data in all tables, except
possibly during infrequent maintenance Sessions.

2. Consolidation of multiple database and application environments utilizing virtual operating
environments to fully utilize system capabilities while limiting operating costs.

3. Due to the worldwide nature of the application modeled by the TPCx-V benchmark, any of the
transactions may be executed against its database at any time.

The TPCx-HCIBenchmark

Although the same Benchmark Kit may be used for both TPCx-V and TPCx-HCI benchmarks, the results
of the TPCx-V and TPCx-HCI benchmarks may not be compared against each other.

Goal of the TPCx-V benchmark

The TPCx-V benchmark simulates the OLTP workload of a brokerage firm. The focus of the benchmark
is the central database that executes transactions related to the firm’s customer accounts. In keeping with
the goal of measuring the performance characteristics of the database system, the benchmark does not
attempt to measure the complex flow of data between multiple application systems that would exist in a
real environment.

The mixture and variety of transactions being executed on the benchmark system is designed to capture
the characteristic components of a complex system. Different transaction types are defined to simulate
the interactions of the firm with its customers as well as its business partners. Different transaction types
have varying run-time requirements.

The benchmark defines:
1. Twotypes of transactions to simulate Consumer-to-Business as well as Business-to-Business activities

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 12 of 271

0.1.3

0.2

2. Several transactions for each transaction type

3. Different execution profiles for each transaction type

4. A specific run-time mix for all defined transactions

For example, the database will simultaneously execute transactions generated by systems that interact

with customers along with transactions that are generated by systems that interact with financial markets
as well as administrative systems.

The benchmark system will interact with a set of Driver systems that simulate the various sources of
transactions without requiring the benchmark to implement the complex environment.

The Performance Metric reported by TPCx-V is a "business throughput” measure of the number of
completed Trade-Result transactions processed per second (see Clause 5.7.1). Multiple Transactions are
used to simulate the business activity of processing a trade, and each Transaction is subject to a Response
Time constraint. The Performance Metric for the TPCx-V benchmark is expressed in transactions-per-
second-V (tpsV). To be compliant with the TPCx-V standard, all references to tpsV Results must include
the tpsV rate, the associated price-per-tpsV and the Availability Date of the Priced Configuration (See
Clause 5.7.3 for more details).

Although this specification defines the implementation in terms of a relational data model, the database
may be implemented using any commercially available Database Management System (DBMS),
Database Server, file system, or other data repository that provides a functionally equivalent

"on

implementation. The terms "table", "row", and "column" are used in this document only as examples of
logical data structures.

TPCx-V uses terminology and metrics that are similar to other benchmarks, originated by the TPC and
others. Such similarity in terminology does not imply that TPCx-V Results are comparable to other
benchmarks. The only benchmark Results comparable to TPCx-V are other TPCx-V Results that
conform to a comparable version of the TPCx-V specification.

Restrictions and Limitations
Despite the fact that this benchmark offers a rich environment that represents many OLTP applications,
this benchmark does not reflect the entire range of OLTP requirements. In addition, the extent to which

a customer can achieve the Results reported by a vendor is highly dependent on how closely TPCx-V
approximates the customer apﬁlication. The relative performance of systems derived from this
benchmark does not necessarily hold for other workloads or environments. Extrapolations to any other
environment are not recommended.

Benchmark Results are highly dependent upon workload, specific application requirements, and
systems design and implementation. Relative system performance will vary because of these and other

factors. Therefore, TPCx-V should not be used as a substitute for specific customer application
benchmarking when critical capacity planning and/or product evaluation decisions are contemplated.

Benchmark Sponsors are permitted various possible implementation designs, insofar as they adhere to
the model described and pictorially illustrated in this specification. A Full Disclosure Report (FDR) of
the implementation details, as specified in Clause 8 , must be made available along with the reported
Results.

Comment: While separated from the main text for readability, comments are a part of the standard and
must be enforced.

General Implementation Guidelines

The purpose of TPC benchmarks is to provide relevant, objective performance data to industry users. To
achieve that purpose, TPC benchmark specifications require that benchmark tests be implemented with
systems, products, technologies and pricing that:

1. Are generally available to users.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 13 of 271

0.3

2. Are relevant to the market segment that the individual TPC benchmark models or represents (e.g.,
TPCx-V models and represents high-volume, complex OLTP database environments).

3. A significant number of users in the market segment the benchmark models or represents would
plausibly implement.

The use of new systems, products, technologies (hardware or software) and pricing is encouraged so long
as they meet the requirements above. Specifically prohibited are benchmark systems, products,
technologies, pricing (hereafter referred to as "implementations") whose primary purpose is performance

optimization of TPC benchmark Results without any corresponding applicability to real-world
applications and environments. In other words, all "benchmark specials” implementations that improve

benchmark Results but not real-world performance or pricing, are prohibited.

The following characteristics should be used as a guide to judge whether a particular implementation is
a benchmark special. It is not required that each point below be met, but that the cumulative weight of
the evidence be considered to identify an unacceptable implementation. Absolute certainty or certainty
beyond a reasonable doubt is not required to make a judgment on this complex issue. The question that

must be answered is this: based on the available evidence, does the clear preponderance (the greater
share or weight) of evidence indicate that this implementation is a benchmark special?

The following characteristics should be used to judge whether a particular implementation is a
benchmark special:
1. Is the implementation generally available, documented, and supported?

2. Does the implementation have significant restrictions on its use or applicability that limits its use
beyond TPC benchmarks?

3. Is the implementation or part of the implementation poorly integrated into the larger product?

Does the implementation take special advantage of the limited nature of TPC benchmarks (e.g.,

transaction Profile, Transaction Mix, transaction concurrency and/or contention, transaction isolation)
in a manner that would not be generally applicable to the environment the benchmark represents?

1. Is the use of the implementation discouraged by the vendor? (This includes failing to promote the
implementation in a manner similar to other products and technologies.)

2. Does the implementation require uncommon sophistication on the part of the end-user, programmer,
or system administrator?

3. Is the pricing unusual or non-customary for the vendor, or unusual or non-customary to normal
business practices? See the effective version of the TPC Pricing Specification for additional
information.

4. Is the implementation being used (including beta) or purchased by end-users in the market area the
benchmark represents? How many? Multiple sites? If the implementation is not currently being
used by end-users, is there any evidence to indicate that it will be used by a significant number of
users?

General Measurement Guidelines

TPC benchmark Results are expected to be accurate representations of system performance. Therefore,

there are certain guidelines, which are expected to be followed when measuring those Results. The
approach or methodology is explicitly outlined in or described in the specification.

e The approach is an accepted engineering practice or standard.
e The approach does not enhance the Results.
e Equipment used in measuring Results is calibrated according to established quality standards.

e Fidelity and candor is maintained in reporting any anomalies in the Results, even if not specified in
the benchmark requirements.

The use of new methodologies and approaches is encouraged so long as they meet the requirements
above.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 14 of 271

0.4

TPCx-V Kit and Licensing

The TPCx-V kit is available from the TPC. The user must sign-up and agree to the TPCx-V End User
Licensing Agreement (EULA) to download the kit. Re-distribution of the kit is governed by the terms of
the EULA. All related work (such as collaterals, papers, derivatives) must acknowledge the TPC and

include the TPCx-V copyright. The TPCx-V Benchmark includes: TPCx-V Specification document (this

document), TPCx-V Users Guide documentation, and the TPCx-V Benchmark Kit, which consists of
Java and C++ code to execute the benchmark load, and various scripts to set up the benchmark

environment. The Test Sponsor is required to run the TPC-provided kit as per Section 12 of TPC policies,
which describes the requirements for Express Benchmarks. See Clause 1.5 for details.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 15 of 271

1.1

CLAUSE1 BENCHMARK OVERVIEW

Definitions
GENERAL

tpsV

tpsV is the primary performance metric for TPCx-V.

ACID

ACID stands for the transactional properties of Atomicity, Consistency, Isolation and Durability.

Active Customers

Active Customers means the number of customers (with corresponding rows in the associated TPCx-V
tables) that are accessed during the Test Run. Active Customers may be a subset of Configured
Customers that were loaded at database generation.

Add

The word “Add” indicates that a number of rows are added to the TPCx-V table specified by the

Database Footprint. TPCx-V Table row(s) can only be added in a Frame where the word “Add” is
specified.

Application

The term Application or Application Program refers to code that is not part of the commercially available

components of the SUT, but used specifically to implement the Transactions (see Clause 3.3) of this
benchmark. For example, stored procedures, triggers, and referential integrity constraints are considered

part of the Application Program when used to implement any portion of the Transactions, but are not
considered part of the Application Program when solely used to enforce integrity rules (see Clause 10.4)
or transparency requirements (see Clause 10.5) independently of any Transaction.

Application Recovery

Application Recovery is the process of recovering the business application after a Single Point of Failure
and reaching a point where the business meets certain operational criteria.

Application Recovery Time

Application Recovery Time is the elapsed time between the start of Application Recovery and the end
of Application Recovery (see Clause 6.5.5.5).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 16 of 271

Arbitrary Transaction

An Arbitrary Transaction is a Database Transaction that executes arbitrary operations against the
database at a minimum isolation level of LO (see Clause 6.4.1.3).

Attestation Letter

If an independent, TPC-Certified Auditor has audited the Result, the Auditor’s opinion regarding the
compliance of a Result must be consigned in an Attestation Letter delivered directly to the Sponsor.

Audit Tools

A set of Java applications included in the Benchmark Kit that are run by the Test Sponsor to produce
reports that facilitate the independent audit process.

Auditor

The term Auditor is used as a generic term in this specification, referring to either an independent, TPC-

Certified Auditor. or a Pre-Publication Board, either of whom can review and certify a Result for
publication.

Availability Date

The date when all products necessary to achieve the stated performance will be available (stated as a
single date on the Executive Summary Statement). This is known as the Availability Date.

B

BALANCE_T

BALANCE_T is defined as SENUM(12,2) and is used for holding aggregate account and transaction
related values such as account balances, total commissions, etc.

Benchmark Kit

The TPCx-V Benchmark Kit is an Express benchmarking kit that conforms to the TPC policies, which

describe the requirements for Express Benchmarks. The Benchmark Kit is a complete application that
builds the schema, populates the database, runs the transactions, records complete run time data, post-
processes the logged records to generate performance results, and validates the results against this

specification. Test Sponsors are required to use the TPCx-V Benchmark Kit for reporting TPCx-V
results.

Although the same Benchmark Kit may be used for both TPCx-V and TPCx-HCI benchmarks, the results
of the TPCx-V and TPCx-HCI benchmarks may not be compared against each other.

BLOB(n)

BLOB(n) is a data type capable of holding a variable length binary object of n bytes.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 17 of 271

BLOB_REF

BLOB_REF is a data type capable of referencing a BLOB(n) object that is stored outside the table on the
SUT.

BOOLEAN
BOOLEAN is a data type capable of holding at least two distinct values that represent FALSE and TRUE.

Brokerage Initiated

Brokerage Initiated Transactions simulate broker interactions with the system and are initiated by the
Customer Emulator component of the benchmark Driver.

Broker Tables

Broker Tables include 9 tables that contain information about the brokerage firm and broker related data.

Business Day

Business Day is a period of eight hours of transaction processing activity.

Business Recovery

Business Recovery is the process of recovering from a Single Point of Failure and reaching a point
where the business meets certain operational criteria.

Business Recovery Time

Business Recovery Time is the elapsed period of time between start of Business Recovery and end of
Business Recovery (see Clause 6.5.5.9).

C

Catastrophic

Catastrophic is a type of failure where processing is interrupted without any foreknowledge given to the SUT.
Subsequent to this interruption, only in the failed database instance are all contexts for all active
applications lost and all memory cleared.

CE

See Customer Emulator.

CHAR(n)

CHAR(n) means a character string that can hold up to n single-byte characters. Strings may be padded
with spaces to the maximum length. CHAR(n) must be implemented using a Native Data Type.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 18 of 271

Commit / Committed

Commit is a control operation that:
¢ Isinitiated by a unit of work (a Transaction)
e Isimplemented by the DBMS

e Signifies that the unit of work has completed successfully and all tentatively modified data are
to persist (until modified by some other operation or unit of work)

Upon successful completion of this control operation both the Transaction and the data are said to be
Committed.

Configured Customers

Configured Customers means the number of customers (with corresponding rows in the associated
TPCx-V tables) configured at database generation.

Customer Emulator

One key piece of a compliant TPCx-V Driver is the Customer Emulator (CE). The CE is responsible for
emulating customers, requesting a service of the brokerage house, providing the necessary input for the

requested service, etc. Therefore, the CE is responsible for the following.

¢ Deciding which Customer Initiated or Brokerage Initiated Transaction to perform next (Broker-
Volume, Customer-Position, Market-Watch, Security-Detail, Trade-Lookup, Trade-Order, Trade-
Update and Trade-Status).

¢ Generating compliant data to be used as inputs for the selected Transaction.
¢ Sending the Transaction request and associated input data to the SUT.
¢ Receiving the Transaction response and associated output data from the SUT.

e Measuring the Transaction's Response Time.

Comment: The CE may optionally perform additional operations as well, such as statistical accounting,
data logging, etc.

Customer Initiated

Customer Initiated Transactions simulate customer interactions with the system and are initiated by the
Customer Emulator component of the benchmark Driver.

Customer Tables

Customer Tables include 9 tables that contain information about the customers of the brokerage firm.

D

Data Accessibility

Date Accessibility is the ability to maintain database operations with full data access after the permanent
irrecoverable failure of any single Durable Medium containing database tables, recovery log data, or
Database Metadata.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 19 of 271

Data-Maintenance Generator

Another key piece of a compliant TPCx-V Driver is the single instance of the Data-Maintenance
Generator (DM). The DM is responsible for:

e Generating compliant data to be used as inputs for the Data-Maintenance Transaction
¢ Sending the Transaction’s request and associated input data to the SUT

e Receiving the Transaction’s response and associated output data from the SUT and measuring the
Transaction’s Response Time.

Database Footprint

The Database Footprint of a Transaction is the set of required database interactions to be executed by
that Transaction.

Database Interface

Database Interface is a commercially available product used by the Frame Implementation to
communicate with the Database Server. It is possible that the Database Interface may communicate with
the Database Server over a Network, but this is not a requirement.

Database Logic

Database Logic is TPC provided Frame implementation logic (e.g. stored SQL procedure).

Database Management System

A Database Management System (DBMS) is a collection of programs that enable you to store, modify,

and extract information from a database. There are many different types of DBMSs, ranging from small
systems that run on personal computers to huge systems that run on mainframes. From a technical

standpoint, DBMSs can differ widely. The terms relational, network, flat, and hierarchical all refer to the

way a DBMS organizes information internally. The internal organization can affect how quickly and
flexibly you can extract information. Requests for information from a database are made in the form of a
query, which is a stylized question. The set of rules for constructing queries is known as a query language.

The information from a database can be presented in a variety of formats. Most DBMSs include a report
writer program that enables you to output data in the form of a report.

Database Metadata

Database Metadata is information managed by the DBMS and stored in the database to define, manage
and use the database objects, e.g. tables, views, synonyms, value ranges, indexes, users, etc.

Database Recovery

Database Recovery is the process of recovering the database from a Single Point of Failure system
failure.

Database Recovery Time

Database Recovery Time is the duration from the start of Database Recovery to the point when database
files complete recovery.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 20 of 271

Database Server
A Database Server is a commercially available product(s). TPC provided logic may run in the context of
the Database Server (e.g. a stored SQL procedure). An example of a Database Server is:

e commercially available DBMS running on a

e commercially available Operating System running on a

e commercially available hardware system utilizing

e commercially available storage

Database Session

To work with a database instance, to make queries or to manage the database instance, you have to open
a Database Session. This can happen as follows: The user logs on to the database with a user name and
password, thus opening a Database Session. Later, the Database Session is terminated explicitly by the
user or closed implicitly when the timeout value is exceeded. A database tool implicitly opens a Database
Session and then closes it again.

Database Transaction

A Database Transaction is an ACID unit of work.

Data Growth

Data Growth is the space needed in the DBMS data files to accommodate the increase in the Growing
Tables resulting from executing the Transaction Mix at the Reported Throughput during the period of
required Sustainable performance.

DATE

DATE represents the data type of date with a granularity of a day and must be able to support the range
of January 1, 1800 to December 31, 2199, inclusive. DATE must be implemented using a Native Data

Type.

Comment: A time component is not required but may be implemented.

DATETIME

DATETIME represents the data type for a date value that includes a time component. The date

component must meet all requirements of the DATE data type. The time component must be capable of
representing the range of time values from 00:00:00 to 23:59:59. Fractional seconds may be implemented,

but are not required. DATETIME must be implemented using a Native Data Type.

DBMS

See Database Management System

Digit
Digit means decimal digit.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 21 of 271

Dimension Tables

Dimension Tables include 4 dimension tables that contain common information such as addresses and
zip codes.

DM

See Data-Maintenance Generator.

Driver

To measure the performance of the OLTP system, a simple Driver generates Transactions and their

inputs, submits them to the System Under Test, and measures the rate of completed Transactions being
returned. To simplify the benchmark and focus on the core transactional performance, all application
functions related to user interface and display functions have been excluded from the benchmark. The

System Under Test is focused on portraying the components found on the server side of a transaction
monitor or application server.

Durability
See Durable.

Durable / Durability

In general, state that persists across failures is said to be Durable and an implementation that ensures
state persists across failures is said to provide Durability. In the context of the benchmark, Durability
is more tightly defined as the SUT’s ability to ensure all Committed data persist across any Single Point
of Failure.

Durable Medium

Durable Medium is a data storage medium that is inherently non-volatile such as a magnetic disk or
tape. Durable Media is the plural of Durable Medium.

Elasticity Phase

Elasticity Phase is any one of the ten 12-minute load variation periods defined in Clause 5.2.

ENUM

ENUM(m[,n]) or SENUM(m[,n]) means an exact numeric value (unsigned or signed, respectively).
ENUM and SENUM are identical to NUM and SNUM, respectively, except that they must be

implemented using a Native Data Type that provides exact representation of at least n Digits of precision
after the decimal place.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 22 of 271

Executive Summary Statement

The term Executive Summary Statement refers to the Adobe Acrobat PDF file in the

ExecutiveSummaryStatement folder in the FDR. The contents of the Executive Summary Statement are
defined in Clause 9.

F

FDR

The FDR is a zip file of a directory structure containing the following:
e A Report in Adobe Acrobat PDF format,
¢ An Executive Summary Statement in Adobe Acrobat PDF format,

e The Supporting Files consisting of various source files, scripts, and listing files. Requirements for
the FDR file directory structure are described below.

Comment: The purpose of the FDR is to document how a benchmark Result was implemented and

executed in sufficient detail so that the Result can be reproduced given the appropriate hardware and
software products.

FIN_AGG_T

FIN_AGG_T is defined as SENUM(15,2) and is used for holding aggregated financial data such as
revenue figures, valuations, and asset values.

Fixed Space

Fixed Space is any other space used to store static information and indices. It includes all database
storage space allocated to the test database that does not qualify as either Free Space or Growing Space.

Fixed Tables

Fixed Tables are tables that always have the same number of rows regardless of the database size and
transaction throughput. For example, TRADE_TYPE has five rows.

Foreign Key

A Foreign Key (FK) is a column or combination of columns used to establish and enforce a link between
the data in two tables. A link is created between two tables by adding the column or columns that hold

one table's Primary Key values to the other table. This column becomes a Foreign Key in the second
table.

Frame

A Frame is the TPC-provided Transaction logic, which is invoked as a unit of execution by the
VGenTxnHarness. The database interactions of a Transaction are all initiated from within its Frames.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 23 of 271

Frame Implementation

Frame Implementation is TPC provided functionality that accepts inputs from, and provides outputs to,

VGenTxnHarness through a TPC Defined Interface. The Frame Implementation and all down-stream
functional components are responsible for providing the appropriate functionality outlined in the

Transaction Profiles (Clause 3.3).

Free Space

Free Space is any space allocated to the test database and available for future use. Itincludes all database
storage space not already used to store a database entity (e.g., a row, an index, Database Metadata) or
not already used as formatting overhead by the DBMS.

Full Disclosure Report (FDR)
See FDR.

G

Group

Each Tile has four Groups, with Groups 1, 2, 3, and 4 contributing an average of 10%, 20%, 30%, and
40% of the total throughput of the Tile, respectively. Each Group consists of one Tier A Virtual Machine
and two transaction-specific Tier B Virtual Machines.

Growing Space

Growing Space is any space used to store initially-loaded rows from the Growing Tables and their
associated User-Defined Objects. It also includes all database storage space that is added to the test

database as a result of inserting a new row in the Growing Tables, such as row data, index data and
other overheads such as index overhead, page overhead, block overhead, and table overhead.

Growing Tables

Growing Tables each have an initial cardinality that has a defined relationship to the cardinality of the
CUSTOMER table. However, the cardinality increases with new growth during the benchmark run at a
rate that is proportional to transaction throughput rates.

H

I

IDENT_T
IDENT _T is defined as NUM(11) and is used to hold non-trade identifiers.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 24 of 271

Initial Database Size

Initial Database Size is any space allocated to the test database that is used to store the initial population,
Database Metadata, User-Defined Objects, and any space used as formatting overhead by the DBMS.
Initial Database Size is the space used by PostgreSQL for data or log after the database is initially loaded

with the data generated by VGenLoader. This space usage should be recorded for the calculations
required by Clauses 5.6.6 and 5.6.7.

Initial Trade Days

The Initial Trade Days (ITD) is the number of Business Days used to populate the database. This
population is made of trade data that would be generated by the SUT when running at the Nominal
Throughput for the specified number of Business Days. The number of Initial Trade Days is 125.

ITD

See Initial Trade Days.

Load Unit

The size of the CUSTOMER table can be increased in increments of 1000 customers. A set of 1000
customers is known as a Load Unit.

Log Growth

Log Growth is the space needed in the DBMS log files to accommodate the Undo/Redo Log resulting
from executing the Transaction Mix at the Reported Throughput during the period of required
Sustainable performance.

M

Market Exchange Emulator

A key piece of a compliant TPCx-V Driver is the Market Exchange Emulator (MEE). The MEE is
responsible for emulating the stock exchanges: providing services to the brokerage house, performing

requested trades, providing market activity updates, etc. Therefore, the MEE is responsible for the
following;:

e Receiving trade requests and their associated data from the SUT.

e Initiating Trade-Result Transactions, sending the associated data to the SUT and measuring the
Transaction’s Response Time.

e Initiating Market-Feed Transactions, sending the associated data to the SUT and measuring the
Transaction’s Response Time.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 25 of 271

Comment: The MEE may optionally perform additional operations as well; such as statistical accounting,
data logging, etc.

Market Tables

Market Tables include 11 tables that contain information about companies, markets, exchanges, and
industry sectors.

Market Triggered

Market Triggered Transactions simulate the behavior of the market and are triggered by the Market
Exchange Emulator component of the benchmark Driver.

May

The word “may” in the specification means that an item is truly optional.

Measured Configuration

See System Under Test.

Measured Throughput

The Measured Throughput is computed as the total number of Valid Trade-Result Transactions within
the Measurement Interval divided by the duration of the Measurement Interval in seconds.

Measurement Interval

Measurement Interval is the period of time during Steady State chosen by the Test Sponsor to compute
the Reported Throughput.

MEE

See Market Exchange Emulator

Modify

The word “Modify” indicates that the content of a TPCx-V table column is modified within the Frame.

The content of the table column can only be changed in a Frame where the word “Modify” is specified.
When the original content of the table column must also be referenced or returned before it is modified,

a “Reference” or a “Return” access method is also specified.

Must

”ou

The word “must” or the terms “required”, “requires”, “requirement” or “shall” in the specification,
means that compliance is mandatory.

Must not

The phrase “must not” or the term “shall not” in the specification, means that this is an absolute
prohibition of the specification.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 26 of 271

N

Native Data Type

A Native Data Type is a built-in data type of the DBMS whose documented purpose is to store data of
a particular type described in the specification. For example, DATETIME must be implemented with a
built-in data type of the DBMS designed to store date-time information.

Network

A Network is defined as Sponsor-provided functionality that must support communication through an
industry standard communications protocol using a physical means. One outstanding feature of the

Connector< Network & Connector communication is that it follows the relevant standards and must
imply more than just an application package. It must be possible to have concurrent use of the means by
other applications. Physical transport of the data is required and the underlying means of this transport
must be capable of operating over arbitrary globally geographic distances.

TPC/IP over a local area network is an example of an acceptable Network implementation.

Node

A Node is a physical server that runs a single instance of the VMMS.

Nominal Throughput

Nominal Throughput is defined to be 2.00 Transactions-Per-Second-V for every 1000 customer rows in
the Active Customers.

Non-catastrophic

The term Non-catastrophic as applied to a single failure is one where processing is not interrupted, but

throughput may be degraded and the SUT may no longer be in a durable state until the SUT has
recovered from the failure.

NUM(m[,n])

NUM(m[,n]) means an unsigned numeric value with at least m total Digits, of which n Digits are to the
right (after) the decimal point. The data type must be able to hold all possible values that can be expressed
as NUM(m[,n]). Omitting n, as in NUM(m), indicates the same as NUM(m,0). NUM must be

implemented using a Native Data Type.

(@)

On-Line

A storage device is considered On-Line if it is capable of providing an access time to data, for random
read or update, of one second or less by the Operating System.

Comment: Examples of On-Line storage may include magnetic disks, optical disks, solid-state storage, or
any combination of these, provided that the above mentioned access criteria is met.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 27 of 271

Operating System/OS

The term Operating System refers to a commercially available program that, after being initially loaded
into the computer by a boot program, manages all the other programs in a computer, or in a VM. The
Operating System provides a software platform on top of which all other programs run. Without the
Operating System and the core services that it provides no other programs can run and the computer

would be non-functional. Other programs make use of the Operating System by making requests for
services through a defined application program interface (API). All major computer platforms require an

Operating System. The functions and services supplied by an Operating System include but are not
limited to the following:

e Manages a dedicated set of processor and memory resources.
e Maintains and manages a file system.
e Loads applications into memory.

e Ensures that the resources allocated to one application are not used by another application in an
unauthorized manner.

e Determines which applications should run in what order, and how much time should be allowed to
run the application before giving another application a turn to use the systems resources.

e Manages the sharing of internal memory among multiple applications.

e Handles input and output to and from attached hardware devices such as hard disks, network
interface cards etc.

Some examples of Operating Systems are listed below:

e Windows

e Unixes (Solaris, AIX)

e Linux

e MS-DOS
e MacOS
e VMS

e Netware

Part Number

See the definition of Part Number in the TPC Pricing Specification.

Performance Metric

The TPCx-V Reported Throughput is expressed in tpsV.

Pre-Publication Board

The Pre-Publication Board, which is comprised of TPC-V subcommittee members, is a peer review
committee that can certify a TPCx-V Result for publication.

Priced Configuration

Priced Configuration comprises the components to be priced defined in the benchmark specification,
including all hardware, software and maintenance.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 28 of 271

Price/Performance Metric

The TPCx-V Total Price divided by the Reported Throughput is Total Price/tpsV. This is also known
as the Price/Performance Metric.

Primary Key

A Primary Key is a single column or combination of columns that uniquely identifies a row. None of the
columns that are part of the Primary Key may be nullable. A table must have no more than one Primary
Key.

Profile

A Profile is the characteristics of a Transaction, as defined by the Pseudo-code and summarized by the
Database Footprint.

Pseudo-code

Pseudo-code is a description of an algorithm that uses the structural conventions of programming
languages, but omits language-specific syntax.

Q

R

Ramp-down

Ramp-down is the period of time from the end of Steady State to the end of the Test Run.

Ramp-up

Ramp-up is the period of time from the start of the Test Run to the start of Steady State. To ensure that
the Measurement Interval begins after Steady State has been achieved, Ramp-up is required to be at
least 12 minutes, equal to the length of a TPCx-V Phase.

Redundancy Level One

Redundancy Level One (Durable Media Redundancy) guarantees access to the data on Durable Media
when a single Durable Media failure occurs.

Redundancy Level Two

Redundancy Level Two (Durable Media Controller Redundancy) includes Redundancy Level One and

guarantees access to the data on Durable Media when a single failure occurs in the storage controller
used to satisfy the redundancy level or in the communication media between the storage controller and

the Durable Media.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 29 of 271

Redundancy Level Three

Redundancy Level Three (Full Redundancy) includes Redundancy Level Two and guarantees access
to the data on Durable Media when a single failure occurs within the Durable Media system, including
communications between Tier B and the Durable Media system.

Reference

The word “Reference” indicates that the TPCx-V table column is identified in the database and the
content is accessed within the Frame without passing the content of the table column to the
VGenTxnHarness.

Referential Integrity

Referential Integrity preserves the relationship of data between tables, by restricting actions performed
on Primary Keys and Foreign Keys in a table.

Remove

The word “Remove” indicates that a number of rows are removed from the TPCx-V table specified by
the Database Footprint. Table row(s) can only be removed in a Frame where the word “Remove” is
specified. The number of rows that are removed is specified in the second column of the Database
Footprint with either “# row” for a fixed number of rows or “row(s)” for an unspecified number of rows.

Report

The term Report refers to the Adobe Acrobat PDF file in the Report folder in the FDR. The contents of
the Report are defined in Clause 9.

Reported

The term Reported refers to an item that is part of the FDR.

Reported Throughput

The Performance Metric reported by TPCx-Vis the Reported Throughput. The name of the metric used
for the Reported Throughput of the SUT is tpsV. The value of this metric is based on the Measured
Throughput and is bound by the limits defined in Clause 5.7.1.2.

Response Time

The Response Time (RT) is defined by:
RTn=€Tn-sTh

where:

sTn and eTy are measured at the Driver;

sTn = time measured before the first byte of input data of the Transaction is sent by the Driver
to the SUT; and

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 30 of 271

eTn = time measured after the last byte of output data from the Transaction is received by the
Driver from the SUT.

Comment: The resolution of the time stamps used for measuring Response Time must be at least 0.01
seconds.

Results

TPCx-V Results are the Performance Metric, Price/Performance Metric.

Return

The word “Return” indicates that the TPCx-V table column is referenced and that its content is retrieved
from the database and passed to the VGenTxnHarness. The table column must be referenced in the
same Frame where the word “Return” is specified. The content of the table column can only be passed
to subsequent Frames via the input and output parameters specified in the Frame parameters.

Rollback

The word “Rollback” indicates that the specified Frame contains a control operation that rolls back the
Database Transaction. The explicit rolling back of a Database Transaction can only occur in a Frame
where the word “Rollback” is specified.

RT

See Response Time.

S
S_COUNT_T

S_COUNT_T is defined as NUM(12) and is used for holding the aggregate count of shares used in many
tables.

S PRICE T
S_PRICE_T is defined as ENUM(8,2) and is used for holding the value of a share price.

S_QTY_T
S_QTY_T is defined as SNUM(6) and is used for holding the quantity of shares per individual trade.

Scale Factor

The Scale Factor is the number of required customer rows per single Transactions-Per-Second-V. The
Scale Factor for Nominal Throughput is 500.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 31 of 271

Scaling Tables

Scaling Tables each have a defined cardinality that has a constant relationship to the cardinality of the
CUSTOMER table. Transactions may update rows from these tables, but the table sizes remain constant.

SENUM

ENUM(m[,n]) or SENUM(m[,n]) means an exact numeric value (unsigned or signed, respectively).
ENUM and SENUM are identical to NUM and SNUM, respectively, except that they must be

implemented using a Native Data Type that provides exact representation of at least n Digits of precision
after the decimal place.

Session

See Database Session.

SF

See Scale Factor.

Should

The word “should” or the adjective “recommended”, mean that there might exist valid reasons in
particular circumstances to ignore a particular item, but the full implication must be understood and
weighed before choosing a different course.

Should not

The phrase “should not”, or the phrase “not recommended”, means that there might exist valid reasons
in particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed before implementing any behavior
described with this label.

SNUM

SNUM(ml,n]) is identical to NUM(ml,n]) except that it can represent both positive and negative values.
SNUM must be implemented using a Native Data Type.

Comment: A SNUM data type may be used (at the Sponsor’s discretion) anywhere a NUM data type is
specified.

Sponsor

See Test Sponsor.

Start

The word “Start” indicates that the specified Frame contains a control operation that starts a Database

Transaction. The start of a Database Transaction can only occur in a Frame where the word “Start” is
specified.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 32 of 271

Steady State
Steady State is the period of time from the end of the Ramp-up to the start of the Ramp-down.

Substitution

Substitution is defined as a deliberate act to replace components of the Priced Configuration by the Test
Sponsor as a result of failing the availability requirements of the TPC Pricing Specification or when the
Part Number for a component changes.

Supporting Files

Supporting Files refers to the contents of the SupportingFiles folder in the FDR. The contents of this
folder, consisting of various source files, scripts, and listing files, are defined in Clause 9.

Sustainable

Performance over a given period of time (computed as the average throughput over that time) is
considered Sustainable if it shows no significant variations.

SUT

See System Under Test.

System Under Test

System Under Test (SUT) is the total collection of all hardware and software components in all Tiles, to
include their Tier A and Tier B Virtual Machines.

T

Test Run

A Test Run is the entire period of time during which Drivers submit and the SUT completes
Transactions other than Trade-Cleanup.

Test Run Graph

A graph of the one-minute average tpsV versus elapsed wall clock time measured in minutes must be
reported for the entire Test Run. The x-axis represents the elapsed time from the Test Run start. The y-

axis represents the one-minute average throughput in tpsV(computed as the total number of Trade-
Result Transactions that complete within each one-minute interval divided by 60). A plot interval size

of 1 minute must be used. The Ramp-up, Steady State, Measurement Interval, and Ramp-down must
be identified on the graph. The Test Run Graph must be reported in the Report.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 33 of 271

Test Sponsor

The Test Sponsor is the company officially submitting the Result with the FDR and will be charged the
filing fee. Although multiple companies may sponsor a Result together, for the purposes of the TPC’s
processes the Test Sponsor must be a single company. A Test Sponsor need not be a TPC member. The
Test Sponsor is responsible for maintaining the FDR with any necessary updates or corrections. The Test
Sponsor is also the name used to identify the Result.

Tier A

Tier A consists of all hardware and software needed to implement the down-stream Connector,
VGenTxnHarness, Frame Implementation and Database Interface functional components. The VM that
implements Tier A is referred to as VMI.

Tier B

Tier B consists of all hardware and software needed to implement the Database Server functional
components, encapsulated within two transaction-specific Virtual Machines, contained within the same
Group. This includes data storage media sufficient to satisfy the initial database population requirements
of Clause 2.4.1 and the Business Day growth requirements of Clause 5.6.6.4 and Clause 5.6.6.5. Tier B is

implemented in two VMs: VM2 receives the two Decision Support-type queries, and VM3 receives the
7 remaining OLTP transactions.

Tile

Tile is the unit of replication of TPCx-V configuration and load distribution. Each Tile consists of 4
Groups. A valid TPCx-V configuration has 1 or more Tiles, with all Tiles contributing identical
proportions of the total load. The number of Tiles and the number of Load Units configured in the initial

populations of the databases in each Group are dependent on the Nominal Throughput, and are
determined by a formula defined in Clause 4.3.4.

TPC-Certified Auditor

The term TPC-Certified Auditor is used to indicate that the TPC has reviewed the qualification of the
Auditor and has certified his/her ability to verify that benchmark Results are in compliance with this

specification. (Additional details regarding the Auditor certification process and the audit process can
be found in Section 9 of the TPC Policy document.)

TPCx-V
TPCx-V is the short name for the TPC Express Benchmark V.

TPC Defined Interface

A TPC Defined Interface is a C++ class member that is designed to exchange data (and transfer execution
control) between various components of the TPC provided Benchmark Kit.

TRADE_T
TRADE_T is defined as NUM(15) and is used to hold trade identifiers.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 34 of 271

Transaction(s)

The TPCx-V Transactions are at the heart of the workload. The core of each Transaction runs on the

Database Server, but the logic of the Transaction interacts with several components of the benchmark
environment.

A Transaction is composed of Harness-code and of the invocation of one or more Frames. The Trade-
Cleanup Transaction is an exception. Sponsors may but do not have to run the Trade-Cleanup
Transaction from VGenTxnHarness.

Transaction Mix

The Transaction Mix is composed of all Customer Initiated, Brokerage Initiated and Market Triggered
Transactions.

Tunable Parameters

Tunable Parameters are parameters, switches or flags that can be changed to modify the behavior of the

product. Tunable Parameters apply to both hardware and software and are not limited to those
parameters intended for use by customers.

U
U*x

U*x is used in this specification to refer to various UNIX and Linux flavors (e.g. UNIX, Linux, AIX,
Solaris).

Undo/Redo Log

The Undo/Redo Log records all changes made in data files. The Undo/Redo Log makes it possible to
replay all the actions executed by the Database Management System. If something happens to one of

the data files, a backed up data file can be restored and the Undo/Redo Log that was written since the
backup can be played and applied which brings the data file to the state it had before it became
unavailable.

User-Defined Object

Any object defined in the database is considered a User-Defined Object, except for the following:
e aTPCx-V Table (see clause 2.2.3)

e arequired Primary Key (see clause 2.2.3.1)

e arequired Foreign Key (see clause 2.2.3.2)

e arequired constraint (see clause 2.2.3.3)

e Database Metadata

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 35 of 271

Valid Transaction

The term Valid Transaction refers to any Transaction for which input data has been sent in full by the
Driver, whose processing has been successfully completed on the SUT and whose correct output data
has been received in full by the Driver.

VALUE_T

VALUE_T is defined as SENUM(10,2) and is used for holding non-aggregated transaction and security
related values such as cost, dividend, etc.

VGen

VGen is a TPC provided software environment that is used in the TPC provided Benchmark Kit
implementation of the TPCx-V benchmark. The software environment is logically divided into three
packages: VGenProjectFiles, VGenlInputFiles, and VGenSourceFiles. The software packages provide
functionality to use: VGenLoader to generate the data used to populate the database, VGenDriver to
generate transactional data and VGenTxnHarness to control frame invocation.

VGenDriver

VGenDriver comprises the following parts:

o VGenDriverCE provides the core functionality necessary to implement a Customer
Emulator.

o VGenDriverMEE provides the core functionality necessary to implement a Market
Exchange Emulator.

. VGenDriverDM provides the core functionality necessary to implement the Data-
Maintenance Generator.

VGenDriver provides core transactional functionality (e.g. Transaction Mix and input generation)
necessary to implement a Driver.

VGenDriverCE

VGenDriverCE is any and/or all instantiations of the CCE class (see VGenSourceFiles CE.h and
CE.cpp).

VGenDriverDM
VGenDriverDM is the single instantiation of the CDM class (see VGenSourceFiles DM.h and DM.cpp).

VGenDriverMEE

VGenDriverMEE is any and/or all instantiations of the CMEE class (see VGenSourceFiles MEE.h and
MEE.cpp).

VGenlnputFiles

VGenlnputFiles is a set of TPC provided text files containing rows of tab-separated data, which are used
by various VGen packages as “raw” material for data generation.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 36 of 271

VGenLoader

VGenLoader is a binary executable, generated by using the methods described in VGenProjectFiles with
source code from VGenSourceFiles. When executed, VGenLoader uses VGenlInputFiles to produce a
set of data that represents the initial state of the TPCx-V database.

VGenLogger

VGenLogger logs the initial configuration and any re-configuration of VGenDriver and VGenLoader,
and compares current configuration with the TPCx-V prescribed defaults.

VGenProjectFiles

VGenProjectFiles is a set of TPC provided files used to facilitate building the VGen packages in a Test
Sponsor's environments.

VGenSourceFiles

VGenSourceFiles is the collection of TPC provided C++ source and header files.

VGenTables

VGenSourceFiles contain class definitions that provide abstractions of the TPCx-V tables. These table
classes are known collectively as VGenTables and they encapsulate the functionality needed to generate
the data for each of the TPCx-V tables.

VGenTxnHarness

VGenTxnHarness defines a set of interfaces that are used to control the execution of, and communication
of inputs and outputs, of Transactions and Frames.

Virtual Machine (VM)

A Virtual Machine (VM) is a self-contained operating environment, managed by the VMMS, and that
behaves as if it were a separate computer (as defined in Clause 10.1.1.3). TPCx-V requires that there shall
be three VMs per Group: one Tier A VM and two transactional specific Tier B VMs.

Virtual Machine Management Software (VMMS)

Commonly referred to as a Hypervisor, Virtual Machine Management Software (VMMS) is a
commercially available framework or methodology of dividing the resources of a system into multiple
computing environments. Each of these computing environments allows a completely isolated software
stack including an operating system to run in complete isolation from anything else running on the

system. The VMMS allows for the creation of multiple computing environments on the same system.

A VMMS cannot be implemented by the static partitioning of a system at boot time or by any static
partitioning that may take place through operator intervention. A VMMS cannot act as the Operating
System that manages the Application(s) running inside a VM.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 37 of 271

AllT/O devices must be virtualized by the VMMS or by the I/O controller managing the I/O devices.

The same I/ O virtualization technology must work with a large number of VMs (number of VMs greater
than number of controllers).

A Virtualization Environment consists of one physical Node managed by one VMMS.

VM1

A Virtual Machine (VM) that implement the Tier A functionality of a Group.

VM2

A Virtual Machine (VM) that is a component of the Tier B of a Group, and executes the two Decision
Support queries.

VM3

A Virtual Machine (VM) that is a component of the Tier B of a Group, and executes the 7 OLTP
transactions.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 38 of 271

1.2

Business and Application Environment

TPC Express Benchmark V is composed of a set of transactional operations designed to exercise system
functionalities in a manner representative of complex OLTP application environments. These
transactional operations have been given a life-like context to help users relate intuitively to the
components of the benchmark.

A typical business requires multiple applications to manage a variety of operations. Often these
applications have been located on separate systems. With advances in virtualization technologies and in
the strength of computing resources, it is now possible to co-locate these applications on the same system.

While it may be possible to install and use multiple applications in a single system image, there can be

advantages to maintaining the applications in distinct virtual machines (VMs):

e Duplicate applications may require separation of data to serve multiple regions or customer sets;

e Dissimilar applications may have some duplicate naming challenges where separation is desirable;

e It may be desirable to restrict the user group of one application from accessing data used by another
application;

e There may be accounting reasons for identifying the amount of computing resources required by
each application;

e There may be a desire to isolate maintenance operations of each application, so as not to disrupt
service on other applications;

e There may be a need to separate the application interface to end users from the interface to the
database, as is found in many 3-tiered application environments.

In short, depending on the size of the business and the size of the system used, the business model of

TPCx-V may be viewed as a “Data Center in a Box”, with a wide variety of applications, including both
database tiers and application-management tiers all residing on logically distinct VMs within a single
computer system. The following diagram illustrates the potential complexity of the business model
portrayed in the benchmark.

Additional applications as
company grows

Customer
setA

\& Consumer
\ Trading
Application

Business Model: Data Center in a Box

However, the complexities of the modeled environment do not lend itself well for a measureable,

repeatable performance benchmark. Consequently, the TPCx-V benchmark application is a simplified
view of this complex environment - retaining most of the key features of the business model, while
enhancing the ability to provide meaningful and comparable benchmark results.

The following diagram represents this simplified view:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 39 of 271

R
Application

Simplified workload made up of multiple copies of two OLTP
applications, each with distinct DB and each pair with a
distinct “user” interface application.

| " \/._\/,.
/ JI\Ugdate-intenarsive\\

OLTP Application

Read-intensive
OLTP Application

Similar applications of varied size
databases and workload demands —
Each maintained distinctly separate
from each other to simulate a variety of
applications

Simplified VM Components

The benchmark has been reduced to simplified form of the virtualized environment. Each group of
Application Interface, Update-Intensive and Read-Intensive VMs is a distinct “Group”. A Tile comprises
four Groups, with 1 to 6 identical Tiles per configuration. The total load on the system determines the

size of each Tile and the number of Tiles. Tiles are logically distinct from each other from an application
perspective, although the benchmark driver may coordinate the amount of work being required of each

Tile.

Note: To provide a meaningful application environment with database components and transactions that
are relevant and understandable, the application environment defined for the TPC-E benchmark is
employed. TPC-E is altered to provide the desired read-intensive and update-intensive environments,
shown above. While TPC-E uses a business model of a brokerage house with transactions driven from

multiple sources, the deployment of the adjusted application in TPCx-V is intended to represent a wide
variety of OLTP-based applications that could be employed in a virtualized computing environment.

There is one other critical aspect to the business model for a virtualized environment. This is the concept
of workload dynamics. Performance benchmarks are typically measured in “steady state”, where the
flow of work requests is adjusted to meet the capabilities of the system. For a single application, this can
provide a satisfactory answer, but not for a virtualized environment.

The following diagram illustrates the existence of workload dynamics in the business model for TPCx-V.
Each application may vary between the minimum and maximum requirements, depending on such
things as time zone, time of day, time of year or introduction of a new product. To accommodate each of
the four applications represented on separate systems, the total compute power required is represented
by the “Total Separate” bar. However, in the chosen business model, the peak workload demands for
each application are not simultaneous. One workload may be at a peak when another is at a valley,
allowing computer resources to be shifted from the low-use application to the high-use one for some
period of time, and shifting the resources to another high-demand application at a subsequent point. This
allows the total configured capacity to be more like the bar marked “Virtualized.”

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 40 of 271

Minimum

Relatlve compute power

AppnA AppnB AppnC AppnD Total Virtualized
Separate

Demands by workload

In the environment modeled by the benchmark, the dynamic nature of each workload could be dictated
by a wide variety of influences that result in an unpredictable shifting of resources and an equally
unpredictable amount of overall system output. As with the complexity of the modeled application
environment, this level of workload dynamics is not easily repeated to deliver comparable
measurements. Since the primary requirement of the virtualized environment for this situation is the
ability to dynamically allocate resources to the VMs that are in high demand, it is sufficient to define a
workflow time line that shifts workload demands among the VMs in a predictable manner, as illustrated,
below. 0 is for demonstration purposes. Clause 5.2 specifies the actual number and properties of the

Elasticity Phases.

\
\
\

°
x
[
2
o©
>
=
L
©
(1 4

Elasticity Phases

TPCx-V models the activity of brokerage firm that must manage customer accounts, execute customer

trade orders, and be responsible for the interactions of customers with financial markets. TPCx-V does
not attempt to be a model of how to build an actual application. The following diagram illustrates the
transaction flow of the business model portrayed in the benchmark:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 41 of 271

Customer Market
Initiated Triggered
Transactions Transactions

Brokerage

Business Model Transaction Flow

The purpose of a benchmark is to reduce the diversity of operations found in a production application,
while retaining the application's essential performance characteristics so that the workload can be
representative of a production system. A large number of functions have to be performed to manage a
production brokerage system. Many of these functions are not of primary interest for performance
analysis, since they are proportionally small in terms of system resource utilization or in terms of
frequency of execution. Although these functions are vital for a production system, they merely create

excessive diversity in the context of a standard benchmark and have been omitted in TPCx-V.

The Company portrayed by the benchmark is a brokerage firm with customers who generate transactions
related to trades, account inquiries, and market research. The brokerage firm in turn interacts with
financial markets to execute orders on behalf of the customers and updates relevant account information.

The number of customers defined for the brokerage firm can be varied to represent the workloads of
different size businesses.

The TPCx-V benchmark is composed of a set of transactions that are executed against three sets of
database tables that represent market data, customer data, and broker data. A fourth set of tables
contains generic dimension data such as zip codes. The following diagram illustrates the key
components of the environment:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 42 of 271

1.3

1.3.1

1.3.2

1.3.3

Brokers

'\I/'

Invoke the following transactions ...

*Trade-Update

__

| READ-WRITE |' READ-ONLY
E *Market-Feed ii *Broker-Volume *Security-Detail |
! «Trade-Order ', *Customer-Position *Trade-Lookup E
i «Trade-Result EE *Market-Watch Trade-Status |
: i ’

Customer Data

Market Data

The benchmark has been reduced to simplified form of the application environment. To measure the
performance of the OLTP system, a simple Driver generates Transactions and their inputs, submits them

to the System Under Test, and measures the rate of completed Transactions being returned. To simplify
the benchmark and focus on the core transactional performance, all application functions related to user

interface and display functions have been excluded from the benchmark. The System Under Test is
focused on portraying the components found on the server side of a transaction monitor or application
server.

Application Components

Transaction Summary

Broker-Volume

The Broker-Volume Transaction is designed to emulate a brokerage house’s “up-to-the-minute” internal

business processing. An example of a Broker-Volume Transaction would be a manager generating a
report on the current performance potential of various brokers.

Customer-Position

The Customer-Position Transaction is designed to emulate the process of retrieving the customer’s
profile and summarizing their overall standing based on current market values for all assets. This is
representative of the work performed when a customer asks the question “What am I worth today?”

Market-Feed

The Market-Feed Transaction is designed to emulate the process of tracking the current market activity.
This is representative of the brokerage house processing the “ticker-tape” from the market exchange.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 43 of 271

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

Market-Watch

The Market-Watch Transaction is designed to emulate the process of monitoring the overall performance
of the market by allowing a customer to track the current daily trend (up or down) of a collection of
securities. The collection of securities being monitored may be based upon a customer’s current holdings,
a customer’s watch list of prospective securities, or a particular industry.

Security-Detail

The Security-Detail Transaction is designed to emulate the process of accessing detailed information on
a particular security. This is representative of a customer doing research on a security prior to making a
decision about whether or not to execute a trade.

Trade-Lookup

The Trade-Lookup Transaction is designed to emulate information retrieval by either a customer or a
broker to satisfy their questions regarding a set of trades. The various sets of trades are chosen such that
the work is representative of:

e performing general market analysis
e reviewing trades for a period of time prior to the most recent account statement
e analyzing past performance of a particular security

e analyzing the history of a particular customer holding

Trade-Order

The Trade Order Transaction is designed to emulate the process of buying or selling a security by a
Customer, Broker, or authorized third-party. If the person executing the trade order is not the account
owner, the Transaction will verify that the person has the appropriate authorization to perform the trade
order. The Transaction allows the person trading to execute buys at the current market price, sells at the
current market price, or limit buys and sells at a requested price. The Transaction also provides an
estimate of the financial impact of the proposed trade by providing profit/loss data, tax implications,
and anticipated commission fees. This allows the trader to evaluate the desirability of the proposed
security trade before either submitting or canceling the trade.

Trade-Result

The Trade-Result Transaction is designed to emulate the process of completing a stock market trade.
This is representative of a brokerage house receiving from the market exchange the final confirmation
and price for the trade. The customer’s holdings are updated to reflect that the trade has completed.
Estimates generated when the trade was ordered for the broker commission and other similar quantities
are replaced with the actual numbers and historical information about the trade is recorded for later
reference.

Trade-Status

The Trade-Status Transaction is designed to emulate the process of providing an update on the status of
a particular set of trades. It is representative of a customer reviewing a summary of the recent trading
activity for one of their accounts.

Trade-Update

The Trade-Update Transaction is designed to emulate the process of making minor corrections or
updates to a set of trades. This is analogous to a customer or broker reviewing a set of trades, and
discovering that some minor editorial corrections are required. The various sets of trades are chosen such
that the work is representative of:

e reviewing general market trends
e reviewing trades for a period of time prior to the most recent account statement

e reviewing past performance of a particular security

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 44 of 271

1.3.11 Data-Maintenance

The Data-Maintenance Transaction is designed to emulate the periodic modifications to data that is
mainly static and used for reference. This is analogous to updating data that seldom changes.

1.3.12 Trade-Cleanup

The Trade-Cleanup Transaction is used to cancel any pending or submitted trades from the database.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 45 of 271

1.4

14.1

14.1.1

1.4.1.2

1.4.1.3

14.1.4

1.4.1.5

1.4.2

14.2.1

1.4.2.2

1.4.2.3

1.4.3

1.4.3.1

1.4.3.2

1.4.3.3

Model Description

Entity Relationships

Trading in TPCx-V is done by Accounts. Accounts belong to Customers. Customers are serviced by
Brokers. Accounts trade Securities that are issued by Companies.

The total set of Securities that can be traded is 6,850 and the total set of Companies is 5,000. For each
Company, there is one common share, plus 0-4 preferred shares.

All Companies belong to one of the 102 Industries. Each Industry belongs to one of the 12 market
Sectors.

Each Account picks its average of ten Securities to trade from across the entire range of Securities.

Securities to be traded can be identified by the security symbol or by the company name and security
issue.

Differences between Customer Tiers

The basic scaling unit of a TPCx-V database is a set of 1,000 Customers. 20% of each 1,000 Customers
belong to Tier 1, 60% to Tier 2, and 20% to Tier 3. Tier 2 Customers trade twice as often as Tier 1
Customers. Tier 3 Customers trade three times as often as Tier 1 Customers. In general, customer
trading is non-uniform by tier within each set of 1,000 Customers.

Tier 1 Customers have 1 to 4 Accounts (average 2.5). Tier 2 Customers have 2 to 8 Accounts (average
5.0). Tier 3 Customers have 5 to 10 Accounts (average 7.5). Overall, there is an average of five Accounts
per Customer.

The minimum and maximum number of Securities that are traded by each Account varies by Customer
Tier and by the number of Accounts for each Customer. The average number of Securities traded per
Account is ten (so the average number of Securities traded per Customer is fifty). For each Account, the
same set of Securities is traded for both the initial database population and for any Test Run.

Trade Types

Trade requests come in two basic flavors: Buy (50%) and Sell (50%). Those are further broken down into
Trade Types, depending on whether the request was a Market Order (60%) or a Limit Order (40%).

For Market Orders, the two trade types are Market-Buy (30%) and Market-Sell (30%). For Limit Orders,
the three trade types are Limit-Buy (20%), Limit-Sell (10%) and Stop-Loss (10%).

Market-Buy and Market-Sell are trade requests to buy and sell immediately at the current market price,
whatever price that may be. Limit-Buy is a request to buy only when the market price is at or below the
specified limit price. Limit-Sell is a request to sell only when the market price is at or above the
specified limit price. Stop-Loss is a request to sell only when (or if) the market price drops to or below
the specified limit price.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 46 of 271

1.4.3.4

1.4.4

1.4.4.1

1.4.4.2

1.4.4.3

1.4.4.4

1.4.4.5

1.4.4.6

1.5

1.5.1

If the specified limit price has not been reached when the Limit Order is requested, it is considered an
Out-of-the-Money request and remains “Pending” until the specified limit price is reached. Reaching
the limit price is guaranteed to occur within 6 minutes based on VGenDriverMEE implementation
details. The act of noticing that a “Pending” limit request has reached or exceeded its specified limit
price and submitting it to the market exchange to be traded is known as triggering of the pending limit
order.

Effects of Trading on Holdings

For a given account and security, holdings will be either all long (positive quantities) or all short
(negative quantities).

Long positions represent shares of the security that were bought (purchased and paid for) by the
customer for the account. The customer owns the shares of the security and may sell them at a later
time (hopefully, for a higher price).

Short positions represent shares of the security that were borrowed from the broker (or Brokerage) and
were sold by the customer for the account. In the short sale case, the customer has received the funds
from that sell, but still has to cover the sell by later purchasing an equal number of shares (hopefully at
a lower price) from the market and returning those shares to the broker.

Before VGenLoader runs, there are no trades and no positions in any security for any account.
VGenLoader simulates running the benchmark for 125 Business Days of initial trading, so that the
initial database will be ready for benchmark execution.

If the first trade for a security in an account is a buy, a long position will be established (positive
quantity in HOLDING row). Subsequent buys in the same account for the same security will add
holding rows with positive quantities. Subsequent sells will reduce holding quantities or delete holding
rows to satisfy the sell trade. All holdings may be eliminated, in which case the position becomes
empty. If the sell quantity still is not satisfied, the position changes from long to short (see below).

If the first trade for a security in an account is a sell, a short position will be established (negative
quantity in HOLDING row). Subsequent sells in the same account for the same security will add
holding rows with negative quantities. Subsequent buys will reduce holding quantities (toward zero)
or delete holding rows to satisfy the buy trade. All holdings may be eliminated, in which case the
position becomes empty. If the buy quantity still is not satisfied, the position changes from short to
long.

TPCx-V Benchmark Kit

Kit Contents
The TPCx-V kit contains the following components:
e The TPCx-V User’s Guide

e Java and C++ code to implement the driver, the database access code in Tier A, an Executive
Summary Statement producer, and auditing tools

e DML (stored procedures) to implement the body of transactions

e DDL (including shell scripts) to create the schema and populate the database

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 47 of 271

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

e Various bash scripts, which invoke the above application programs to run a test, produce the
Executive Summary Statement, validate the results, and perform basic tasks outlines in Clause 9 .
The scripts also collect statistics to assist the Test Sponsor in tuning the configuration.

DBMS

PostgreSQL is the database used by the TPCx-V Benchmark Kit. The benchmark was originally
developed on version 9.3 of PostgreSQL.The Test Sponsor may choose to use newer, supported versions

of PostgreSQL when they become available.
Operating System

Red Hat Enterprise Linux is the operating system used by the TPCx-V Benchmark Kit. The benchmark
was originally developed on version 7.6 of RHEL. The Test Sponsor may choose to use newer, supported

versions of RHEL when they become available.
Kit Usage

To submit a compliant TPCx-V benchmark result, the Test Sponsor is required to use the TPCx-V kit as
provided, except for modifications explicitly listed in 1.5.6 and 1.5.7.

The kit must be used as outlined in the TPCx-V User’s Guide.
The output of the TPCx-V kit is called the run report, which includes the following

1. Executive Summary
2. Validation and audit files
3. Supporting files

If there is a conflict between the TPCx-V specification and the TPC provided code, the TPC provided
code prevails.

Configuration Files

The TPCx-V Benchmark Kit reads the VM network (NetBIOS) names, port numbers, database sizes,
Measurement Interval Length, etc. from the configuration file vcfg.properties. The file testbed.properties
has the SUT information used in producing the Executive Summary Statement at the completion of a
Test Run.

The contents of vcfg.properties and testbed.properties that are included in the Benchmark Kit are generic,
and need to be changed by the Test Sponsor to conform to the actual System Under Test. These two files
are the only parts of the Benchmark Kit that the Test Sponsor is permitted to modify.

The runtime.properties file is a configuration file produced by the benchmark that reports the
configuration actually used during a benchmark run, whereas the vcfg.properties and testbed.properties
files are input files that are used to configure a benchmark run or create a report.

Addressing Errors in the TPCx-V Benchmark Kit

If a Test Sponsor must correct an error in the TPCx-V Benchmark Kit in order to publish a Result, the
following steps must be performed:

1. The error must be reported to the TPC, following the method described in clause 1.5.8, no later than
the time when the Result is submitted.

4. The error and the modification used to correct the error must be reported in the FDR, as described in
clause 8.4.4.1.

5. The modification used to correct the error must be reviewed by a TPC-Certified Auditor or the Pre-
Publication Board.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 48 of 271

1.5.8

1.5.8.1

1.5.8.2

1.5.9

Furthermore, the modification and any consequences of the modification may be used as the basis for a
non-compliance challenge.

Process for Reporting Issues with the TPCx-V Benchmark Kit

The TPCx-V Benchmark Kit has been tested on a variety of platforms. None-the-less, it is impossible to
guarantee that the TPCx-V Benchmark Kit is functionally correct in all aspects or will run correctly on

all platforms. It is the Test Sponsor's responsibility to ensure the TPCx-V Benchmark Kit runs correctly
in their environment(s).

Portability Issues

If a Sponsor believes there is a portability issue with the TPCx-V Benchmark Kit, the Sponsor must:
e Document the exact nature of the portability issue.
e Document the exact nature of the proposed fix.

e Contact the TPC Administrator with the above specified documentation (hard or soft copy is

acceptable) and clearly state that this is a TPCx-V Benchmark Kit portability issue. The Sponsor
must provide return contact information (e.g. Name, Address, Phone number, Email).

The TPC will provide an initial response to the Sponsor within 7 days of receiving notification of the
portability issue. This does not guarantee resolution of the issue within 7 days.

If the TPC approves the request, the Sponsor will be contacted with detailed instructions on how to
proceed. Possible methods of resolution include:

e The TPC releasing an updated specification and the TPCx-V Benchmark Kit update

e The TPC issuing a formal waiver documenting the allowed changes to the TPCx-V Benchmark Kit.

In the event a waiver is issued and used by the Sponsor, certain documentation policies apply (see
Clause 8.4.4.1).

e Comment: An anticpited instance of such a porting issue is when a test sponsor uses a newer version
of PostgreSQL or Red Hat Enterprise Linux, requiring a minor change to the kit to allow it to run on
this new version.

If the TPC does not approve the request, the TPC will provide an explanation to the Sponsor of why the

request was not approved. The TPC may also provide an alternative solution that would be deemed
acceptable by the TPC.

Other Issues

For any other issues with the TPCx-V Benchmark Kit, the Sponsor must:
a. Document the exact nature of the issue.
b. Document the exact nature of the proposed fix.

c. Contact the TPC Administrator with the above specified documentation (hard or soft copy is
acceptable) and clearly state that this is a TPCx-V Benchmark Kit issue not related to portability.
The Sponsor must provide return contact information (e.g. Name, Address, Phone number, Email).

Submitting TPCx-V Benchmark Kit Enhancement Suggestions
As aresult of using the TPCx-V Benchmark Kit, Test Sponsors may have suggestions for enhancements.
To submit a suggestion the Sponsor must:
a. Document the exact nature of the proposed enhancement
Document any proposed implementation for the enhancement

Contact the TPC Administrator with the above specified documentation (hard or soft copy is
acceptable) and clearly state that this is a TPCx-V Benchmark Kit enhancement suggestion. The
Sponsor must provide return contact information (e.g. Name, Address, Phone number, Email).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 49 of 271

1.5.10

1.5.11

The TPC does not guarantee acceptance of any submitted suggestion. However, all constructive
suggestions will be reviewed by the TPC, and a response will be provided to the Test Sponsor.

Future Kit Releases

If a Test Sponsor would like a future release of the TPCx-V Benchmark Kit to include new scripts or

changes to existing script, then the Test Sponsor can donate the scripts or script code changes to the TPC,
and work with the TPC to incorporate them in the next release.

If a Test Sponsor would like to see changes made to the Java or C++ code of the kit, then the changes
should be provided to the TPC for potential inclusion in the next release of the TPCx-V Benchmark Kit.

Comment: It is the intention of the TPC to encourage contribution of code that fixes bugs or allows the
benchmark to run in new environments, and the Council will strive to release such changes with an
accelerated release schedule. Java and C++ code changes that alter the characteristics of the kit will need
to go through a rigorous testing and prototyping phase before approval by the Council.

Common kit with TPCx-HCI

The two benchmarks TPCx-V and TPCx-HCI share the same Benchmark Kit. Although the same
Benchmark Kit may be used for both TPCx-V and TPCx-HCI benchmarks, the results of the TPCx-V
and TPCx-HCI benchmarks may not be compared against each other.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 50 of 271

CLAUSE 2 DATABASE DESIGN, SCALING & POPULATION

21

211

2.1.1.1

2.1.1.2

2.2

Introduction

The TPCx-V database is defined to consist of 33 separate and individual tables. Each VM in a Group shall
contain all of these tables even though some tables may not be referenced by the transactions that are

executed on that VM. The tables shall be scaled according to the contribution of that Group to the overall
throughput as defined in Clause 2.6. Each VM has a schema independent of other VMs. The database
schema is organized into four sets of tables:

e Customer Tables include 9 tables that contain information about the customers of the brokerage
firm.

e Broker Tables include 9 tables that contain information about the brokerage firm and broker related
data.

e Market Tables include 11 tables that contain information about companies, markets, exchanges, and
industry sectors.

e Dimension Tables include 4 dimension tables that contain common information such as addresses
and zip codes.

The relationship between the tables and the requirements governing their use are outlined in the
remaining sections of Clause 2.

Definitions

A Primary Key is a single column or combination of columns that uniquely identifies a row. None of
the columns that are part of the Primary Key may be nullable. A table must have no more than one
Primary Key.

A Foreign Key (FK) is a column or combination of columns used to establish and enforce a link
between the data in two tables. A link is created between two tables by adding the column or columns
that hold one table's Primary Key values to the other table. This column becomes a Foreign Key in the
second table.

TPCx-V Database Schema and Table Definitions

Details of the TPCx-V database schema, the data type requirements, the required structure of each
individual table, the entity relationship between tables and the individual column restrictions are defined
in this clause.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 51 of 271

221

22.1.1

2212

2213

2214

2215

2.2.1.6

2217

2.2.1.8

Data Type Definitions

A Native Data Type is a built-in data type of the DBMS whose documented purpose is to store data of
a particular type described in the specification. For example, DATETIME must be implemented with a
built-in data type of the DBMS designed to store date-time information.

CHAR(n) means a character string that can hold up to n single-byte characters. Strings may be padded
with spaces to the maximum length. CHAR(n) must be implemented using a Native Data Type.

NUM(m[,n]) means an unsigned numeric value with at least m total Digits, of which n Digits are to the
right (after) the decimal point. The data type must be able to hold all possible values that can be
expressed as NUM(m[,n]). Omitting n, as in NUM(m), indicates the same as NUM(m,0). NUM must be
implemented using a Native Data Type.

SNUM(m[,n]) is identical to NUM(mI[,n]) except that it can represent both positive and negative values.
SNUM must be implemented using a Native Data Type.

Comment: A SNUM data type may be used (at the Sponsor’s discretion) anywhere a NUM data type is
specified.

ENUM(m[,n]) or SENUM(m[,n]) means an exact numeric value (unsigned or signed, respectively).
ENUM and SENUM are identical to NUM and SNUM, respectively, except that they must be
implemented using a Native Data Type that provides exact representation of at least n Digits of
precision after the decimal place.

Comment: A numeric data type provides either exact or approximate representation of numeric values.

For example, INTEGER and DECIMAL are exact numeric data types and REAL and FLOAT are
approximate numeric data types (based on ANSI SQL definitions).

BOOLEAN is a data type capable of holding at least two distinct values that represent FALSE and
TRUE.

Comment: The convention in this document, as well as the implementation of VGen, is that the value zero

(0) denotes FALSE and the value one (1) denotes TRUE.

DATE represents the data type of date with a granularity of a day and must be able to support the
range of January 1, 1800 to December 31, 2199, inclusive. DATE must be implemented using a Native
Data Type.

Comment: A time component is not required but may be implemented.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 52 of 271

2.2.19

2.2.1.10

2.2.1.11

222

2221

2222

DATETIME represents the data type for a date value that includes a time component. The date
component must meet all requirements of the DATE data type. The time component must be capable of
representing the range of time values from 00:00:00 to 23:59:59. Fractional seconds may be
implemented, but are not required. DATETIME must be implemented using a Native Data Type.

BLOB(n) is a data type capable of holding a variable length binary object of n bytes.

BLOB_REEF is a data type capable of referencing a BLOB(n) object that is stored outside the table on the
SUT.

Meta-type Definitions

The following meta-types are defined for ease of notation. These meta-types may be implemented using
the underlying data type on which each is defined. There is no requirement to implement the meta-types

as user-defined types in the DBMS. A meta-type may be implemented using a user-defined type in the
DBMS as long as the user-defined type incorporates a Native Data Type where required and inherits
the properties of that Native Data Type.

IDENT_T is defined as NUM(11) and is used to hold non-trade identifiers.

TRADE_T is defined as NUM(15) and is used to hold trade identifiers.
Trade identifiers have the following characteristics:

e They must be unique.

e They may be sparse.

e Atload time they are generated by VGenLoader.

e Atrun time they are generated by Sponsor provided code.

e The VGenLoader code will not associate trade identifiers with Date/time or customer identifier or
account identifiers. No assumptions may be made about trade identifier sequencing.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 53 of 271

2223

2224

2225

2226

2227

2228

223

FIN_AGG_T is defined as SENUM(15,2) and is used for holding aggregated financial data such as
revenue figures, valuations, and asset values.

S_PRICE_T is defined as ENUM(8,2) and is used for holding the value of a share price.

S_COUNT_T is defined as NUM(12) and is used for holding the aggregate count of shares used in
many tables.

S_QTY_T is defined as SNUM(6) and is used for holding the quantity of shares per individual trade.

BALANCE_T is defined as SENUM(12,2) and is used for holding aggregate account and transaction
related values such as account balances, total commissions, etc.

VALUE_T is defined as SENUM(10,2) and is used for holding non-aggregated transaction and security
related values such as cost, dividend, etc.

General Schema Items

The following table lists the category, prefix and the name for all TPCx-V required tables in the
benchmark.

Category Table Name Table Prefix Definition
ACCOUNT_PERMISSION AP_ Clause 2.2.4.1
CUSTOMER C_ Clause 2.2.4.2
CUSTOMER_ACCOUNT CA_ Clause 2.2.4.3
CUSTOMER_TAXRATE CX_ Clause 2.2.4.4
CUSTOMER HOLDING H_ Clause 2.2.4.5
HOLDING_HISTORY HH_ Clause 2.2.4.6
HOLDING_SUMMARY HS_ Clause 2.2.4.7
WATCH_ITEM WIL_ Clause 2.2.4.8
WATCH_LIST WL_ Clause 2.2.4.9
BROKER B_ Clause 2.2.5.1
CASH_TRANSACTION CT_ Clause 2.2.5.2
CHARGE CH_ Clause 2.2.5.3
COMMISSION_RATE CR_ Clause 2.2.5.4
BROKER SETTLEMENT SE_ Clause 2.2.5.5
TRADE T_ Clause 2.2.5.6
TRADE_HISTORY TH_ Clause 2.2.5.7
TRADE_REQUEST TR_ Clause 2.2.5.8
TRADE_TYPE TT_ Clause 2.2.5.9
COMPANY CO_ Clause 2.2.6.1
COMPANY_COMPETITOR CP_ Clause 2.2.6.2
DAILY_MARKET DM_ Clause 2.2.6.3
EXCHANGE EX_ Clause 2.2.6.4
MARKET
FINANCIAL FI_ Clause 2.2.6.5
INDUSTRY IN_ Clause 2.2.6.6
LAST_TRADE LT_ Clause 2.2.6.7
NEWS_ITEM NI_ Clause 2.2.6.8

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 54 of 271

Category Table Name Table Prefix Definition
NEWS_XREF NX_ Clause 2.2.6.9
SECTOR SC_ Clause 2.2.6.10
SECURITY S_ Clause 2.2.6.11
ADDRESS AD_ Clause 2.2.7.1
STATUS_TYPE ST_ Clause 2.2.7.2
DIMENSION
TAXRATE TX_ Clause 2.2.7.3
ZIP_CODE ZC_ Clause 2.2.7.4

2231 The Primary Key references defined in this section must be maintained by the database during a Test
Run. The Primary Keys are marked with PK or PK+ in the Relations field for each table definition. PK
indicates that the column is the table’s Primary Key while PK+ indicates that the column is part of a
composite (multi-column) Primary Key.

2232 The Foreign Key references defined in this section must be maintained by the database during a Test
Run. The Foreign Keys are marked with FK () or FK+ () in the Relations field for each table definition.
FK () indicates a single-column Foreign Key while FK+ () indicates that the column is part of a
composite (multi-column) Foreign Key. The table prefix enclosed in the parenthesis indicates the
target table for the Foreign Key reference.

2233 The constraints defined in this section must be enforced by the database during a Test Run. The
constraints are listed in the Constraints column for each table definition.

Comment: Unless a Not Null constraint is present, a column must allow Null.

2234 For each TPCx-V required table, the columns can be implemented in any order, using any physical
representation available from the tested system that satisfies the schema data type requirements.

224 Customer Tables

These groups of tables contain information about customer related data.

2241 ACCOUNT_PERMISSION

This table contains information about the access the customer or an individual other than the customer
has to a given customer account. Customer accounts may have trades executed on them by more than
one person.

Table Prefix: AP_

Column Name Data Type Constraints |Relations Description
PK+ . .
AP_CA_ID IDENT_T Not Null Customer account identifier.
FK (CA_)

Access Control List defining the
AP_ACL CHAR(4) Not Null permissions the person has on the
customer account.

Tax identifier of the person with access

AP_TAX_ID CHAR(20) Not Null PK+
to the customer account.
AP L NAME CHAR(25) Not Null {dhast name of the person with access to
e customer account.
AP_F NAME CHAR(20) Not Null First name of the person with access to

the customer account.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 55 of 271

2.2.4.2 CUSTOMER
This table contains information about the customers of the brokerage firm.
Table Prefix: C_

Column Name Data Type Constraints |Relations Description
C.ID IDENT T Not Null PK Sii;oniiriﬂg?ifaigé rlised internally to link
Customer’s tax identifier, used externally
C_TAX_ID CHAR(20) Not Null on communication to the customer. Is
alphanumeric.
C.STD CHARW [NotNull |FK(ST) | e ornot
C_L_NAME CHAR(25) Not Null Primary Customer's last name.
C_F_NAME CHAR(20) Not Null Primary Customer's first name.
C_M_NAME CHAR(1) Primary Customer's middle name initial
crAR() o th primary coner, Vo
Customer tier: tier 1 accounts are charged
Nowa {5 I fod and 3 aceoumis heve th
lowest fees.
C_DOB DATE Not Null Customer’s date of birth.
C_AD_ID IDENT T Not Null FK (AD) ?;lil;esssb identifier of the customer's
C_CTRY_1 CHAR(@3) Country code for Customer's phone 1.
C_AREA_1 CHAR(@3) Area code for customer’s phone 1.
C_LOCAL_1 CHAR(10) Local number for customer’s phone 1.
C_EXT_1 CHAR() Extension number for Customer’s phone 1.
C_CTRY_2 CHAR(@3) Country code for Customer's phone 2.
C_AREA_2 CHAR(@3) Area code for Customer’s phone 2.
C_LOCAL_2 CHAR(10) Local number for Customer’s phone 2.
C_EXT_2 CHAR() Extension number for Customer’s phone 2.
C_CTRY_3 CHAR(@3) Country code for Customer's phone 3.
C_AREA_3 CHAR(@3) Area code for Customer’s phone 3.
C_LOCAL_3 CHAR(10) Local number for Customer’s phone 3.
C_EXT_3 CHAR() Extension number for Customer’s phone 3.
C_EMAIL_1 CHAR(50) Customer's e-mail address 1.
C_EMAIL_2 CHAR(50) Customer's e-mail address 2.

2243 CUSTOMER_ACCOUNT
The CUSTOMER_ACCOUNT table contains account information related to accounts of each customer.
Table Prefix: CA_

Column Name Data Type Constraints |Relations Description

CA_ID IDENT_T Not Null PK Customer account identifier.

Broker identifier of the broker who

CA_BID IDENT_T Not Null FK(B.) manages this customer account.

FK (C_) Customer identifier of the customer who

CA_C_ID IDENT_T Not Null N
owns this account.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 56 of 271

Column Name

Data Type

Constraints

Relations

Description

CA_NAME

CHAR(50)

Name of customer account. Example,
"Trish Hogan 401(k)".

CA_TAX_ST

NUM(1)

Not Null
in0,1,2

Tax status of this account: 0 means this
account is not taxable, 1 means this
account is taxable and tax must be
withheld, 2 means this account is taxable

and tax does not have to be withheld.

Not Null Account’s cash balance.

CA_BAL BALANCE_T

2244 CUSTOMER_TAXRATE
The table contains two references per customer into the TAXRATE table. One reference is for
state / province tax; the other one is for national tax. The TAXRATE table contains the actual tax rates.
Table Prefix: CX_
Column Name Data Type Constraints |Relations Description
PK+
CX_TX_ID CHAR(4) Not Null Tax rate identifier.
FK (TX))
CX_C_ID IDENT T Not Null PK+ Customer idpntifier of a customer that
FK (C_) must pay this tax rate.
2.24.5 HOLDING
The table contains information about the customer account’s security holdings.
Table Prefix: H_
Column Name Data Type Constraints |Relations Description
PK
H_T_ID TRADE_T Not Null FK (T_) Trade Identifier of the trade.
H_CA_ID IDENT_T Not Null FK+ (HS.) Customer account identifier.
H_S_SYMB CHAR(15) Not Null FK+ (HS.) Symbol for the security held.
H_DTS DATETIME Not Null Date this security was purchased or sold.
Not Null
H_PRICE S_PRICE_T 0 Unit purchase price of this security.
>
H_QTY S QTY. T Not Null Quantity of this security held.
2.2.4.6 HOLDING_HISTORY

The table contains information about holding positions that were inserted, updated or deleted and which
trades made each change.

Table Prefix: HH_

Column Name Data Type Constraints |Relations Description
Trade Identifier of the trade that
PK+ originally created the holding row. This
HH_H_T_ID TRADE_T Not Null FK (T) is a Foreign Key to the TRADE table
- rather than the HOLDING table because
the HOLDING row could be deleted.
PK+ Trade Identifier of the current trade (the
HH_T_ID TRADE_T Not Null one that last inserted, updated or deleted
FK(T)) the holding identified by HH_H_T_ID).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 57 of 271

2.24.7 HOLDING_SUMMARY
The table contains aggregate information about the customer account’s security holdings.
Table Prefix: HS_
Column Name Data Type Constraints |Relations Description
PK+
HS CA_ID IDENT_T Not Null Customer account identifier.
FK (CA.)
PK+
HS_S_SYMB CHAR(15) Not Null FK (S.) Symbol for the security held.
HS_QTY S_QTY_T Not Null Total quantity of this security held.
Comment: HOLDING_SUMMARY may be implemented as a view on HOLDING, in which case the
HOLDING Foreign Key references to HOLDING_SUMMARY are automatically met. However, the
HOLDING_SUMMARY Foreign Key references to CA_ and S_ must then be adopted and met by
HOLDING.
2.24.8 WATCH_ITEM
The table contains list of securities to watch for a watch list.
Table Prefix: WI_
Column Name Data Type Constraints |Relations Description
PK+
WI_WL_ID IDENT_T Not Null Watch list identifier.
FK (WL_)
PK+
WIL_S_SYMB CHAR(15) Not Null FK S.) Symbol of the security to watch.
2249 WATCH_LIST

Column Name

Data Type

Constraints

Relations

Description

HH_BEFORE_QTY

S_QTY_T

Not Null

Quantity of this security held before the
modifying trade. On initial insertion,
HH_BEFORE_QTY is 0.

HH_ AFTER_QTY

S_QTY_T

Not Null

Quantity of this security held after the
modifying trade. If the HOLDING row
gets deleted by the modifying trade,
then HH_AFTER_QTY is 0.

The table contains information about the customer who created this watch list.

Table Prefix: WL_

Column Name Data Type Constraints |Relations Description

WL_ID IDENT_T Not Null PK Watch list identifier.

WL_C_ID IDENT T Not Null FK (C) Identifigr of customer who created this
watch list.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 58 of 271

2.2.5 Broker Tables

This group of tables contains data related to the brokerage firm and brokers.

2.25.1 BROKER
The table contains information about brokers.

Table Prefix: B_

Column Name Data Type Constraints |Relations Description

B_ID IDENT_T Not Null PK Broker identifier.

B.ST ID CHAR(4) Not Null FK (ST) Broker status type identifier; identifies if
this broker is active or not.

B_NAME CHAR(49) Not Null Broker's name.

B_NUM_TRADES NUM(9) Not Null Number of trades this broker has
executed so far.

B_COMM_TOTAL BALANCE_T Not Null Amount of commission this broker has

earned so far.

2.2.5.2 CASH_TRANSACTION
The table contains information about cash transactions.

Table Prefix: CT_

Column Name Data Type Constraints |Relations Description
PK

CT_T_ID TRADE_T Not Null Trade identifier.
FK(T)

Date and time stamp of when the

CT_DTS DATETIME Not Null -
transaction took place.

CT_AMT VALUE_T Not Null Amount of the cash transaction.

Transaction name, or description: e.g.
CT_NAME CHAR(100) “Buy Keebler Cookies”, “Cash from sale
of DuPont stock”.

2253 CHARGE

The table contains information about charges for placing a trade request. Charges are based on the
customer’s tier and the trade type.

Table Prefix: CH_

Column Name Data Type Constraints |Relations Description
PK+ . .
CH_TT_ID CHAR(3) Not Null Trade type identifier.
FK (TT_)
Not Null .
CH_C_TIER NUM(1) . PK+ Customer’s tier.
in1,23
CH_CHRG VALUE_T N_Ot Null Charge for placing a trade request.
>=0

2254 COMMISSION_RATE

The commission rate depends on several factors: the tier the customer is in, the type of trade, the quantity
of securities traded, and the exchange that executes the trade.

Table Prefix: CR_

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 59 of 271

Column Name Data Type Constraints |Relations Description
Not Null . .
CR_C_TIER NUM(1) ey PK+ Customer’s tier. Valid values 1, 2 or 3.
in1.2,
PK+ .) P
CR_TT_ID CHAR() Not Null Trade Type identifier. Identifies the type
FK (TT)) of trade.
PK+ identifi ifi
CR_EX_ID CHAR(6) Not Null Exchange identifier. Identifies the
FK (EX) exchange the trade is against.
Not Null i i
CR_FROM_QTY S QTY.T ot Nu PK+ Lower bound of quantity being traded to
>=0 match this commission rate.
Not Null
CR_TO_QTY S QTY.T > Upper bound of quantity being traded to
CR_FROM_ match this commission rate.
QTY
Not Null Commission rate. Ranges from 0.00 to
CR_RATE NUMG2) |, 100.00. Example: 10% is 10.00.
2.2.5.5 SETTLEMENT
The table contains information about how trades are settled: specifically whether the settlement is on
margin or in cash and when the settlement is due.
Table Prefix: SE_
Column Name Data Type Constraints |Relations Description
PK . o
SE_T_ID TRADE_T Not Null Trade identifier.
FK(T_)
Type of cash settlement involved:
SE_CASH_TYPE CHAR(40) Not Null possible values “Margin”, “Cash
Account”.
Date by which customer or brokerage
SE_CASH_DUE_DATE DATE Not Null must receive the cash; date of trade plus
two days.
SE_AMT VALUE_T Not Null Cash amount of settlement.
2.2.5.6 TRADE

The table contains information about trades.

Table Prefix: T_

Column Name Data Type Constraints |Relations Description
T 1D TRADE_T Not Null PK Trade identifier.
T_DTS DATETIME Not Null Date and time of trade.
Status type identifier; identifies the
T_ST_ID CHAR4) Not Null FK (ST_) status of this trade.
T TT_ID CHAR() Not Null FK (TT) Trade type identifier; identifies the type
of his trade.
Not Null i i
T 1S.CASH BOOLEAN : ot Nu Is this trade a cash (1) or margin (0)
in0,1 trade?
T S_SYMB CHAR(5) Not Null FK (S.) tSreaccliler(iity symbol of the security that was
Not Null . .
T_QTY S QTY_T 0 Quantity of securities traded.
>

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 60 of 271

Column Name Data Type Constraints |Relations Description
Not Null o
T_BID_PRICE S _PRICE_T 0 The requested unit price.
>
T CA_ID IDENT_T Not Null FK (CA.) Customer account identifier.
T_EXEC_NAME CHAR(49) Not Null Name of the person executing the trade.
T TRADE_PRICE S_PRICE_T Unit price at which the security was
traded.
T CHRG VALUE T Not Null Fee charged for placing this trade
B - >=0 request.
T COMM VALUE T Not Null Commission earned on this trade; may
B - >=0 be zero.
1 Amount of tax due on this trade; can be
Not Nu zero. Whether the tax is withheld from
T_TAX VALUE_T >=0 the settlement amount depends on the
customer account tax status.
If this trade is closing an existing position,
Not Null is it executed against the newest-to-
T_LIFO BOOLEAN in0 1 oldest account holdings of this security

(1=LIFO) or against the oldest-to-newest
account holdings (0=FIFO).

2.25.7 TRADE_HISTORY
The table contains the history of each trade transaction through the various states.
Table Prefix: TH_
Column Name Data Type Constraints |Relations Description
Trade identifier. This value will be used
PK+ for the corresponding T_ID in the
TH_T_ID TRADE_T Not Null TRADE and SE_T_ID in the
FK(T) SETTLEMENT table if this trade request
results in a trade.
TH_DTS DATETIME Not Null Timestamp of when the trade history
was updated.
PK+
TH_ST_ID CHAR(4) Not Null Status type identifier.
FK (ST_)
2.2.5.8 TRADE_REQUEST

The table contains information about pending limit trades that are waiting for a certain security price

before the trades are submitted to the market.

Table Prefix: TR_

Column Name Data Type Constraints |Relations Description

PK Trade request identifier. This value will
TR_T_ID TRADE_T Not Null be used for processing the pending limit

FK(T)) order when it is subsequently triggered.
TR_TT_ID CHAR(3) Not Null FK (TT) ;f}fade request type identifier; identifies

e type of trade.
TR S_SYMB CHAR(5) Not Null FK (S.) Security symbol of the security the
customer wants to trade.
Not Null Quantity of security the customer had

TR QTY SQTY.T >0 requested to trade.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 61 of 271

Column Name Data Type Constraints |Relations Description

Price the customer wants per unit of

TR_BID_PRICE S_PRICE.T Not Null security that they want to trade. Value of
>0 zero implies the customer wants to trade
now at the market price
TR_B_ID IDENT_T Not Null FK (B_) Identifies the broker handling the trade.

2.2.5.9 TRADE_TYPE
The table contains a list of valid trade types.
Table Prefix: TT_

Column Name Data Type Constraints |Relations Description

Trade type identifier: Values are: “TMB”,
TT_ID CHAR((3) Not Null PK “TMS”. “TSL”, “TLS”, and “TLB".

Trade type name. Examples “Limit
TT_NAME CHAR(12) Not Null Buy", "Limit Sell", "Market Buy", "Market
Sell", “Stop Loss”.

Not Null el s o HQAT] . .
TT IS_SELL BOOLEAN . ot Nu Lif thls isa %ell type transaction. 0 if
in0, 1 thisis a Buy” type transaction.
Not Null 1 if this is a market transaction that is
¢ .
TT_IS. MRKT BOOLEAN . ot Nu subnntted to the market e?<cha.nge o
in0,1 emulator immediately. 0 if this is a limit
transaction.

The contents of the TRADE_TYPE table are shown below for readability, since the TT_ID values are used
elsewhere in the specification.

TT_ID TT_NAME TT_IS_SELL TT_IS_MRKT
TLB Limit-Buy 0 0
TLS Limit-Sell 1 0
TMB Market-Buy 0 1
TMS Market-Sell 1 1
TSL Stop-Loss 1 0

2.2.6 Market Tables
This group of tables contains information related to the exchanges, companies, and securities that create
the Market.

2.2.6.1 COMPANY
The table contains information about all companies with publicly traded securities.

Table Prefix: CO_

Column Name Data Type Constraints |Relations Description
CO_ID IDENT_T Not Null PK Company identifier.
Company status type identifier.
CO_ST_ID CHAR(4) Not Null FK (ST) Identifies if this company is active or
not.
CO_NAME CHAR(60) Not Null Company name.
CO_IN_ID CHAR(2) Not Null FK (IN_) Industry identifier of the industry the

company is in.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 62 of 271

Column Name Data Type Constraints |Relations Description

CO_SP_RATE CHAR(4) Not Null Company's credit rating from Standard
& Poor.

CO_CEO CHAR(46) Not Null Name of Company's Chief Executive
Officer.

CO_AD_ID IDENT_T Not Null FK (AD_) Address identifier.

CO_DESC CHAR(150) Not Null Company description.

CO_OPEN_DATE DATE Not Null Date the company was founded.

2.2.6.2 COMPANY_COMPETITOR

This table contains information for the competitors of a given company and the industry in which the
company competes.

Table Prefix: CP_

Column Name Data Type Constraints |Relations Description
PK+ . i
CP_CO_ID IDENT_T Not Null Company identifier.
FK (CO_)
CP_COMP_CO_ID IDENT T Not Null PK+ Company identifier of the competitor

FK (CO_) company for the specified industry.

Industry identifier of the industry in
PK+ which the CP_CO_ID company
CP_IN_ID CHAR(2) Not Null considers that the CP_COMP_CO_ID
FK (IN_) company competes with it. This may not
be either company’s primary industry.

2.2.6.3 DAILY_MARKET

The table contains daily market statistics for each security, using the closing market data from the last
completed trading day. VGenLoader will load this table with data for each security for the period
starting 3 January 2000 and ending 31 December 2004.

Table Prefix: DM_

Column Name Data Type Constraints |Relations Description

DM_DATE DATE Not Null PK+ Date of last completed trading day.
DM_S_SYMB CHAR(15) Not Null EIIEIS) Security symbol of this security.
DM_CLOSE S_PRICE_T Not Null Closing price for this security.
DM_HIGH S_PRICE_T Not Null Day's High price for this security.
DM_LOW S_PRICE_T Not Null Day's Low price for this security.
DM_VOL S COUNT_T Not Null Day's volume for this security.

2.2.6.4 EXCHANGE
The table contains information about financial exchanges.

Table Prefix: EX_

Column Name Data Type Constraints |Relations Description

Exchange identifier. Values are, "NYSE",
EX_ID CHAR(6) Not Null PK "NASDAQ", "AMEX", "PCX".

EX_NAME CHAR(100) Not Null Exchange name.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 63 of 271

Column Name Data Type Constraints |Relations Description

EX_NUM_SYMB NUM(6) Not Null Number of securities traded on this
exchange.

EX_OPEN NUM(4) Not Null]é);\s{l}ange Daily start time expressed in

EX_CLOSE NUM(@4) Not Null]é);\s{l}ange Daily stop time, expressed in

EX_DESC CHAR(150) Description of the exchange.

EX_AD_ID IDENT_T Not Null FK (AD_) Mailing address of exchange.

2.2.6.5 FINANCIAL

The table contains information about a company's quarterly financial reports. VGenLoader will load this
table with financial information for each company for the Quarters starting 1 January 2000 and ending
with the quarter that starts 1 October 2004.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 64 of 271

Table Prefix: FI_

Column Name Data Type Constraints |Relations Description
PK+ . .
FI_CO_ID IDENT_T Not Null Company identifier.
FK (CO.)
FI_YEAR NUM(®4) Not Null PK+ Year of the quarter end.
Not Null Quarter number that the financial
FI_QTR NUM(1) . PK+ information is for: valid values 1, 2, 3,
in1,2,34 4
FI_QTR_START_DATE DATE Not Null Start date of quarter.
FI_REVENUE FIN_AGG_T Not Null Reported revenue for the quarter.
FI_NET_EARN FIN_AGG_T Not Null Net earnings reported for the quarter.
FI_BASIC_EPS VALUE_T Not Null Basic earnings per share reported for
the quarter.
FI_DILUT_EPS VALUE_T Not Null Diluted earnings per share reported
for the quarter.
FI MARGIN VALUE_T Not Null Profit divided by revenues for the
quarter.
FI_INVENTORY FIN_AGG_T Not Null Value of inventory on hand at the end
of the quarter.
FI_ASSETS FIN_ AGG_T Not Null Value of total assets at the end of the
quarter.

Value of total liabilities at the end of

FI_LIABILITY FIN_AGG_T Not Null
the quarter.

FI_OUT_BASIC S_COUNT_T |NotNull Average number of common shares
outstanding (basic).

FI_OUT DILUT S_COUNT_T Not Null Average number of common shares

outstanding (diluted).

2.2.6.6 INDUSTRY
The table contains information about industries. Used to categorize which industries a company is in.

Table Prefix: IN_

Column Name Data Type Constraints |Relations Description

IN_ID CHAR(2) Not Null PK Industry identifier.

Industry name. Examples: "Air Travel",
IN_NAME CHAR(50) Not Null "Air Cargo", "Software", "Consumer
Banking", "Merchant Banking", etc.

Sector identifier of the sector the

IN_SC_ID CHAR(2) Not Null FK (SC_) industry is in

2.2.6.7 LAST _TRADE
The table contains one row for each security with the latest trade price and volume for each security.
Table Prefix: LT _

Column Name Data Type Constraints |Relations Description
PK .
LT_S SYMB CHAR(15) Not Null FK (5.) Security symbol.
LT DTS DATETIME Not Null Date and timestamp of when this row
was last updated.
LT_PRICE S PRICE_T Not Null Latest trade price for this security.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 65 of 271

Column Name Data Type Constraints |Relations Description

LT_OPEN_PRICE S _PRICE_T Not Null Price the security opened at today.
Volume of trading on the market for this

LT _VOL S COUNT_T Not Null security so far today. Value initialized to

2.2.6.8 NEWS_ITEM

The table contains information about news items of interest.

Table Prefix: NI_

Column Name Data Type Constraints |Relations Description

NI_ID IDENT_T Not Null PK News item identifier.

NI_HEADLINE CHAR(80) Not Null News item headline.

NI_SUMMARY CHAR(255) Not Null News item summary.

BLOB(100000) Large object containing the news item or

NLITEM or BLOB_REF Not Null links to the story.

NIDTS DATETIME Not Null Date and time the news item was
published.

NI_SOURCE CHAR(30) Not Null Source of the news item.

NI_AUTHOR CHAR(30) Author of the news item. May be null if
the news item came off a wire service.

2.2.6.9 NEWS_XREF

The table contains a cross-reference of news items to companies that are mentioned in the news item.

Table Prefix: NX_

Column Name Data Type Constraints |Relations Description
PK+
NX_NIL_ID IDENT_T Not Null News item identifier.
FK (NI)
PK+ Company identifier of the company (or
NX_CO_ID IDENT_T Not Null one of the companies) mentioned in the
FK(CO_) news item.

22,610 SECTOR

The table contains information about market sectors.

Table Prefix: SC_

Column Name Data Type Constraints |Relations Description
SC_ID CHAR(2) Not Null PK Sector identifier.
Sector name. Examples: “Energy”,
SC_NAME CHAR(30) Not Null “Materials”, “Industrials”, “Health Care,
etc.

22.611 SECURITY

This table contains information about each security traded on any of the exchanges.

Table Prefix: S_

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 66 of 271

Column Name Data Type Constraints |Relations Description

S_SYMB CHAR(15) NotNull |PK Security symbol used to identify the
security on "ticker".
Security issue type. Example:

S_ISSUE CHAR(6) Not Null "COMMON?", "PERF_A", "PERF_B",
etc.
Security status type identifier.

S ST ID CHAR(4) Not Null FK (ST) Identifies if this security is active or
not.

S NAME CHAR(70) Not Null Security name.

S_EX_ID CHAR(6) Not Null FK (EX_) Exchange 1d§3\nt1f1er of the exchange
the security is traded on.

S_CO_ID IDENT_T Not Null FK(CO) |Company identifier of the company
this security is issued by.

S NUM_OUT S_COUNT_T Not Null Number of shares outstanding for this
security.

S_START_DATE DATE Not Null Date security first started trading.

S_EXCH_DATE DATE Not Null Date security first started trading on
this exchange.

S_PE VALUE_T Not Null Current §hare price to earnings per
share ratio.

S _52WK_HIGH S PRICE_T Not Null Security share price 52-week high.

S_52WK_HIGH_DATE |DATE Not Null Eiagt}f of security share price 52-week

S 52WK_LOW S PRICE_T Not Null Security share price 52-week low.

S_50WK_LOW_DATE DATE Not Null]l?)?/\t’e of security share price 52-week
Annual Dividend per share amount.

S_DIVIDEND VALUE_T Not Null May be zero, is not allowed to be
negative.
Dividend to share price ratio. Value is

5_YIELD NUM(,2) Not Null in percent. Example 10.00 is 10%

227 Dimension Tables

This group of tables includes 4 dimension tables that contain common information such as addresses and
zip codes.

2.2.7.1 ADDRESS
This table contains address information.

Table Prefix: AD_

Column Name Data Type Constraints |Relations Description
AD_ID IDENT_T Not Null PK Address identifier.
AD_LINE1 CHAR(80) Address Line 1.
AD_LINE2 CHAR(80) Address Line 2.
AD_7ZC_CODE CHAR(12) Not Null FK (ZC_) Zip or postal code.
AD_CTRY CHAR(80) Country.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 67 of 271

22.7.2 STATUS_TYPE

This table contains all status values for several different status usages. Multiple tables reference this table
to obtain their status values.

Table Prefix: ST_

Column Name Data Type Constraints |Relations Description
ST_ID CHAR(4) Not Null PK Status type identifier.
Status value. Examples: "Active",
ST_NAME CHAR(10) Not Null "Completed”, "Pending", “Canceled” and
"Submitted”.

The contents of the STATUS_TYPE table are shown below for readability, since the ST_ID values are used
elsewhere in the specification.

ST_ID ST_NAME
ACTV Active
CMPT Completed
CNCL Canceled
PNDG Pending
SBMT Submitted

2.2.7.3 TAXRATE
The table contains information about tax rates.

Table Prefix: TX_

Column Name Data Type Constraints |Relations Description
Tax rate identifier. Format - two letters
TX_ID CHAR(4) Not Null PK followed by one digit. Examples: ‘UST’,
‘CAT.
TX_NAME CHAR(50) Not Null Tax rate name.
Not Null
TX_RATE NUM(6,5) ot Nu Tax ra‘te, between 0.00000 and 1.00000,
>=0 inclusive.

2274 ZIP_CODE

The table contains zip and postal codes, towns, and divisions that go with them.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 68 of 271

2.3

24

Table Prefix: ZC_

Column Name Data Type Constraints |Relations Description

ZC_CODE CHAR(12) Not Null PK Postal code.

ZC_TOWN CHAR(80) Not Null Town.

ZC_DIV CHAR(80) Not Null State or province or county.

Implementation Rules

The Data Definition Language (DDL) statements contained in the TPCx-V Benchmark Kit create the

schema to conform to this specification. After creating disk space to hold the data, the Test Sponsor must
run the VDb/pgsql/scripts/linux/setup.sh shell script, which creates and populates the schema on the
provided disk space. This section describes what rules are followed by the DDL that implements the
schema. The only changes allowed to the implementation rules are those defined in Clauses 1.5.7 and
1.5.8.

For full details of the Implementation Rules, see Appendix 10.1.

TPCx-V Database Size and Table Cardinality

The transaction load generated to service customer accounts and to interact with financial markets drives
the throughput of the TPCx-V benchmark. To increase the throughput, more customers and their

associated data must be configured. The cardinality of the CUSTOMER table is the basis of the TPCx-V
database size and scaling. CUSTOMER table cardinality is determined based on the transaction
throughput metric requirements defined in Clause 5.6.7.

Configured Customers means the number of customers (with corresponding rows in the associated
TPCx-V tables) configured at database generation.

Active Customers means the number of customers (with corresponding rows in the associated TPCx-V
tables) that are accessed during the Test Run. Active Customers may be a subset of Configured
Customers that were loaded at database generation.

The TPCx-V benchmark has three types of sizing requirements for its tables:

e Fixed Tables are tables that always have the same number of rows regardless of the database size
and transaction throughput. For example, TRADE_TYPE has five rows.

e Scaling Tables each have a defined cardinality that has a constant relationship to the cardinality of
the CUSTOMER table. Transactions may update rows from these tables, but the table sizes remain
constant.

e Growing Tables each have an initial cardinality that has a defined relationship to the cardinality of
the CUSTOMER table. However, the cardinality increases with new growth during the benchmark
run at a rate that is proportional to transaction throughput rates.

Comment: The HOLDING and HOLDING_SUMMARY tables are considered Growing Tables. Rows are
added to and deleted from the HOLDING and HOLDING_SUMMARY tables during the benchmark
execution, but the average size of the tables continues to grow at an insignificant rate during Steady

State. The TRADE_REQUEST table is also considered a Growing Table because it is initially empty and
at runtime grows to an average size that is a fixed relationship to the transaction throughput rates and
not to the cardinality of the CUSTOMER table.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 69 of 271

241

24.1.1

24.1.2

2413

2414

2415

24.1.6

24.1.7

24.1.8

Initial Database Size Requirements

The test database must be initially populated using data generated by VGenLoader. By definition, the
TPC provided VGenLoader produces the correct number of rows for each table. The test database must
be built including the initial database population and User-Defined Objects present immediately prior
to the first Test Run.

The initial database population is based on the number of customers. The benchmark Sponsor selects
the CUSTOMER table cardinality, based on the desired transaction throughput. Clause 5.6.8.4 defines
the Nominal Throughput for a given number of rows in the CUSTOMER table. The minimum number
of rows for the CUSTOMER table in each database is 5000. The size of the CUSTOMER table can be
increased in increments of 1000 customers. A set of 1000 customers is known as a Load Unit.

The overall Load Unit count, based on Clause 5.6.8.4, shall be proportioned among the Groups and
Tiles as specified in Clause 4.3.4.2. Each of VM2 and VM3 in a Group must be initially populated with
the same number of Load Units. The initial database populations of all Group 1 databases in all Tiles
are required to be equal. The number of Load Units in the initial database population in a database in
Groups 2, 3, and 4 must be 2, 3, and 4 times the number of Load Units in a Group 1 database,
respectively. The minimum aggregate number of Load Units is (50 X Tile count) with Tile count
calculated from formulas in Clause 4.3.4.1. Since the size of the CUSTOMER table in a Group 1
database may be increased only in increments of 1,000 customers, the aggregate number of Load Units
may only be increased in increments of (10 X Tile count) Load Units.

The Growing Tables are populated with an initial set of rows sufficient to enable all benchmark
Transactions to run.

The Scale Factor is the number of required customer rows per single Transactions-Per-Second-V. The
Scale Factor for Nominal Throughput is 500.

The Initial Trade Days (ITD) is the number of Business Days used to populate the database. This
population is made of trade data that would be generated by the SUT when running at the Nominal
Throughput for the specified number of Business Days. The number of Initial Trade Days is 125.

The number of Load Units configured in each database must be equal to the number of Load Units
actually accessed during the Test Run.

The following variables are used as an aid in defining TPCx-V table cardinalities:

Variable Table Description

customers |CUSTOMER Number of rows in the CUSTOMER table.

Number of rows in the CUSTOMER_ACCOUNT table. Equal to 5 *

CUSTOMER_ACCOUNT
accounts - customers.

Number of trade rows in the TRADE table. The trades number is

trades TRADE equal to 7200 * cUStomers (125 days of initial population at SF =
500).

Number of settled trade rows in the SETTLEMENT table. The settled

SETTLEMENT
settled number is equal to frades.

Number of rows in the COMPANY table. There are a fixed 5,000

companies |COMPANY companies.

Number of rows in the SECURITY table. There are a fixed 6,850

securities SECURITY securities.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 70 of 271

2419 The following rules are used by VGenLoader to calculate the cardinalities of the Scaling Tables and
Growing Tables. The VGen package uses random number generators to set the number of rows for
relationships such as securities per account and, as a result, the cardinality of some TPCx-V tables can

only be approximated.

Table Variable Used Rule
60% have just the customer as the executor
38% have the customer and 1 other executor
ACCOUNT_PERMISSION |gccounts 2% have the customer and 2 other executors
Avg. is ~1.42 * accounts
ADDRESS customers companies(5,000) + EXCHANGE(4) + customers
BROKER customers 0.01 * customers (or 1 broker per 100 customers)
CASH_TRANSACTION settled ~0.92 * settled (84% of buys and 100% of sells are cash)
COMPANY companies 1* companies
COMPANY_COMPETITOR | companies 3 * companies
CUSTOMER_ACCOUNT customers 5* customers
CUSTOMER_TAXRATE customers 2 * customers
DAILY MARKET securities fvsocllégg?;’;sl)ﬁ% (5 years of 5-day work weeks with
FINANCIAL companies companies * 20 quarters (5 years)
HOLDING settled ~0.07955 * seftled (assumes ITD = 125 and SF = 500)
HOLDING_HISTORY settled ~1.3331 * seftled (assumes ITD = 125 and SF = 500)
HOLDING_SUMMARY accounts ~9.9234 * accounts (assumes I'TD = 125 and SF = 500)
LAST_TRADE securities 1* securities
NEWS_ITEM companies 2* companies
NEWS_XREF companies 2* companies
SECURITY customers 1* Securities
SETTLEMENT settled 1* settled
TRADE customers 7200 * customers = (ITD * 8 * 3600) / SF) *
customers
~((2 rows per market trade) * 0.6)
TRADE_HISTORY settled ((g rows per limit trade) * 0.4)
Averageis (2.4 * settled)
TRADE_REQUEST 0
WATCH_LIST customers Each customer has one watch list (1 * customers)
WATCH_ITEM customers Average=100 items per watch list * customers

24110 The following list contains the cardinality of Fixed Tables.

Fixed Tables Cardinality Cardinality Formula
CHARGE 15 (5 trade types * 3 customer tiers
COMMISSION_RATE 240 |4 rates * 4 exchanges * 5 trade types * 3 customer tiers

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 71 of 271

COMPANY 5,000 5,000 companies
COMPANY_COMPETITOR 15,000 |3 * companies
DAILY_MARKET 8,939,250 (1,305 days (5 years) * Securities
EXCHANGE 4 |4 exchanges
FINANCIAL 100,000 Companies *20
INDUSTRY 102 [102 industries
LAST_TRADE 6,850 securities * 1
NEWS_ITEM 10,000 companies *92
NEWS_REF 10,000 companies *9
SECTOR 12 12 sectors
SECURITY 6,850 |securities* 1
STATUS_TYPE 5 |5 status types
TAXRATE 320 |320 tax rates
TRADE_TYPE 5 |5 trade types
ZIP_CODE 14,741 14,741 zip codes

24.1.11

The following list contains the cardinality of the Scaling Tables for the minimum of 5,000 customers

Scaling Tables Cardinality Cardinality Formula

CUSTOMER 5,000 Scaled based on transaction rate

CUSTOMER_TAXRATE 10,000 customers *2

CUSTOMER_ACCOUNT 25,000 accounts = (5 * customers)

ACCOUNT_PERMISSION ~35,500 |accounts * (Average of ~1.42 permissions per account)
ADDRESS 10,004 |companies (5,000) + EXCHANGE (4) + customers
BROKER 50 [customers *0.01

WATCH_LIST 5,000 customers *1

WATCH_ITEM ~ 500,000 |customers* (Average of ~100 SECUIIti€S per watch list)

2.4.1.12 The following list shows the initial cardinality of the Growing Tables for the minimum of 5,000
customers, ITD-125, and SF=500.

Growing Tables Cardinality Cardinality Formula

CASH_TRANSACTION ~33,120,000 |~0.92 * settled (84% of buys & 100% of sells are cash)
HOLDING ~2,844,000 |~0.07955 * settled (assumes ITD = 125 and SF = 500)
HOLDING_HISTORY ~47,916,000 |-~1.3331 * settled (assumes ITD = 125 and SF = 500)
HOLDING_SUMMARY ~248,900 ~9.9234 * accounts

SETTLEMENT 36,000,000 1 * seftled

TRADE 36,000,000 [(ITD *8hr/day * 3600sec/hr * customers) /SF)
TRADE_HISTORY ~86,400,000 ~(2.4* trades)

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 72 of 271

24.2

2421

2422

TRADE_REQUEST 0 0

Test Run Database Size Requirements

The following list shows the increase in rows per second for the Growing Tables (except for
TRADE_REQUEST) during a Test Run. The rate of growth may decline after running for a large
number of days.

Table Name Cardinality Formula
CASH_TRANSACTION ~0.92 * (customers/SF)
HOLDING ~0.040 * (customers/SF)
HOLDING_HISTORY ~1.344 * (customers/SF)
SETTLEMENT 1*(customers/SF)
TRADE 1*(customers/SF)
TRADE_HISTORY ~2.4 * (customers/SF)

The TRADE_REQUEST table is empty at the start of a Test Run and does grow at first during runtime,
but it soon reaches a cardinality that is dependent on recent performance and not on the length of the

Test Run. The approximate cardinality of TRADE_REQUEST during the Steady State portion of a Test
Run can be estimated as ~24 rows * Measured Throughput (see Clause 5.6.8.1). Considerable variation
in this cardinality is possible both while running and at the end of a Test Run.

The test database must be built to sustain the Reported Throughput during a Business Day. This
means that test database must have a Business Day’s worth of additional space for data, index and log
online. This excludes performing on the database any operation that does not occur during the
Measurement Interval.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 73 of 271

3.1

311

3.1.1.1

3.1.1.2

3.1.1.3

3.1.14

3.1.2

Input from Driver » TPCx-V Logic / \
Frame Call —4—>
Frame 1
Frame Return <———
TPCx-V Logic 1
: 1 DBMS
TPCx-V Logic — -
Frame Call =—t+—>
Frame N
Frame Return €—<4+——_ y
Output to Driver < TPCx-V Logic N //

CLAUSE 3 TRANSACTIONS

Introduction

The core of each TPCx-V Transaction runs on the Database Server, but the logic of the Transaction
interacts with several components of the benchmark environment. This section defines all aspects of the

Transactions, including side effects on other components of the benchmark environment.

Definitions

A Transaction is composed of VGenTxnHarness and of the invocation of one or more Frames. The
Trade-Cleanup Transaction is an exception. Sponsors may but do not have to run the Trade-Cleanup
Transaction from VGenTxnHarness.

The VGenTxnHarness is the TPC provided transaction logic, which the Sponsor is not allowed to alter.
The VGenTxnHarness is implemented in a manner that precludes the consolidation of multiple
Frames within a Transaction.

A Frame is the TPC-provided Transaction logic, which is invoked as a unit of execution by the
VGenTxnHarness. The database interactions of a Transaction are all initiated from within its Frames.

Legend
(__7PC Provided)

[Commercial Produc]t

/ /V GenTxnHarness \ TPCx-V Transactions \

Frames Interfacing with the Harness and the Database

A Database Transaction is an ACID unit of work.

Database Footprint Definition

This Clause describes the format used to specify the Database Footprint of each Transaction in this
benchmark.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 74 of 271

3.1.2.1

3.1.2.2

3.1.2.3

The Database Footprint of a Transaction is the set of required database interactions to be executed by
that Transaction.

Each Database Footprint is presented in a tabular format where the columns specify the following:

e The first column denotes either one of the database tables defined in Clause 2.2 or the words
“Transaction Control” that denotes the entire Transaction. The last row defines the overall
Transaction.

e The second column denotes one of the following:

o A specific column name of a database table as defined in Clause 2.2.

o The string “# rows” that specifies the exact number of rows containing all columns of a
database table. For example, “2 rows” indicates two complete rows of a database table.

o The string “Row(s)” that specifies a variable number of rows containing all columns of a
database table.

e The remaining columns correspond with each of the Frames of the Transaction and contain the
database interactions or Transaction control operations required to be executed in that Frame.

The following table is an example of the Database Footprint of a Transaction.

Example Database Footprint
Frame
Table Column
1 2% 3=
CA_BAL Reference
CUSTOMER_ACCOUNT CA_C_ID Return
CA_TAX_ST Return
H_PRICE Return
H_QTY Modify
HOLDING
Row(s) Remove *
1 row Add *
TRADE_HISTORY 1 row Add
Transaction Control Start Rollback * Commit

o For the last row of the Database Footprint where the words “Transaction Control” appears, each
column corresponds to one of the transaction Frames. The content of the columns denote which
Transaction control operations occur in that Frame. The possible Transaction control operations are
as follows:

o The word “Start” indicates that the specified Frame contains a control operation that starts
a Database Transaction. The start of a Database Transaction can only occur in a Frame
where the word “Start” is specified.

o The word “Rollback” indicates that the specified Frame contains a control operation that
rolls back the Database Transaction. The explicit rolling back of a Database Transaction
can only occur in a Frame where the word “Rollback” is specified.

The word “Commit” indicates that the specified Frame contains a control operation that commits a
Database Transaction. Commit is a control operation that:

¢ Isinitiated by a unit of work (a Transaction)

e Isimplemented by the DBMS

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 75 of 271

e Signifies that the unit of work has completed successfully and all tentatively modified data are
to persist (until modified by some other operation or unit of work)
o Upon successful completion of this control operation both the Transaction and the data are
said to be Committed. The explicit committing of a Database Transaction can only occur in
a Frame where the word “Commit” is specified.

Comment: Multiple Transaction control operations may occur within the same Frame. For example,
a Transaction that consists of a single Frame would have both “Start” and “Commit” in its Database
Footprint column corresponding with Frame 1.
For remaining rows of the Database Footprint the column corresponding to each Frame contains the
access method required for the table column listed in that row. The possible access methods are as
follows:
o The word “Reference” indicates that the TPCx-V table column is identified in the database
and the content is accessed within the Frame without passing the content of the table
column to the VGenTxnHarness.

o The word “Return” indicates that the TPCx-V table column is referenced and that its
content is retrieved from the database and passed to the VGenTxnHarness. The table
column must be referenced in the same Frame where the word “Return” is specified. The
content of the table column can only be passed to subsequent Frames via the input and
output parameters specified in the Frame parameters.

o The word “Modify” indicates that the content of a TPCx-V table column is modified
within the Frame. The content of the table column can only be changed in a Frame where
the word “Modify” is specified. When the original content of the table column must also

be referenced or returned before it is modified, a “Reference” or a “Return” access method
is also specified.

o The word “Add” indicates that a number of rows are added to the TPCx-V table specified
by the Database Footprint. TPCx-V Table row(s) can only be added in a Frame where the
word “Add” is specified. The number of rows that are added is specified in the second
column of the Database Footprint with either “# row” for a fixed number of rows or
“row(s)” for an unspecified number of rows.

o The word “Remove” indicates that a number of rows are removed from the TPCx-V table
specified by the Database Footprint. Table row(s) can only be removed in a Frame where
the word “Remove” is specified. The number of rows that are removed is specified in the
second column of the Database Footprint with either “# row” for a fixed number of rows
or “row(s)” for an unspecified number of rows.

Comment 1: An asterisk following any item in the column of a given Frame denotes that the
transaction control, the database interactions, or the execution of the entire Frame is conditional. The
VGenTxnHarness defines under which conditions the Frame will be executed.

Comment 2: In the example Database Footprint above, the Database Transaction is started in Frame
1. If Frame 2 is executed the Database Transaction may be rolled back. If Frame 3 is executed the
Database Transaction must be Committed. For the table CUSTOMER_ACCOUNT, the table column
CA_BAL is referenced and the table columns CA_C_ID and CA_TAX_ST are returned in Frame 1.
For the HOLDING table, the column H_PRICE is returned and H_QTY is modified if Frame 2 is

executed. Additionally, if Frame 2 is executed, a number of rows are conditionally removed from
the HOLDING table and 1 row is conditionally added to the HOLDING table. For the

TRADE_HISTORY table, a row is added if Frame 3 is executed.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 76 of 271

3.2

3.21

3.2.1.1

3.2.1.2

Comment 3: The programming semantics used to implement the required access methods for a given
table column is not restricted from performing operations typically associated with a different access

method, as long as the implementation of the Frame is functionally equivalent to the specified
Pseudo-code. For example, “select for update” and “select with UPDLOCK” are compliant
implementations of a Reference access method.

Transaction Implementation Rules

Frame Implementation

The implementation of a Frame is not allowed to assume any prior knowledge of VGen’s data
generation methods or values for data elements defined in the database schema for the benchmark,
except for the VGen constants listed in the table below.

Comment 1: The intent of this clause is to prevent the Frames from using constant values, or other means,
to circumvent database references to static or infrequently changing data elements. In general, using any

private knowledge specific to the benchmark, but which is not explicitly furnished to the Transaction or
the Frame, via Transaction inputs or Transaction Pseudo-code, is prohibited.

The following table shows VGen constants used as limits when generating the number of values for
Transaction inputs or when accepting Transaction outputs. These constant limits are provided in the
specification for explicit usage in the corresponding Clause 3.3 Frame Implementations.

Description Constant Value |VGen Filename

Broker-Volume

Minimum number of input broker

min_broker_list_len 20 TxnHarnessStructs.h
names

Maximum number of input broker

max_broker_list_len 40 TxnHarnessStructs.h
names

Customer-Position

Maximum customer accounts per

max_acct_len 10 TxnHarnessStructs.h
customer

Maximum number of TRADE_HISTORY

max_hist_len 30 TxnHarnessStructs.h
rows to return

Market-Feed

Maximum number of items on the ticker max_feed_len | 25 | TxnHarnessStructs.h

Security-Detail

Minimum number of DAILY_MARKET
rows to return

min_day_len 5 TxnHarnessStructs.h

Maximum number of DAILY_MARKET

max_day_len 20 TxnHarnessStructs.h
rows to return

Maximum number of FINANCIAL rows

max_fin_len 20 TxnHarnessStructs.h
to return

Maximum number of NEWS_ITEM rows

max_news_len 2 TxnHarnessStructs.h
to return

Maximum number of
COMPANY_COMPETITOR rows to max_comp_len 3 TxnHarnessStructs.h
return

Trade-Lookup

Maximum number of TRADE rows to

. TradeLookupMaxRows 20 MiscConsts.h
return for Transaction

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 77 of 271

3213

3214

3.2.1.5

3.2.1.6

Maximum number of TRADE rows to TradeLookupFramelMaxRows 20 MiscConsts.h
return for Frame 1

Maximum number of TRADE rows to TradeLookupFrame2MaxRows 20 MiscConsts.h
return for Frame 2

Maximum number of TRADE rows to TradeLookupFrame3MaxRows 20 MiscConsts.h
return for Frame 3

Maximum number of TRADE . MiscConsts.h
"HISTORY rows to return TradeLookupMaxTradeHistoryRowsReturned 3

Trade-Status

Maximum number of trade status rows max_trade_status_len 50 TxnHarnessStructs.h
to return

Trade-Update

Maximum number of TRADE rows to TradeUpdateMaxRows 20 MiscConsts.h
return for Transaction

Maximum number of TRADE rows to TradeUpdateFramelMaxRows 20 MiscConsts.h
return for Frame 1

Maximum number of TRADE rows to TradeUpdateFrame2MaxRows 20 MiscConsts.h
return for Frame 2

Maximum number of TRADE rows to TradeUpdateFrame3MaxRows 20 MiscConsts.h
return for Frame 3

Maximum number of TRADE . MiscConsts.h
"HISTORY rows to return TradeUpdateMaxTradeHistoryRowsReturned 3

All data exchanges between Frames must be done by the VGenTxnHarness through its use of input
and output parameters passed in and out of the Frames.

Comment 1: The intent of this clause is to prevent the Frames from using global variables, or other means,

for storing and retrieving information across multiple invocations of the same or different Frames in
order to avoid work intended to be done during each individual invocation.

Comment 2: The Test Sponsor may augment each Frame with code to unpack the input parameters
received from the VGenTxnHarness and to pack the output parameters returned to the
VGenTxnHarness.

The Frame Implementation must perform each database interaction specified in the Transaction’s
Database Footprint, using the specified access method.

The Frame Implementation must access any column that is marked as Reference. It is also free to
access other columns that are not marked as Reference. For the other database interactions, the Frame
Implementation must perform all the required operations and/or return all the specified column
values.

The implementation of each Frame must be functionally equivalent to the Pseudo-code provided for
that Frame in Clause 3.3. Functional equivalence is satisfied when:

e For a given set of inputs the implementation produces the same outputs and causes the same
change in database state as the Pseudo-code. A change in database state is a change to a TPCx-V
Table or TPCx-V Table column, resulting from any Modify, Add or Remove access method
defined by the Transaction’s Database Footprint.

e All access methods in the Database Footprint are performed.

e No additional Add/Modify/Remove access methods against any TPCx-V Table are performed.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 78 of 271

3.2.1.7

3.2.1.8

3219

Comment: Additional Reference access methods against any TPCx-V Table may be performed.
Additional access methods against any User-Defined Object may be performed.

The minimum decimal precision for any computation performed as part of the Frame must be the
maximum decimal precision of all the individual items in that calculation.

Each Frame and Transaction has a status output parameter used to indicate the execution status of the
Frame or Transaction. A status value of 0 indicates success. A negative status value indicates an error
that would invalidate a Test Run. A positive non-zero integer value for status indicates a warning.
Warnings mean that an unexpected result was generated and the Test Sponsor and Auditor should
investigate the unexpected result. The unexpected result may be due to a rare but legal condition or it
may be because of an incorrect implementation or run-time problem. If the latter is the cause of the
warning, it must be treated as an error that invalidates the Test Run.

The following table shows the positive warning numbers and where they may happen in VGen.

Transaction Frame ‘S?‘t]:liflilsing Reason for Warning
Trade-Lookup 2 +621 num_found == 0
Trade-Lookup 3 +631 num_found ==0
Trade-Lookup 4 +641 num_trades_found == 0
Trade-Update 2 +1021 num_updated == 0
Trade-Update 3 +1031 num_found == 0

If a transaction processing monitor (hereinafter referred to as TM) is used it must be commercially
available software which provides the following features/functionality:

Operation - The TM must allow for:

e request/service prioritization

e multiplexing/de multiplexing of requests/services

e automatic load balancing

e reception, queuing, and execution of multiple requests/services concurrently

Security - The TM must allow for:

e the ability to validate and authorize execution of each service at the time the service is requested.
e the restriction of administrative functions to authorized users.

Administration/Maintenance - The TM must have the predefined capability to perform centralized, non
programmatic (i.e., must be implemented in the standard product and not require programming) and
dynamic configuration management of TM resources including hardware, network, services (single or
group), queue management prioritization rules, etc.

Recovery - The TM must have the capability to:
e post error codes to an application
e detect and terminate long-running transactions based on predefined time-out intervals

Application Transparency - The message context(s) that exist between the client and server application
programs must be managed solely by the TM. The client and server application programs must not have
any knowledge of the message context or the underlying communication mechanisms that support that
context.

Comment 1: The following are examples of implementations that are non-compliant with the Application
Transparency requirement.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 79 of 271

3.3

8. Client and server application programs use the same identifier (e.g., handle or pointer) to maintain

the message context for multiple transactions.

9. Change and/or recompilation of the client and/or server application programs is required when the

number of queues or equivalent data structures used by the TM to maintain the message context
between the client and server application programs is changed by TM administration.

Comment 2: The intent of this clause is to encourage the use of general purpose, commercially available
transaction monitors, and to exclude special purpose software developed for benchmarking or other
limited use. It is recognized that implementations of features and functionality described above vary
across vendors' architectures. Such differences do not preclude compliance with the requirements of this
clause.

The Transactions

The TPCx-V benchmark consists of eleven Transactions, and one cleanup Transaction. To generate a
reasonably balanced workload that resembles real production environments, the Transactions have to

cover a wide variety of system functions. Nine of the Transactions follow a specific mix to generate the
desired workload while keeping the benchmark environment simple, repeatable and easy to execute.

Two additional Transactions are not part of the Transaction Mix, but are executed at fixed intervals. The
tenth Transaction, called “Market-Feed”, simulates a market ticker feed of recent stock trades. The
eleventh Transaction, called “Data-Maintenance”, simulates administrative updates to tables that are not
otherwise modified by the Transactions in the mix.

An additional cleanup Transaction, called “Trade-Cleanup”, is provided to clean up pending and
submitted trades that may exist from an earlier run.

One of the key performance characteristics of database systems is the ratio of reads and writes generated
by the workload. To emulate such a ratio, TPCx-V has defined Transactions with read-only

characteristics as well as Transactions with read-write characteristics. In addition, the Transactions
apply varying loads on the processor.

The variety of processor, IO, and execution frequency requirements for the Transactions allows the
benchmark to emulate a real environment with heavy processor utilization while maintaining a
reasonable IO load in a simple benchmark configuration.

The Transactions can be grouped into three categories:

e Customer Initiated Transactions simulate customer interactions with the system and are initiated
by the Customer Emulator component of the benchmark Driver.

e Brokerage Initiated Transactions simulate broker interactions with the system and are initiated by
the Customer Emulator component of the benchmark Driver.

e Market Triggered Transactions simulate the behavior of the market and are triggered by the Market
Exchange Emulator component of the benchmark Driver.

Nine Transactions are in the mix, and in addition, the benchmark defines two time triggered
Transactions, the Market-Feed Transaction and the Data-Maintenance Transaction, which are initiated
at fixed time intervals as defined in Clause 5.3.3. Also defined is a Trade-Cleanup transaction (see clause

5.3.4), which may not be executed within a Test Run, but must be executed once before a Test Run if the
database is not in its initially populated state (i.e., if any prior runs have been performed on the database).

The following summary table lists the basic characteristics of the transactions. See Clause 10.6 for full
implementation details of the transactions, including pseudo-code

Transaction Weight Access Category Frames (Definition
Broker-Volume Mid to Heavy |Read-only Brokerage Initiated 1 Clause 10.6.1
Customer-Position Mid to Heavy |Read-only Customer Initiated 3 Clause 10.6.2.1

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 80 of 271

Market-Feed Light Read-write = [Market Time Triggered Clause 10.6.3
Market-Watch Medium Read-only Customer Initiated Clause 10.6.4
Security-Detail Medium Read-only Customer Initiated Clause 10.6.5
Brokerage Initiated for
. Frames 1 & 3
Trade-Lookup Medium Read-only . Clause 10.6.6
Customer Initiated for
Frames 2 & 4
Trade-Order Heavy Read-write [Customer Initiated Clause 10.6.7
Trade-Result Heavy Read-write [Market Triggered Clause 10.6.8
Trade-Status Light Read-only Customer Initiated Clause 10.6.9
Brokerage Initiated for
. . Frames 1& 3
Trade-Update Medium Read-write . Clause 10.6.10
Customer Initiated for
Frame 2
Data-Maintenance Light Read-write |Brokerage Time Triggered Clause 10.6.11
Trade-Cleanup Medium Read-write |Run once before Test Run Clause 10.6.12

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 81 of 271

CLAUSE 4 DESCRIPTION OF SUT, DRIVER, AND NETWORK

4.1

4.2

421

Overview

TPCx-V is a distillation of an abstraction of multiple virtualized “real-world” OLTP environment. In

order to understand what TPCx-V tests and, as a consequence, what TPCx-V does not test, it is necessary
to understand the base “real-world” environment, the abstraction of that base environment , and the
distillation of that abstraction. For a complete description of the SUT, Driver, and Network, see Clause
10.1

Example Test Configuration Implementations

The following figure shows the physical components that could be assembled to implement a
hypothetical test configuration. In this simple example, the Node is depicted with only 1 Tile.

Driver Tier A& B

AL
— s \
Tile 1, Group 1

TierA TPCx-V TPCx-V

£

- VM1 VM2 VM3
TL TO TS BV
RU TR MW CP
DM MF SD DM
Tile 1, Group 2

J

|

|
|
@)
(&)r
\ &

TierA TPCx-V TPCx-V

VM1 VM2 VM3
TL TO TS BV
RU TR MW CP
DM MF SD DM

Tile 1, Group 3

TierA TPCx-V| TPCx-V
== VM1 VM2 VM3

TL TO TS BV
RU TR MW CP
DM mF sp Dm

Tile 1, Group 4

i

\

\
System Under Test >

TierA TPCx-V TPCx-V
VM1 VM2 VM3

TL TO TS BV
RU TR MW CP
DM mF sp DM

£

Figure 4.a - Sample Component of Physical Test Configuration

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 82 of 271

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.4.1

Further Requirements for SUT and Driver Implementations

Disclosure of Network Configuration

The Test Sponsor shall describe completely the Network configurations of both the tested services and
the proposed real (target) services that are being represented.

Synchronization of Time

All of the systems used for the Driver and SUT must have system clocks that are synchronized to within
a tolerance of 10 seconds across all systems. The synchronization must be verified once before and once

after the Test Run.

This clause covers the constraints and regulations governing the use of Benchmark Kit. For detailed

information on Benchmark Kit, what features and functionality it provides and how a Test Sponsor is
to use those features and functionality see Clause 10 .

SUT Implementation Limits on Operator Intervention

Systems must be able to run normal operations for at least a Business Day without requiring any operator
intervention to sustain the Reported Throughput.

Comment: Operator intervention is defined as any activity that requires an operator or an individual to
perform a function to enable the SUT to continue processing Transactions.

Valid Configurations

A TPCx-V configuration is made up of several identical Tiles, with each Tile having 4 Groups. A Tile
in a valid configuration will have Groups 1, 2, 3, and 4 contributing an average of 10%, 20%, 30%, and
40% of the total throughput of the Tile, respectively.

Calculation of the number of Tiles

Starting from the definition in 2.4.1.5 which requires 1 LU per each 2 tpsV, the targeted Nominal

Throughput is used to calculate the number of Load Units. The Tile counts for various Load Unit ranges
are listed in the table below, and depicted in Figure 4.f.

Comment: The ranges are overlapping. So when a sponsor chooses the number of Load Units based on
the corresponding Nominal Throughput, the table gives the sponsor either two choices for the number
of Tiles (for example, at 500 LUs), or a single choice (for example, at 2,000 LUs).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 83 of 271

Aggregate LU range Number of | Aggregate LU

From To | Tiles increment size
50 1,000 1 10
800 1,400 2 20
1,110 1,980 3 30
1,600 2,800 4 40
2,250 4,000 5 50
3,180 5,640 6 60
4,480 7,980 7 70
6,400 11,280 8 80
9,000 15,930 9 90
12,800 22,600 10 100
18,040 31,900 11 110
25,560 45,240 12 120
36,140 63,960 13 130
51,100 90,440 14 140
72,300 127,950 15 150

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 84 of 271

Number of Tiles

L 4
L 2

50 500 5000

Aggregate Load Units

Figure 4.b — Valid number of Tiles versus aggregate LUs

The formulas below were used in the calculation of the values in the table above. The mix and max LU
counts in each range are adjusted to be integral multiples of the valid LU increment count for the range.

A configuration with 1 Tile may be used for Load Unit counts between 50 and 1000.
The minimum LU count in a range is 80% of the max LU count of the previous range

The Maximum LU count in a range is the max LU count of the previous range multiplied by
SQRT(2).

The Tile count for the range is calculated from the max LU count of the range as:
FLOOR((LOG(max_LU_count/1000,SQRT(2))),1)+1

4.3.4.2 Calculation of the number of Load Units in each Group

The overall number of Load Units is determined by Clause 5.6.8.4. The number of Load Units in each
Group 1 in a configuration with n Tiles equals (overall number of Load Units / 1) * 10%. The number

of Load Units in each Group 2-4 is similarly calculated by substituting 20%, 30%, and 40%,
respectively, in the formula above.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 85 of 271

All Groups must be populated in accordance with the requirements in Clauses 2.4.1.2 and 2.4.1.3.

Clause 2.4.1.3 specifies the minimum number of Load Units and the minimum Load Unit increment
value.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 86 of 271

5.1

5.1.1

5.1.1.1

5.1.1.2

5.2

CLAUSE 5 EXECUTION RULES & METRICS

Introduction

This clause defines the execution rules and the methods for calculating the benchmark metric.

Definition of Terms
The term Reported refers to an item that is part of the FDR (see Clause 8 for detailed requirements).

The term Valid Transaction refers to any Transaction for which input data has been sent in full by the
Driver, whose processing has been successfully completed on the SUT and whose correct output data
has been received in full by the Driver.

Comment 1: Transaction errors are not allowed during the Test Run. A Transaction that never completes
is considered an error.

Comment 2: A Trade-Order Transaction that requires a rollback that runs successfully and produces the
correct output is considered a Valid Transaction.

Comment 3: A Transaction that aborts and is retried by the SUT and ultimately completes successfully
and produces the correct output is considered a Valid Transaction. A Transaction may not be retried by
the Driver.

Dynamic Workload Variation

One of the unique features of TPCx-V is that the load of each Group rises or falls at every Phase change

of the Measurement Interval. This is intended to represent the elastic nature of workloads present in
virtual systems and the resource allocation policies required to handle such elasticity. The overall load

presented to the System Under Test, as well as the total load presented to each Tile, remains constant
throughout the Measurement Interval, but the contribution from each Group within a Tile varies by as
much as a factor of 7X between two consecutive Elasticity Phases (the rise of the contribution of Group 1
from 5% to 35% in Elasticity Phase 7, followed by the dropping back to 5% in Elasticity Phase 8). In each
Phase, all Group 1s of all Tiles vary to the same degree; and the same applies to Groups 2-4. The table
and chart below show how much each Group contributes to the overall throughput of a Tile in each 12-
minute Elasticity Phase.

The difference between the highest and lowest percentage of load presented to a Group across all 10
Elasticity Phases can be as much as 16X (the 80% of Elasticity Phase 4 of Group 4 to the 5% of Elasticity
Phase 9 of that Group).

The Max-to-Min load variation for Group 1 is from 35% to 5%.
The Max-to-Min load variation for Group 2 is from 65% to 5%.
The Max-to-Min load variation for Group 3 is from 70% to 5%.

The Max-to-Min load variation for Group 4 is from 80% to 5%.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 87 of 271

Elasticity Group | Group
Phase | Group 1 | Group 2 3 4

1 10% 20% 30% 40%

2 5% 10% 25% 60%

3 10% 5% 20% 65%

4 5% 10% 5% 80%

5 10% 5% 30% 55%

6 5% 35% 20% 40%

7 35% 25% 15% 25%

8 5% 65% 20% 10%

9 10% 15% 70% 5%

10 5% 10% 65% 20%
Average 10% 20% 30% 40%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Phase

m Group 4
Group 3
H Group 2
Group 1
1 2 3 4 5 6 7 8 9 10

Figure 5.a - Dynamic load variation

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 88 of 271

5.3

5.3.1

5.3.2

Transaction Mix

The TPCx-V workload is made up of a number of Transactions executing against multiple databases
following a specified Transaction Mix. During the Test Run, the CCE code controls the generation of
Brokerage Initiated and Customer Initiated Transaction types via a card deck methodology designed
to satisfy the specified mix (see CETxnMixGenerator.cpp). The Market Triggered Transactions are not
generated by the CE but arise from asynchronous actions in the MEE.

Since deviations from the specified mix are still possible, it is the Test Sponsor's responsibility to make
sure that the following criteria were indeed met for the Measurement Interval in order for the
Measurement Interval to be valid. For the purposes of verifying that these criteria are met any and all
Valid Transactions whose sT and eTn are both within the Measurement Interval are to be counted.

Mix Requirements

The following table shows the target mix percentages for the two Tier B Virtual Machines of each Group.
The Test Sponsor must show that the actual percentage obtained for each Transaction type over the
entire Measurement Interval is within the specified Required Range.

VM in Group Transaction Target Pct |Required Range |Comment
VM2 Trade-Lookup 9% 8.955%-9.045%
VM2 Trade-Update 1% 0.995%-1.005%
VM3 Broker-Volume 3.9% 3.881%-3.920%
VM3 Customer-
Position 15% 14.910%-15.090%
VM3 Market-Watch 17% 16.905%-17.095%
VM3 Security-Detail 16% 15.905%-16.095%
VM3 ~1% of Trade Orders rollback (see Clause 5.4.1,
Trade-Order 10.1% 10.049% —10.151% |rollback is 1 out of each 101 Trade Orders.). 99%
of 10.1% is the 10% for Trade Result.
VM3 There is one Trade-Result per Trade-Order
Trade-Result 10% 9.950% - 10.050% completed by the MEE, but ~1% of Trade-Order
Transactions rollback at time of initial processing.
VM3 Trade-Status 18% 17.900%-18.100%
Total 100%

Comment 1: The number of completed Trade-Results is one per non-rolled-back Trade-Order. However,
pending limit orders are delayed until their trigger price is reached. Therefore mix percentages may vary
over short periods of time.

Comment 2: Only the first MEE instance issues Market-Feed Transactions, which shall be at the rate of 2
per second for each VM3 database. A Phase being 12 minutes, the expected number of Market-Feed
Transactions for each VM3 database in each Phase is 1,440. The valid range is 1,426-1,454. Over a full 10-
Phase Test Run, the the expected number of Market-Feed Transactions for each VM3 database is 14,400.
The valid range is 14,328-14,472.

Required Precision for Mix Percentage Reporting

The Transaction Mix percentages must be reported to the thousandths (xx.yyy). See the Required Range
column in the table in Clause 5.3.1.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 89 of 271

5.3.3

5.3.4

5.4

54.1

Computing the mix frequencies actually obtained during the Measurement Interval must be done with
at least four decimal places and must be rounded to the nearest three decimal places when reported. For
example, 7.2344 must be reported as 7.234 and 7.2345 must be reported as 7.235

Data-Maintenance

For each of the two Tier B Virtual Machines in each Group, a single Data-Maintenance Transaction must
be invoked every sixty seconds. The Data-Maintenance transaction submitted to each VM conforms to
the table cardinalities of the database in that VM. The actual interval between the executions of two
consecutive Transactions must be no less than 58 seconds and no more than 62 seconds. Each Data-
Maintenance Transaction must successfully complete in 55 seconds or less.

Trade-Cleanup

The special Trade-Cleanup Transaction is not part of the Transaction Mix. There are no Response Time
criteria for the Trade-Cleanup Transaction, except that the Transaction must be invoked and finish
before any other type of Transaction can be executed.

Transaction Parameters

Each Transaction type has variable inputs. Some of the Transactions have specified percentages (see

DriverParamSettings.h) for the possible values of these inputs. During the Test Run, the VGenDriver
code controls the generation of the values for theses inputs using a random number generator in a
manner designed to satisfy the specified percentage (see CETxnInputGenerator.cpp). However since

deviations from the specified percentage are still possible, it is the Test Sponsor's responsibility to make
sure that the following criteria were indeed met for the Measurement Interval in order for the
Measurement Interval to be valid. For the purposes of verifying that these criteria are met, inputs for

any and all Valid Transactions, whose sTn and eTy are both within the Measurement Interval, are to be
counted.

Input Value Mix Requirements

The following table shows the target input value percentages. The Test Sponsor must show that the

actual percentage obtained for each input type over the entire Measurement Interval is within the
specified Required Range.

Input Parameter Value Target Pct |Required Range
Customer-Position
by_tax_id 1 50% 48% to 52%
get_history 1 50% 48% to 52%
Market-Watch
Watch list 60% 57% t0 63%
Securities chosen by Account ID 35% 33% to 37%
Industry 5% 4.5% t0 5.5%
Security-Detail
access_lob 1 1% 0.9% to 1.1%
Trade-Lookup
1 40% 38%-42%
2 30% 28.5% to 31.5%
frame_to_execute
3 20% 19%-21%
4 10% 9.5% to 10.5%

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 90 of 271

5.5

5.5.1

55.1.1

Input Parameter Value Target Pct |Required Range
Trade-Order
Transactions requested by a third party 10% 9.5% t0 10.5%
Security chosen by company name and issue 40% 38% to 42%
type_is_margin 1 8% 7.5% to 8.5%
roll_it_back 1 ~1% 0.94% to 1.04% (*)
is_lifo 1 35% 33% to 37%

100 25% 24% to 26%

200 25% 24% to 26%
trade_qty

400 25% 24% to 26%

800 25% 24% to 26%

TMB 30% 29.7% to 30.3%

T™S 30% 29.7% to 30.3%
trade_type TLB 20% 19.8% to 20.2%

TLS 10% 9.9% t0 10.1%

TSL 10% 9.9% t0 10.1%
Trade-Update

1 45% 43%-47%
frame_to_execute 2 33% 31% to 35%
3 22% 20%-24%

(*) Comment: The ratio of rolled-back trades to completed trades is 1/100 or 1%, so the ratio of rolled-back
trades to all trades is 1/101 or only ~1%. The actual expected percentage is closer to 0.99%, which is why
the range of acceptable values is 0.94% to 1.04% (not 0.95% to 1.05%), since this range is centered on the
expected 0.99% value.

Response Time

Response Time

The Response Time (RT) is defined by:
RTn=eTn-sTn

where:
sTn and eTn are measured at the Driver;

sTn= time measured before the first byte of input data of the Transaction is sent by the Driver
to the SUT; and

eIn= time measured after the last byte of output data from the Transaction is received by the
Driver from the SUT.

Comment: The resolution of the time stamps used for measuring Response Time must be at least
0.01 seconds.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 91 of 271

5.5.1.2 During the Measurement Interval, at least 90% of each Transaction type must have a Response Time
less than or equal to the constraint specified in the table below. For Market-Feed, 99% of transactions
must have a Response Time less than or equal to 2 seconds.

Transaction 90% Resp0n§e Time
Constraint
Broker-Volume 3 sec.
Customer-Position 3 sec.
Market-Feed 2 sec.
Market-Watch 3 sec.
Security-Detail 3 sec.
Trade-Lookup 3 sec.
Trade-Order 2 sec.
Trade-Result 2 sec.
Trade-Status 1 sec.
Trade-Update 3 sec.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 92 of 271

5.5.1.3 The following diagram illustrates where Response Times are measured for each type of Transaction.
Time stamps are taken on the Driver.

 Driver N g System Under Test (SUT) |
Data sT a >
Maintenance
eT «
/-. \ - -
sT >
eT <€
_ %
Ve o Market § Limit
Orders ;° Z\synch _ Send\\order Order
w < \ To Market)
Se Jnterface 7
Triggered
Process Limit Orders
Trade
Confirmation
sT >
. [—
k e
er ACK Limit
E Orders
Ticker
sT >
eT «
\) ACK ‘)
N i N2 4

Figure 5.b - Measuring Response Time

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 93 of 271

5514

5.5.1.5

55.1.6

5517

5.6

5.6.1

5.6.1.1

5.6.1.2

5.6.1.3

5.6.14

5.6.1.5

5.6.1.6

5.6.1.7

5.6.2

5.6.2.1

Over the Measurement Interval, the average Response Time for each type of Transaction that is part
of the Transaction Mix must not be longer than the 90t percentile Response Time for that Transaction.

Market-Feed is not a part of the Transaction Mix, it is a constant-rate, low-volume transaction. There is
no requirement for the average Response Time of Market-Feed Transactions being lower than the 90t
percentile Response Time. The passing percentile is set at 99%.

The Data-Maintenance Transaction does not have average and 90t percentile Response Time
requirements. Instead, each Data-Maintenance Transaction must successfully complete in 55 seconds
or less.

There are no Response Time criteria for the Trade-Cleanup Transaction. It must complete successfully
before a Test Run can start and before any other type of Transaction can be executed.

Test Run

Definition of Terms

The term Test Run refers to the entire period of time during which Drivers submit and the SUT
completes Transactions other than Trade-Cleanup. A Test Run is subdivided into the three consecutive
and non-overlapping time periods of Ramp-up, Steady State and Ramp-down.

The term Ramp-up refers to is the period of time from the start of the Test Run to the start of Steady
State.

The term Steady State refers to the period of time from the end of the Ramp-up to the start of the
Ramp-down.

The term Ramp-down refers to the period of time from the end of Steady State to the end of the Test
Run.

The term Measurement Interval refers to the period of time during Steady State chosen by the Test
Sponsor to compute the Reported Throughput.

The term Business Day refers to a period of eight hours of transaction processing activity.

Performance over a given period of time (computed as the average throughput over that time) is
considered Sustainable if it shows no significant variations as defined in Clause 5.6.3.

Database Content

Prior to the first Test Run, the initial database for each VM must satisfy Clause 2.4.1. Prior to any Test
Run, the database must satisfy Clause 10.4 and Clause 2.4.2.

Comment: Clause 2.4.2 defines cardinality changes as Transactions are executed against the database. If
no Transactions have been executed, then initial cardinalities of Clause 2.4.1 apply.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 94 of 271

5.6.2.2

5.6.2.3

5.6.3

5.6.3.1

5.6.3.2

5.6.3.3

5.6.3.4

At the start of a Test Run each database must not contain any pending or submitted trades. This must
be accomplished either by using a database in its initially populated state or by executing the Trade-
Cleanup Transaction prior to the start of the Test Run.

The only changes (unless otherwise directed by an Auditor) that can be made to the content of the
TPCx-V database tables between the initial population and a valid Test Run must be performed by the
running of Valid Transactions, as defined in this specification.

Sustainable Performance

During Steady State the throughput of the SUT must be Sustainable for the remainder of a Business
Day started at the beginning of the Steady State.

Some aspects of the benchmark implementation can result in rather insignificant but frequent
variations in throughput when computed over somewhat shorter periods of time. To meet the
Sustainable throughput requirement, the cumulative effect of these variations over one Business Day
must not exceed 2% of the Reported Throughput.

Comment: This requirement is met when the aggregate throughput computed over any period of one
hour, sliding over the Steady State by increments of twelve minutes, varies from the Reported
Throughput by no more than 2%.

Some aspects of the benchmark implementation can result in rather significant but sporadic variations
in throughput when computed over some much shorter periods of time. To meet the Sustainable
throughput requirement, the cumulative effect of these variations over one Business Day must not
exceed 20% of the Reported Throughput.

Comment: This requirement is met when the aggregate throughput level computed over any period of
twelve minutes, sliding over the Steady State by increments of one minute, varies from the Reported
Throughput by no more than 20%.

Any resources or components required by the SUT to meet the Sustainable performance requirements
must be configured at all time during the Test Run.

Comment 1: An example of a non-compliant configuration would be one where the database log file is
assigned to a heterogeneous device starting with a high performance drive and overflowing on a slower
drive, achieving better performance during the first few hours of Steady State than during the remainder
of the Business Day.

Comment 2: An example of a compliant implementation would be one where the database log file is
assigned to a homogeneous device large enough to hold the log over a complete checkpoint cycle and
configured to be reused over each subsequent checkpoint cycles, achieving a Sustainable throughput
during Steady State and for the remainder of the Business Day.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 95 of 271

5.6.4

5.6.4.1

5.6.4.2

5.6.5

5.6.5.1

5.6.5.2

Steady State

All work or events that must be performed at regular intervals by the SUT during Steady State must
occur in full at least once during Ramp-up, which is the period between the start of Test Run and the
start of Steady State. (For example see Clauses 5.6.5.2 and 5.3.3).

Comment : It should be noted that the duration of the Ramp-up and Ramp-down periods are set in the
vcfg.properties file before a Test Run starts, and cannot be changed after the Test Run starts.
Consequenctly, the duration and starting and ending points of the Steady State priod are similarly
established before the Test Run start.

The duration of Steady State is set by the Sponsor and must be sufficient to:

¢ Include a compliant Measurement Interval,

e Provide sufficient evidence, at the discretion of the Auditor, that the Sustainable performance
requirement is met,

Measurement Interval

The Measurement Interval must be two hours and must occur entirely during Steady State. The start
of the Measurement Interval has to coincide with the start of an Elasticity Phase. The Measurement
Interval may start at the beginning of any of the ten Elasticity Phases.

Comment 1: The ten Elasticity Phases (see Clause 5.2) take two hours for one complete cycle, so the
Measurement Interval must cover one full repetition of these workload variations.

Comment 2: The Start of a Measurement Interval can be at the beginning of any arbitrary Elasticity
Phase within the Dynamic Workload Variations that meets all of the other requirements. For example,
the Measurement Interval may begin at the start of Elasticity Phase number 7 and end after 10 Phases
at the conclusion of subsequent Elasticity Phase number 6.

Comment 3: It is required that the Measurement Interval contains exactly 10 Elasticity Phases in the
(cyclical) order defined in Clause 5.2. Determining that Start may be done during execution or after the
end of the Test Run (e.g., when post-processing Driver log files).

During the Measurement Interval, the database contents (excluding the transaction log) stored on
Durable Media cannot be more than 12 minutes older than any Committed state of the database.

Comment: This may mean that Database Management Systems implementing traditional checkpoint
algorithms may need to perform checkpoints twice as frequently (i.e. every 6 minutes) in order to
guarantee that the 12-minute requirement is met.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 96 of 271

5.6.5.3

5.6.5.4

5.6.6

5.6.6.1

5.6.6.2

5.6.6.3

5.6.6.4

5.6.6.5

5.6.7

For the purposes of calculating reported Transaction statistics, all Transactions and only those
Transactions whose sTn and eTyq are within the Measurement Interval are used.

A transaction is considered to have taken place in an Elasticity Phase if its end time eTn is within that
Elasticity Phase, regardless of when the transaction started as long as both sTn and €Ty are within the
Measurement Interval.

Database Growth

The resources or components configured on the SUT to support executing the Transaction Mix at the
Reported Throughput during the period of required Sustainable performance (see Clause 5.6.3) must
allow for the resulting increase in the size of the DBMS data files (referred to as Data Growth) and the
DBMS log files (referred to as Log Growth).

Initial Database Size is any space allocated to the test database that is used to store the initial
population, Database Metadata, User-Defined Objects, and any space used as formatting overhead by
the DBMS. Initial Database Size is the space used by PostgreSQL for data or log after the database is
initially loaded with the data generated by VGenLoader.

The total storage space in the DBMS data files can be decomposed into the following:

e Free Space, which includes any space allocated to the test database and available for future use. It
includes all database storage space not already used to store a database entity (e.g., a row, an index,

Database Metadata) or not already used as formatting overhead by the DBMS.

e Growing Space, which includes any space used to store initially-loaded rows from the Growing
Tables and their associated User-Defined Objects. It also includes all database storage space that is

added to the test database as a result of inserting a new row in the Growing Tables, such as row
data, index data and other overheads such as index overhead, page overhead, block overhead, and

table overhead.

¢ Fixed Space, which includes any other space used to store static information and indices. Itincludes
all database storage space allocated to the test database that does not qualify as either Free Space or
Growing Space.
Comment: While cardinality does not change for non-Growing Tables, it is possible that some Fixed
Space storage could increase for other reasons. If the computed increase for the Business Day for
any such object would be greater than the 5% cardinality increase already imposed on non-Growing

Table objects by Clause 10.3.9, then the larger computed storage increase must be used instead of the
5% increase.

To satisty the Data Growth requirements, it must be shown that after the Test Run is executed in full,
the file system that contains the Database on each Tier B VM has at least 10% free space left

To satisfy the Log Growth requirements, it must be shown that after the Test Run is executed in full,
the file system that contains the Undo/Redo Log on each Tier B VM has at least 10% free space left.
Continuous Operation Requirement

Within the Measured Configuration, there must be sufficient On-Line storage to support:
e The Initial Database Size.

e A Business Day’s Data Growth and Log Growth at the reported tpsV. The methods to calculate
the Data Growth and the Log Growth are described in Clauses 5.6.6.3 and 5.6.6.5.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 97 of 271

5.6.8

5.6.8.1

5.6.8.2

5.6.8.3

5.6.8.4

5.6.8.5

5.6.8.6

5.7

5.7.1

5.7.1.1

5.7.1.2

5713

57.14

5.7.2

Performance & Database Size

The Measured Throughput is computed as the total number of Valid Trade-Result Transactions
within the Measurement Interval divided by the duration of the Measurement Interval in seconds. It
is bound by the limits defined in Clause 6.7.8.5.

The Measured Throughput must be measured, rather than interpolated or extrapolated.

To keep throughput proportional to database size, each Measured Throughput must be within a
certain range of performance based on the database size.

Nominal Throughput is defined to be 2.00 Transactions-Per-Second-V for every 1000 customer rows in
the Active Customers.

Another way of expressing the Nominal Throughput is by using a Scale Factor, which is defined as:
The Scale Factor is the number of required customer rows per single Transactions-Per-Second-V. The
Scale Factor for Nominal Throughput is 500.

The number of Load Units configured per Group must be equal to the number of Load Units actually
accessed per Group during the Test Run.

Required Reporting
Reported Throughput

The Performance Metric reported by TPCx-Vis the Reported Throughput. The name of the metric used
for the Reported Throughput of the SUT is tpsV. The value of this metric is based on the Measured
Throughput and is bound by the limits defined in Clause 5.7.1.2.

The Measured Throughput must be between 80% and 102% of the Nominal Throughput. If Measured
Throughput exceeds the Nominal Throughput, but not by more than 2%, the measurement may be
used, but the Reported Throughput must be set to the Nominal Throughput. Otherwise, the Reported
Throughput equals the Measured Throughput. If the Measured Throughput is not within these
bounds, then the measurement is invalid and may not be reported.

The Measured Throughput of each Group should be individually calculated and reported. If there are
N Tiles, as per Clause 4.3.4.1, the contribution of each Group to the aggregate Measured Throughput
should be between 98% and 102% of (Measured Throughput * (Group %))/N, with Group % set to
10%, 20%, 30%, and 40% for Group 1, 2, 3, and 4, respectively.

The Reported Throughput must be rounded down to the nearest two decimal places. For example,
suppose 105.748 tpsV is measured during a Measurement Interval. Then the Reported Throughput is
105.74 tpsV rather than 105.75 or some interpolated value between 105.748 and 117.572.

Test Run Graph

A graph of the one-minute average tpsV versus elapsed wall clock time measured in minutes must be
reported for the entire Test Run. The x-axis represents the elapsed time from the Test Run start. The y-

axis represents the one-minute average throughput in tpsV(computed as the total number of Trade-
Result Transactions that complete within each one-minute interval divided by 60). A plot interval size

of 1 minute must be used. The Ramp-up, Steady State, Measurement Interval, and Ramp-down must
be identified on the graph. The Test Run Graph must be reported in the Report.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 98 of 271

w 2000 ——
§ ~Ramp-up Steady State Ramp-down
— — —~h
1500
1000 | MI Start MI End

500 -

FT T T T T

L Y Y O O B B

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225
Elapsed Time in Minutes

Figure 5c - Example of the Measured Throughput versus Elapsed Time Graph

5.7.3 Primary Metrics

5.73.1 To be compliant with the TPCx-V standard and the TPC'’s Fair Use Policies and Guidelines, all public
references to TPCx-V Results for a configuration must include the following components which will be
known as the Primary Metrics.

¢ The TPCx-V Reported Throughput is expressed in tpsV

e The TPCx-V Total Price divided by the Reported Throughput is Total Price/tpsV. This is also
known as the Price/Performance (See Clause 7).

e The date when all products necessary to achieve the stated performance will be available (stated as

a single date on the Executive Summary Statement). This is known as the Availability Date (See
Clause 8.2.1.1).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 99 of 271

CLAUSE 6 TRANSACTION AND SYSTEM PROPERTIES (ACID)

6.1

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

6.1.6

6.1.7

6.1.8

6.2

6.2.1

ACID Properties

The ACID (Atomicity, Consistency, Isolation, and Durability) properties of transaction processing
systems must be supported by the System Under Test during the running of this benchmark.

It is the intent of this section to define the ACID properties informally and to specify a series of tests
that must be performed to demonstrate that these properties are met.

No finite series of tests can prove that the ACID properties are fully supported. Passing the specified
tests is a necessary, but not sufficient, condition of meeting the ACID requirements. However, for

fairness of reporting, only the tests specified here are required and must appear in the Report for this
benchmark.

Comment: These tests are intended to demonstrate that the ACID principles are supported by the SUT

and enabled during the performance Test Run. They are not intended to be an exhaustive quality
assurance test.

The configuration needed to insure full ACID properties must be enabled during the Test Run. This
applies to both the database (including TPCx-V tables and User-Defined Objects) and the Database
Session(s) used to execute the ACID tests and the Test Run.

Comment 1: The term “configuration” includes all database properties and characteristics that can be
externally defined; this includes but is not limited to configuration and initialization files, environmental
settings, SQL commands and stored procedures, loadable modules and plug-ins. For example, if the SUT
relies on Undo/Redo Logs, then logging must be enabled for all Transactions, including those that do
not include rollback in the Transaction Profile.

Although the ACID tests do not exercise all Transaction types of this workload, the ACID properties
must be satisfied for all Transactions.

Both databases in the Tier B VMs of each Group of each Tile must meet the ACID property
requirements.

Test Sponsors reporting TPC Results may perform ACID tests on any one system for which Results
have been submitted, provided that they use the same software executables (e.g. Operating System,
database manager, transaction programs). For example, this clause would be applicable when Results
are reported for multiple systems in a product line. All FDRs must identify the systems that were used
to verify ACID requirements and full details of the ACID tests conducted and results obtained.

The TPCx-V Express Benchmark Kit performs the Atomicity, Consistency, and Isolation tests required

by this Specification, and reports the results in the Report. The details of these tests are described in
Clauses 6.2, 6.3, and 6.4. The Atomicity, Consistency, and Isolation tests are on all databases configured
on the SUT. Only one VM is tested for Durability, as described in Clause 6.5.

Atomicity Requirements

Atomicity Property Definition

The System Under Test must guarantee that Database Transactions are atomic; the system will either
perform all individual operations on the data, or will ensure that no partially completed operations leave
any effects on the data.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 100 of 271

6.2.2

6.3

6.3.1

6.3.1.1

6.3.1.2

6.3.2

6.3.2.1

6.3.2.2

6.3.2.3

6.3.3

Atomicity Tests

Perform a market Trade-Order Transaction with the roll_it_back flag set to 0. Verify that the appropriate
rows have been inserted in the TRADE and TRADE_HISTORY tables.

Perform a market Trade-Order Transaction with the roll_it_back flag set to 1. Verify that no rows
associated with the rolled back Trade-Order have been added to the TRADE and TRADE_HISTORY
tables.

Consistency Requirements

Consistency Property Definition

Consistency is the property of the Application that requires any execution of a Database Transaction to
take the database from one consistent state to another.

A TPCx-V database when first populated by VGenLoader must meet these consistency conditions.

If data is replicated, as permitted under Clause 10.3.4, each copy must meet the consistency conditions
defined in Clause 6.3.2.

Consistency Conditions
Three consistency conditions are defined in the following clauses. Explicit demonstration that the
conditions are satisfied is required for all three conditions.

Consistency condition 1

Entries in the BROKER and TRADE tables must satisfy the relationship:
B_NUM_TRADES = count(*)

For each broker defined by:
(B_ID = CA_B_ID) and (CA_ID = T_CA_ID) and (T_ST_ID =’CMPT’).

Consistency condition 2

Entries in the BROKER and TRADE tables must satisfy the relationship:
B_COMM_TOTAL = sum(T_COMM)

For each broker defined by:
(B_ID = CA_B_ID) and (CA_ID = T_CA_ID) and (T_ST_ID =’CMPT’).

Consistency condition 3

Entries in the HOLDING_SUMMARY and HOLDING tables must satisfy the relationship:
HS_QTY = sum(H_QTY)

For each holding summary defined by:
(HS_CA_ID = H_CA_ID) and (HS_S_SYMB = H_S_SYMB).
Consistency Tests

The three consistency conditions must be tested after initial database population and after any Business
Recovery tests.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 101 of 271

6.4

6.4.1

6.4.1.1

Isolation Requirements

Isolation Property Definition

Given a Transaction T1 and a concurrently executing Transaction T2, the following phenomena (P0 to
P3) are defined as they occur in T1.

PO (“Dirty Write”) - Transaction T2 modifies (or inserts) data element R. Then, before T2 performs a

COMMIT, Transaction T1 starts and is able to modify (or delete) data element R and is subsequently
able to perform a COMMIT.

Comment: T2 may execute additional database operations based on the state it left data element R in,
potentially compromising the consistency of the data.

P1 (“Dirty Read”) - Transaction T2 modifies (or inserts) data element R. Then, before T2 performs a

COMMIT, Transaction T1 starts, reads data element R and is able to obtain the state of the data
element as changed by T2. Subsequently, T2 is able to perform a ROLLBACK.

Comment: T1 may execute additional database operations based on a state of data element R that has
been rolled back and is considered to have never existed, potentially compromising the consistency
of the data.

P2 (“Non-repeatable Read”) - Transaction T1 reads data element R. Then, before T1 performs a

COMMIT, Transaction T2 starts, modifies (or deletes) data element R and performs a COMMIT.
Subsequently, T1 repeats the read of data element R and is able to obtain the state of the data element
as changed by T2.

Comment: Prior to discovering the modified (or deleted) state of data element R, T1 may have
executed additional database operations based on a state of data element R that is considered to be
no longer correct, potentially compromising the consistency of the data.

P3 (“Phantom Read”) - Transaction T1 reads a set of data elements that satisfy some <search

condition>. Then, before T1 performs a COMMIT, Transaction T2 starts and inserts (or deletes) one
or more data elements that satisfy the <search condition> used by T1. Subsequently, T1 repeats the
initial read with the same <search condition> and is able to obtain a different set of data elements
than the initial set.

Comment: Prior to discovering the larger (or smaller), set of data elements, T1 may have executed
additional database operations based on a set of data elements that is considered to no longer match
the <search condition>, potentially compromising the consistency of the data.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 102 of 271

6.4.1.2

6.4.1.3

6.4.1.4

6.4.1.5

6.4.1.6

6.4.1.7

6.4.1.8

6.4.2

The isolation property of a Transaction is the level to which it is isolated from the actions of other
concurrently executing Transactions. The table below, arranged from least (L0) to most (L3) restrictive,
defines four isolation levels based on which phenomena must not occur.

Phenomena
PO P1 P2 P3
E Lo Must not occur Is possible Is possible Is possible
3 L1 Must not occur Must not occur Is possible Is possible
'g 1.2 Must not occur Must not occur Must not occur Is possible
:g L3 Must not occur Must not occur Must not occur Must not occur

During the Test Run, each TPCx-V Transaction must provide a level of isolation from Arbitrary
Transactions that is at least as restrictive as the level defined in the table below:

TPCx-V Transaction Isolation Level

L3

Trade-Result

Market-Feed L2
Trade-Order
Trade-Update

Broker-Volume
Customer-Position
Data-Maintenance
Market-Watch L1
Security-Detail
Trade-Lookup
Trade-Status

During the Test Run the SUT must allow concurrent execution of Arbitrary Transactions.

During the Test Run, the data read by each TPCx-V Transaction must be no older than the most
recently Committed data at the time the Transaction started.

Systems that implement Transaction isolation using a locking and/or versioning scheme must
demonstrate compliance with the isolation requirements by executing the tests described in Clause
6.4.2.

Systems that implement Transaction isolation using techniques other than a locking and/or versioning
scheme may require different techniques to demonstrate compliance with the isolation requirements. It
is the responsibility of the Test Sponsor, in collaboration with the Auditor, to define those techniques,
to implement them, to execute them as a demonstration of compliance with the isolation requirements
and to provide sufficient details in the FDR to support the assertion that the isolation requirements
were met.

Isolation Tests

The following isolation tests are designed to verify that the configuration and implementation of the
System Under Test provides the Transactions with the required isolation levels defined in Clause 6.4.1.3.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 103 of 271

6.4.2.1

P2 Test in Read-Write

This test demonstrates that a read-write Trade-Result Transaction is protected against the Non-
Repeatable Read phenomenon P2 when executing concurrently with another read-write Trade-Result

Transaction. The second Trade-Result Transaction (Session S4 below) plays the role of an Arbitrary
Transaction that is updating a row in the HOLDING_SUMMARY table which has been read by the first
Trade-Result Transaction (Session S3 below).

For the purpose of this test, the two Trade-Result Transactions must be instrumented to record hs_gty
after returning from Frame 1. In addition, the Trade-Result Transaction executed by S3 must be able to
repeat the execution of Frame 1 and to be able to pause before starting the execution of Frame 2.

Using four Sessions, S1 to S4, the following steps are executed in order:

1. From Sl1, select an acct_id. Using an ad hoc read-only transaction, find a symbol that has a
corresponding row in the HOLDING_SUMMARY table for the selected acct_id, record the HS_QTY
for that holding and perform a commit.

10. From S1, request and successfully complete a Trade-Order for the acct_id and symbol selected in step
1. Record the trade_id assigned to this new trade.

11. From S2, request and successfully complete another Trade-Order for the acct_id and symbol used in
step 2. Record the trade_id assigned to this new trade.

12. From S3, request a Trade-Result for the trade_id from step 2 and pause between Frame 1 and Frame
2. Record hs_qty and verify that it is equal to HS_QTY from step 1.

13. From S4, request a Trade-Result for the trade_id from step 3. Verify that it completes Frame 1 and
starts execution of Frame 2. Record hs_gty and verify that it is equal to HS_QTY from step 1.

Case A, if 54 stalls in Frame 2, then rolls back, while S3 completes:

6A. From S3, repeat the execution of Frame 1 and pause again between Frame 1 and Frame 2. Record
hs_gty and verify that it is equal to HS_QTY from step 1.

7A. Resume execution of S3 by invoking Frame 2. Verify the successful completion of the remaining
Frames.
8A. Verify that S4 rolled back.

Case B, if S4 completes (perhaps after stall) and S3 rolls back:

6B. Verify that S4 completes the execution of Frame 2 and the remaining Frames.
7B. Verify that S3 rolled back.

Case C, if 54 stalls in Frame 1 (Invalid):

6C. If this case occurs, the test is invalid. To properly test protection against the Non-Repeatable Read
phenomenon P2, Session S4 must get to the point in Trade-Result Frame 2 where a row is updated
in HOLDING_SUMMARY. The Trade-Result Transaction used for S4 may need to be modified to
prevent it blocking in Frame 1. For example, it may be executed at the lower isolation level of an
Arbitrary Transaction.

Comment: This test is successful if either Case A or B is followed. It fails if Case C occurs. Other valid
possibilities may exist (e.g., both S3 and S4 could fail), but if both S3 and S4 record the same hs_gty value

from execution of Frame 1, then at most one of these Sessions may complete normally and commit the

Transaction. The intent of this test is to demonstrate that in all circumstances when S3 repeats the read
on the HOLDING_SUMMARY table for the selected acct_id and symbol, the row found and value is the
same as in Step 1.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 104 of 271

6.4.2.2

6.4.2.3

P1 Test in Read-Write

This test demonstrates that a read-write Trade-Result Transaction is protected against the dirty-read
phenomenon P1 when executing concurrently with another read-write Trade-Result Transaction. For the
purpose of this test the Trade-Result Transaction must be instrumented to record se_amount after
returning from Frame 5 and to be able to pause in Frame 6 just prior to committing.

Using three Sessions, S1 to S3, the following steps are executed in order:

1. From S1, request a Customer-Position for a selected cust_id, complete the Transaction and record the
set of resulting acct_id[] and cash_ball[].

2. From S1, request and successfully complete a Trade-Order from an acct_id selected from the set
recorded in step 1, for a given symbol and with a type_is_margin set to 0. Record the trade_id assigned
to this new trade.

3. From S1, request and successfully complete another Trade-Order for the same acct_id but a different
symbol than that used in step 2, and with a type_is_margin set to 0. Record the trade_id assigned to this
new trade.

14. From S2, request a Trade-Result for the trade_id from step 2. Before invoking Frame 6, record
se_amount, then invoke Frame 6 and pause before committing.

15. From S3, request a Trade-Result for the trade_id from step 3. The Transaction may pause or fail or be
temporarily blocked from fully executing. If it reaches the start of Frame 6, record se_amount, then
invoke Frame 6. If it reaches the end of Frame 6, pause before committing.

16. From S2, proceed with committing and successfully completing the Transaction. Record the resulting
acct_bal.

17. From S3, depending on how the Transaction behaved at the end of step 5:

If it reached the pause in Frame 6, allow it to proceed and verify that it Committed and completed
successfully.

If it was blocked before the end of Frame 5, verify that it was released, completed Frame 5, recorded
se_amount, executed Frame 6, Committed and completed successfully.

If it failed and was forced to rollback, repeat the Trade-Result request with the same trade_id input
parameter. Verify that the Trade-Result executes in full, records se_amount at the start of Frame 6,
commits at the end of Frame 6 and completes successfully.

18. From S3, record the resulting acct_bal and verify that it is equal to cash_bal[] from step 1 (for the acct_id
chosen in step 2) plus the sum of the se_amount outputs for the two Trade-Results.

P1 Test in Read-Only

This test demonstrates that the read-only Customer-Position Transaction is protected against the dirty-
read phenomenon P1 when executing concurrently with the read-write Trade-Result Transaction. For

the purpose of this test the Trade-Result Transaction must be instrumented to be able to pause in Frame
6 just prior to committing.

Using four Sessions, S1 to 54, the following steps are executed in order:

1. From S1, request a Customer-Position for a selected cust_id, complete the Transaction and record the
set of resulting acct_id[] and cash_bal[].

2. From S1, request and successfully complete a Trade-Order where the associated acct_id input matches
one of the acct_id[] recorded in step 1 and type_is_margin is 0. Record the trade_id assigned to this new
trade.

19. From S2, request a Trade-Result for the trade_id from step 2 and then pause in Frame 6 before
committing.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 105 of 271

6.5

6.5.1

6.5.2

20. From S3, request a Customer-Position for the cust_id selected in step 1. The Transaction may complete
or fail or be temporarily blocked from fully executing.

21. From S2, proceed with committing and successfully completing the Trade-Result Transaction. Record
the resulting acct_bal.

22. From S3, depending on how the Customer-Position Transaction behaved at the end of step 4:

If it completed, record the set of resulting acct_id[] and cash_bal[] and verify that the cash_bal for the
acct_id used in step 2 is unchanged from step 1.

If it was blocked, verify that it has now completed, record the set of resulting acct_id[] and cash_bal[]
and verify that the cash_bal for the acct_id used in step 2 matches the acct_bal from step 5.

If it failed, proceed to the next step.

23. From S4, request a Customer-Position for the cust_id selected in step 1, complete the Transaction,
record the set of resulting acct_id[] and cash_bal[] and verify that the cash_bal for the acct_id used in
step 2 has changed from step 1 and reflects the amount of the trade completed in step 5 (by matching
acct_bal from step 5).

Durability Requirements

No system provides complete data protection under all possible types and/or combinations of failures.
However, data protection against any Single Point of Failure is commonly expected. Therefore, the intent

of this clause is to ensure that the SUT has no unrecoverable Single Points of Failure. The required data
protection is satisfied by the SUT persisting certain data across certain types of failures.

This clause provides details on:
e Which data must persist
e Which types of failures must be protected against
e Which steps to follow for the testing/demonstration
e Which results must be disclosed

Comment: The limited nature of the tests described in this clause must not be interpreted to allow other
unrecoverable Single Points of Failure.
Definition of Commit

The concept of “commit” has to do with delineating the successful completion of an atomic unit of work.
The following definition will be leveraged to focus the scope of which data must be persisted by the SUT.

Commit is a control operation that:
¢ Isinitiated by a unit of work (a Transaction)
e Isimplemented by the DBMS

e Signifies that the unit of work has completed successfully and all tentatively modified data are
to persist (until modified by some other operation or unit of work)

Upon successful completion of this control operation both the Transaction and the data are said to be
Committed.

°
Definition of Single Point(s) of Failure

This clause lists various types of failures that can occur within the SUT. This list will be leveraged to
focus the scope of failures the SUT must protect against.

Any single item covered here is defined to be a Single Point of Failure; when two or more items are
being discussed, the term Single Points of Failure is used.

At present only one type of Single Point of Failure is defined in Clause 6.5.2.1.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 106 of 271

6.5.2.1

6.5.3

6.5.4

6.5.4.1

6.5.4.2

6.5.4.3

6.5.4.4

Loss of Processing

This failure covers an instantaneous interruption in processing Commit control operations to a Virtual
Machine in a Group (e.g. system crash / system hang) that requires the Virtual Machine to be started
from the file system image of the Virtual Machine. This implies an immediate abnormal system
shutdown where the run-time state and the memory contents of the VM are lost, but the virtual disk
contents are intact although possibly in an unknown state. A recovery requires starting the Virtual
Machine, rebooting the VM operating system, recovering the file systems in the VM, and recovering the
DBMS using the Undo/Redo Log.

Definition of Durable / Durability
The SUT must provide Durability as defined in this clause.

In general, state that persists across failures is said to be Durable and an implementation that ensures
state persists across failures is said to provide Durability. In the context of the benchmark, Durability
is more tightly defined as the SUT’s ability to ensure all Committed data persist across any Single Point
of Failure.

Durability Testing Rules and Guidelines

The intent of this clause is to cover specific rules and special-case guidelines.

Durability Throughput Requirements

All Durability tests must meet the following requirements:

e Be performed with the same number of Configured Customers, Active Customers, and Driver
load used for the Measurement Interval. The vcfg.properties file may be changed to have a
shorter run time with a single Phase.

e Bein Steady State.

e Satisfy the Response Time constraints in Clause 5.5.1.2.

e Satisfy the Transaction Mix requirements listed in Clause 5.3.1.
e Beator above 95% of the Reported Throughput with no errors.

e Match all Driver and SUT configuration settings used during the Measurement Interval.

Roll-forward recovery from an archive database copy (e.g., a copy taken prior to the run) using
Undo/Redo Log data is not acceptable as the recovery mechanism in the case of failures listed in Clause

i

6.5.2.1. Note that “checkpoints”, “control points”, “consistency points”, etc. of the database taken
during a run are not considered to be archives.

Instantaneous Failures

Single Points of Failure must be induced instantaneously without any foreknowledge given to the SUT.

Comment: Reactive actions initiated within the SUT as a result of an Instantaneous Failure are not
considered foreknowledge.

Simulated Failures

A Single Point of Failure may be simulated if the effects on the SUT are identical to those of the actual
occurrence of the Single Point of Failure. In particular, the loss of processing (e.g., Clause 6.5.2.1) may
be simulated using a VMMS command that instantaneously shuts down the VM.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 107 of 271

6.5.4.5

6.5.5

6.5.5.1

6.5.5.2

6.5.5.3

6.5.5.4

6.5.5.5

6.5.5.6

6.5.5.7

Multiple Identical Single Points of Failure

If the SUT contains multiple identical Single Points of Failure as defined in Clause 6.5.2 that perform

identical benchmark functions, successful demonstration of Durability for one instance is sufficient;
there is no requirement to repeat the demonstration for all the other instances unless directed to do so by

the Auditor.

Example — Loss of Processing: In configurations where more than one instance of an Operating System

performs an identical benchmark function, Durability for the failure in Clause 6.5.2.1 must be completed
on at least one such instance.

Definition of Recovery Terms

Database Recovery

Database Recovery is the process of recovering the database from a Single Point of Failure system
failure.

Database Recovery — Start Time

The start of Database Recovery is the time at which database files are first accessed by a process that has

knowledge of the contents of the files and has the intent to recover the database or issue Transactions
against the database.

Comment: Access to files by Operating System processes that check for integrity of file systems or
volumes to repair damaged data structures does not constitute the start of Database Recovery.
Database Recovery — End Time

The end of Database Recovery is the time at which database files have been recovered.

Comment: The database will usually report this time in its log files.

Database Recovery Time

Database Recovery Time is the duration from the start of Database Recovery to the point when database
files complete recovery.

Application Recovery

Application Recovery is the process of recovering the business application after a Single Point of
Failure and reaching a point where the business meets certain operational criteria.

Application Recovery — Start Time

The start of Application Recovery is the time when the first Transaction is submitted after the start of
Database Recovery.

Application Recovery — End Time

The end of Application Recovery is the first time, T, after the start of Application Recovery at which the
following conditions are met:

¢ The one-minute average tpsV (i.e. average tpsV over the interval from T to T + 1 minute) is
greater than or equal to 95% of Reported Throughput

e The 20-minute average tpsV (i.e. average tpsV over the interval from T to T + 20 minutes) is
greater than or equal to 95% of Reported Throughput.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 108 of 271

6.5.5.8

6.5.5.9

6.5.5.10

6.5.6

Comment: When considering the 20-minute interval, the average tpsV for the first minute must be at or
above 95% of Reported Throughput (as required by the first bullet above). However, some number of
the subsequent 19 one-minute average tpsV values may drop below 95% of Reported Throughput. This

is acceptable as long as the overall 20-minute average tpsV is not less than 95% of Reported Throughput
(as required by the second bullet above).

Application Recovery Time

Application Recovery Time is the elapsed time between the start of Application Recovery and the end
of Application Recovery (see Clause 6.5.5.5).

Business Recovery

Business Recovery is the process of recovering from a Single Point of Failure and reaching a point
where the business meets certain operational criteria.

Business Recovery Time

Business Recovery Time is the elapsed period of time between start of Business Recovery and end of
Business Recovery (see Clause 6.5.5.9).

Comment: Single Points of Failure can be very disruptive to business processing, therefore it is
imperative for businesses to recover from these failures as quickly as possible. There are many database
configuration parameters and practices that directly affect the performance of the DBMS and its recovery
time from a Single Point of Failure. However, while it is recognized that boot times for systems vary
greatly, boot parameters have little to no effect on the performance of the DBMS. For this reason, server
boot times are not included as part of the Business Recovery Time.

Durability Test Procedure for Single Points of Failures
1. Determine the current number of completed trades in the database by running;:

select count(*) as countl from SETTLEMENT.

2. Start Test Run 1 by submitting Transactions and ramp up to the Durability Throughput
Requirements (as defined in Clause 6.5.4.1) and satisfy those requirements for at least 20 minutes.

3. Induce the Single Points of Failure failure, from Clause 6.5.2 to a VM3 Virtual Machine. Note the
failure time, e.g. by invoking the date(1) command.

4. With the downed VM3 Virtual Machine no longer responding, the flow of transactions will
gradually stop, and you should see a transaction rate of 0 in a short time. Abort the run, e.g. by

hitting CTRL-C. Note that the benchmark kit log files are still in a temporary location and will get
overwritten if you start a new run. Retrieve the log files and perform a preliminary post-processing

of results using the following invocation of the benchmark kit:
runme.sh --report <RUNID> --recover aborted run
Later, you will use the time noted in step 3 to invoke:

runme.sh --report <RUNID> --failure time <time>

to calculate the throughput of the run before the failure to prove that the throughput requirements
of Clause 6.5.4.1 were met. For time, you can use a value such as “Fri Jan 1 00:00:00 PST 2021".

5. Note the time when Database Recovery starts (see Clause 6.5.5.2), either automatically or manually
by an operator.

6. When Database Recovery ends, note the time. This may occur during the following steps (see Clause
6.5.5.3).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 109 of 271

6.5.7

6.5.7.1

6.5.7.2

10.
11.

12.

13.

14.
15.

Retrieve the new number of completed trades in the database by running:
select count(*) as countl from SETTLEMENT

Start Test Run 2 or continue Test Run 1 submitting Transactions and note this time as the start of
Application Recovery (see Clause 6.5.5.6). Ramp up to 95% of Reported Throughput.

Comment: If there is a time gap between the end of Database Recovery and the start of Application
Recovery and if Drivers and Transactions need to be started again (not just continued), then the
Trade-Cleanup Transaction may be executed during this time gap.

Note the end of Application Recovery as defined in Clause 6.5.5.7.
Terminate the Driver gracefully.

Verify that no errors were reported by the Driver during steps 7 through 10. The intent is to ensure
that an end-user would not see any adverse effects (aside from availability of the application and

potentially reduced performance) due to the SUT failure and subsequent Business Recovery.
Retrieve the new number of completed trades in the database by running:

select count(*) as count2 from SETTLEMENT

Compare the number of completed Trade-Result Transactions on the Driver to (count2 — countl).
Verify that (count2 - countl) is greater or equal to the aggregate number of successful Trade-Result

Transaction records in the Driver log file for the runs performed in step 2 and step 8. If there is an
inequality, the SETTLEMENT table must contain additional records and the difference must be less

than or equal to the maximum number of Transactions which can be simultaneously in-flight from

the Driver to the SUT. This number is specific to the implementation of the Driver and configuration
settings at the time of the crash.

Comment: This difference must be due only to Transactions which were Committed on the System
Under Test, but for which the output data was not returned to the Driver before the failure.

Verify consistency conditions as specified in Clause 6.3.3.

Calculate Business Recovery Time as the sum of Application Recovery Time and Database
Recovery Time, if those times do not overlap. If Application Recovery begins before Database
Recovery is complete, Business Recovery Time is the time elapsed between the beginning of
Database Recovery and the end of Application Recovery.

Required Reporting for Durability

Business Recovery Time

The Business Recovery Time must be reported on the Executive Summary Statement and in the Report.
All the Business Recovery Times for each test requiring Business Recovery must be reported in the
Report.

Business Recovery Time Graph

A graph of the one-minute average tpsV versus elapsed time must be reported in the Report for the run

portions of the Business Recovery tests, prepared in accordance with the following conventions:

e The x-axis represents the maximum of the elapsed times for the two runs described in Clause
6.5.6 steps 2 and 8

e The y-axis represents the throughput in tpsV (computed as the total number of Trade-Result
Transactions that complete within each one-minute interval divided by 60)

e A plotinterval size of 1 minute must be used

e The y-axis data for both runs is to be overlaid on a single graph, with the end times of each run
clearly marked

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 110 of 271

6.6

6.6.1

6.6.1.1

6.6.1.2

6.6.2

For graphing purposes, time 0 is defined as follows:

For the run outlined in 6.5.6 step 2, time 0 is defined as the point in time where the first
Transaction is issued to the database

For the run outlined in 6.5.6 step 8, time 0 is defined as the point in time where Database
Recovery begins

For graphing purposes, the end of the run is defined as follows:

For the run outlined in 6.5.6 step 2, the end of the run is the time at which the failure is induced
(see 6.5.6 step 3)

For the run outlined in 6.5.6 step 8, the end of the run is the time at which the Application
Recovery has ended successfully (see 6.5.6 step 8)

For the run outlined in 6.5.6 step 8, if any time elapses between the end of Database Recovery

and the start of Application Recovery, this time should be ignored and the two periods should
be presented adjacent on the graph.

A horizontal line at 95% of the Reported Throughput must also be plotted across the graph

Data Accessibility Requirements

The System Under Test must be configured to satisfy the requirements for Data Accessibility detailed
in this clause. Date Accessibility is the ability to maintain database operations with full data access after

the permanent irrecoverable failure of any single Durable Medium containing database tables, recovery
log data, or Database Metadata. Data Accessibility tests are conducted by inducing failures of Durable

Media within the SUT. The failures of Clause 6.6.3 test the ability of the SUT to maintain access to the
data. The specific set of single failures addressed in Clause 6.6.3 is defined sufficiently significant to

justify demonstration of Data Accessibility across such failures. However, the limited nature of the tests
listed must not be interpreted to allow other unrecoverable single points of failure.

Definition of Terms

Date Accessibility is the ability to maintain database operations with full data access after the
permanent irrecoverable failure of any single Durable Medium containing database tables, recovery
log data, or Database Metadata.

Durable Medium is a data storage medium that is inherently non-volatile such as a magnetic disk or
tape. Durable Media is the plural of Durable Medium.

Data Accessibility Throughput Requirements

All Data Accessibility tests must meet the following requirements:

Be performed with the same number of Configured Customers, Active Customers, and Driver
load used for the Measurement Interval. The vcfg.properties file may be changed to have a
shorter run time with a single Phase.

Be in Steady State

Satisfy the Response Time constraints in Clause 5.5.1.2.

Satisfy the Transaction Mix requirements listed in Clause 5.3.1.

o Beator above 95% of the Reported Throughput with no errors

Match all Driver and SUT configuration settings used during the Measurement Interval

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 111 of 271

6.6.3

6.6.3.1

6.6.3.2

6.6.3.3

6.6.3.4

Failure of Durable Media

The failures detailed in this clause affect the access of data from Durable Media. The following
requirements are also known as the Data Accessibility requirements.

The SUT must maintain database access to data on Durable Media during and after a permanent and
irrecoverable failure of a single Durable Medium containing database tables, recovery log data, or
Database Metadata. The Test Sponsor must also restore the Durable Medium environment to its pre-
failure condition, while maintaining database access to the data on Durable Media.

Durable Media are inherently non-volatile and are typically magnetic disks using replication (RAID-1
mirroring) or other form of protection (RAID-5, et.al.) to guarantee access to the data during a Durable
Medium failure. Volatile media such as memory can also be used if the volatile media can ensure the
transfer of data automatically, before any data is lost, to an inherently non-volatile medium after the
failure of external power independently of reapplication of external power.

Comment 1: A configured and priced Uninterruptible Power Supply (UPS) is not considered external
power.

Comment 2: Memory can be considered a Durable Medium if it can preserve data long enough to satisfy
the requirements stated above, for example, if it is accompanied by an Uninterruptible Power Supply,
and the contents of memory can be transferred to an inherently non-volatile medium during the failure.
Note that no distinction is made between main memory and memory performing similar permanent or
temporary data storage in other parts of the system (e.g., disk controller caches). If main memory is used

as a Durable Medium, then it must be considered as a potential single point of failure. A sample
mechanism to survive single Durable Medium failure is mirrored Durable Media. If memory is the

Durable Medium and mirroring is the mechanism used to ensure Durability, then the mirrored
memories must be independently powered.

The Data Accessibility tests (aka. Non-catastrophic failures) must meet the Data Accessibility
Throughput Requirements of Clause 6.6.2.

Redundancy Levels

The redundancy levels refer to the level of guarantee for data access given a single failure among the data
storage components. The SUT must implement one of the following Redundancy Levels:

¢ Redundancy Level One (Durable Media Redundancy) guarantees access to the data on Durable
Media when a single Durable Media failure occurs.

Comment: The intent of this redundancy level is to test the ability of the Durable Media environment
to survive the failure of a single Durable Medium and continue processing requests from the
Operating System and /or DBMS.

Example: The Sponsor has implemented RAID-1 (mirroring) on the disks within an enclosure. The
Sponsor must maintain access to the data on the remaining disks despite the induced failure of a
single disk.

¢ Redundancy Level Two (Durable Media Controller Redundancy) includes Redundancy Level One

and guarantees access to the data on Durable Media when a single failure occurs in the storage
controller used to satisfy the redundancy level or in the communication media between the storage

controller and the Durable Media.
Comment: The intent of this redundancy level is to test the ability of the implementation to survive
the failure of a storage controller responsible for implementing Redundancy Level One.

Example: If Redundancy Level One is satisfied by implementing RAID-5 protection within a disk

enclosure, then Redundancy Level Two would be tested by failing the hardware used to implement
the RAID-5 protection.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 112 of 271

6.6.3.5

6.6.3.6

If the controller implementing the RAID-5 is contained within the disk enclosure (or similar

externally attached device), then the Sponsor must demonstrate they can still access the data stored
within the enclosure.

If the controller implementing the RAID-5 is separate from the enclosure containing the disks, and
the controller is not being used as a Durable Medium (e.g. mirrored write caches), then it is sufficient
to fail the communications between the controller and the enclosure.

Redundancy Level Three (Full Redundancy) includes Redundancy Level Two and guarantees
access to the data on Durable Media when a single failure occurs within the Durable Media system,
including communications between Tier B and the Durable Media system.

Comment 1: The Durable Media system includes all components necessary to meet the durability
requirements defined above. This does not include the Tier B system or the system bus, but does
include the adapter on the system bus and any and all components “downstream” from the adapter.
Comment 2: The intent of this clause is to test the ability of the Tier B system to withstand component
failures and continue processing of the Transactions.

Comment: The components being tested by this clause are those that are considered to be Field
Replaceable Units (FRUs). It is not the intent of the clause to require Sponsors to test the durability of a

backplane inside a Durable Media enclosure or similar non-replaceable components. However, testing
the failover properties of storage controllers, including mirrored caches on a controller, and the
corresponding software, is within the intent of this clause.

Test Procedure for Data Accessibility

1.

N S oW

9.

Determine the current number of completed trades in the database by running:
select count(*) as count1 from SETTLEMENT

Start submitting Transactions and ramp up to the Data Accessibility Throughput Requirements (as
defined in Clause 6.6.2) and satisfy those requirements for at least 20 minutes.

Comment: Once the Data Accessibility Throughput Requirements are met

o no Driver configuration changes are permitted until the conclusion of step 5

o no SUT configuration changes are permitted except those needed to satisfy steps 3 and 4
Induce the failure described for the redundancy level being demonstrated.

Begin the necessary recovery process.

Continue running the Driver for 20 minutes.
Allow the run to complete gracefully.

Retrieve the new number of completed trades in the database by running:
select count(*) as count2 from SETTLEMENT

Compare the number of executed Trade-Result Transactions on the Driver to
(count2 — countl). Verify that (count2 - countl) is equal to the number of successful Trade-Result

Transaction records in the Driver log file.

Allow recovery process to complete as needed.

Requirement for Combinations of Durable Media Technologies

At least one of each combination of durable media technology, bus type, and redundancy level, (e.g.
SSD/RAID-10, SATA /RAID-5, FC/RAID-5) must be tested independently as specified in clause 6.6.3.5.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 113 of 271

6.6.4

6.6.4.1

6.6.4.2

Required Reporting for Data Accessibility

Redundancy Level

The Test Sponsor must report the Redundancy Level and describe the test(s) used to demonstrate
compliance in the Report. A list of all combinations of Durable Media technologies tested in Clause
6.6.3.5 must be reported in the Report

Data Accessibility Time Graph

A graph of the Trade-Results per second averaged over one-minute versus elapsed time must be reported

in the Report for the run portions of the Data Accessibility tests, prepared in accordance with the
following conventions:

The x-axis represents the elapsed time for the runs described in Clause 6.6.3.5, steps 2 through 6

The y-axis represents the throughput in tpsV (computed as the total number of Trade-Result
Transactions that complete within each one-minute interval divided by 60)

A plot interval size of 1 minute must be used

A horizontal line at 95% of the Reported Throughput must also be plotted across the graph

Comment: The intent is to show how throughput is affected during recovery.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 114 of 271

7.1

7.1.1

7.1.2

713

714

7.1.5

7.2

7.3

73.1

732

7.3.3

CLAUSE 7 PRICING

Rules for pricing the Priced Configuration and associated software and maintenance are included in the
TPC Pricing Specification, located at www.tpc.org.

The following requirements are intended to supplement the TPC Pricing Specification:

General

The pricing methodology used for pricing the Priced Configuration is the “Default Three-Year
Pricing Methodology”, as defined in the current revision of the TPC Pricing specification.

The pricing model used for pricing the Priced Configuration is the “Default Pricing Model”, as
defined in the current revision of the TPC Pricing specification.

The components to be priced are defined by the Priced Configuration (see Clause 7.2)

The functional requirements of the Priced Configuration are defined in terms of the Measured
Configuration (see Clause 10.1.2)

The allowable substitutions are defined in Clause 7.5 (Component Substitution).

Priced Configuration
The system to be priced is the aggregation of the SUT and any additional component that would be
required to achieve the reported performance level. Calculation of the priced system consists of:

e Price of the SUT as tested and as defined in Clause 10.1.2.

e Price of any additional storage and associated infrastructure required by the On-Line Storage
Requirement in Clause 7.3.

e Price of additional products that are required for the operation, administration or maintenance
of the priced system.

e Price of additional products required for Application development.

Comment: Any component, for example a Network Interface Card (NIC), must be included in the price of
the SUT if it draws resources for its own operation from the SUT. This includes, but is not limited to,

power and cooling resources. In addition, if the component performs any function defined in the TPCx-V
specification it must be priced regardless of where is draws its resources.

On-line Storage Requirement

A storage device is considered On-Line if it is capable of providing an access time to data, for random
read or update, of one second or less by the Operating System.

Comment: Examples of On-Line storage may include magnetic disks, optical disks, solid-state storage,
or any combination of these, provided that the above mentioned access criteria is met.

On-Line storage must be priced for sufficient space to store and maintain the data and User-Defined
Objects generated during a period of one Business Day at the Reported Throughput.

Archive Operation Requirement

TPCx-V has no requirements for pricing additional archive storage.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 115 of 271

734

7.4

74.1

74.1.1

74.1.2

74.1.3

7.4.2

74.2.1

7422

7423

7.5

7.5.1

7.5.2

Back-up Storage Requirements

TPCx-V has no requirements for on-line back-up data capabilities in the Priced Configuration.

TPCx-V Specific Pricing Requirements

Additional Operational Components

Additional products that might be included on a customer installed configuration, such as operator
consoles and magnetic tape drives, are also to be included in the priced system if explicitly required for
the operation, administration, or maintenance, of the priced system.

Copies of the software, on appropriate media, and a software load device, if required for initial load or
maintenance updates, must be included.

Clause 6.6.3.2The price of all components, including cables, used to interconnect components of the
SUT must be included.

Additional Software

All software licenses must be priced for a number of users at least equal to one user for each tpsV of
Nominal Throughput. Any usage pricing for this number of users must be based on the pricing policy
of the company supplying the priced component.

The price must include the software licenses necessary to create, compile, link, and execute this
benchmark Application as well as all run-time licenses required to execute on host system(s), client
system(s) and connected workstation(s) if used.

In the event the Application Program is developed on a system other than the SUT, the price of that
system and any compilers and other software used must also be included as part of the priced system.

Component Substitution

Substitution is defined as a deliberate act to replace components of the Priced Configuration by the
Test Sponsor as a result of failing the availability requirements of the TPC Pricing Specification or
when the Part Number for a component changes.

Comment: Corrections or "fixes" to components of the Priced Configuration are often required during the

life of products. These changes are not considered Substitutions so long as the Part Number of the priced
component does not change. Suppliers of hardware and software may update the components of the

Priced Configuration, but these updates must not impact the Reported Throughput. The following are
not considered Substitutions:

e software patches to resolve a security vulnerability

e silicon revision to correct errors

e new supplier of functionally equivalent components (i.e. memory chips, disk drives, ...)

Some hardware components of the Priced Configuration may be substituted after the Test Sponsor has
demonstrated to the Auditor's satisfaction that the substituting components do not negatively impact
the Reported Throughput. All Substitutions must be reported in the Report and noted in the

Auditor's Attestation Letter if a TPC-Certified Auditor has audited the Result. The following
hardware components may be substituted:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 116 of 271

7.6

7.6.1

7.6.2

¢ Durable Medium

e Durable Medium Enclosure
o Network interface card

e Router

e Bridge

e Repeater

Required Reporting

Two metrics will be reported with regard to pricing. The first is the total 3-year pricing as described in
the effective version of the TPC Pricing specification. The second is the total 3-year pricing divided by

the Reported Throughput (tpsV), as defined in Clause 5.7.1.

The pricing metric, defined in Clause 7.1.1, must be fully reported in the basic monetary unit of the
local currency unit rounded up and the Price/Performance Metric must be reported to a minimum
precision of three significant Digits rounded up. Neither metric may be interpolated or extrapolated.
For example, if the Total Price is $ 5,734,417.89 USD and the Reported Throughput is 105 tpsV, then
the price is $ 5,734,418 USD and the price/ performance is $ 54,700 USD per tpsV (5,734,418/105).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 117 of 271

8.1

8.1.1

8.1.1.1

8.1.1.2

8.1.1.3

8.1.14

8.2

8.2.1

8.2.1.1

CLAUSE 8 FULL DISCLOSURE REPORT

Full Disclosure Report Requirements
A Full Disclosure Report (FDR) is required. This section specifies the requirements for the FDR.

The FDR is a zip file of a directory structure containing the following:

e A Report in Adobe Acrobat PDF format,

¢ An Executive Summary Statement in Adobe Acrobat PDF format,

e The Supporting Files consisting of various source files, scripts, and listing files. Requirements for

the FDR file directory structure are described below.

Comment: The purpose of the FDR is to document how a benchmark Result was implemented and

executed in sufficient detail so that the Result can be reproduced given the appropriate hardware and
software products.

General Items

The order and titles of sections in the Report and Supporting Files must correspond with the order and
titles of sections from the TPCx-V Standard Specification (i.e., this document). The intent is to make it
as easy as possible for readers to compare and contrast material in different Reports.

The FDR must follow all reporting rules specified in the effective version of the TPC Pricing
Specification, located at www.tpc.org. For clarity and readability the TPC Pricing Specification
requirements may be repeated in the TPCx-V Specification.

The directory structure of the FDR has three folders:

e ExecutiveSummaryStatement - contains the Executive Summary Statement
e Report - contains the Report,
e SupportingFiles - contains the Supporting Files.

The reporting requirements of Clause 8 require descriptions, scripts and step-by-step GUI instructions
that are necessary to reproduce the benchmark Result. The Test Sponsor can only provide
descriptions, scripts and GUI instructions for the measured SUT as no knowledge is available at the
time of publication of future changes in hardware or software. To meet the Clause 8.1 reproducibility
requirement, the Test Sponsor must provide upon request any and all updated descriptions, scripts
and step-by-step GUI instructions required to reproduce the benchmark Result.

Executive Summary Statement

The TPC Executive Summary Statement must be included near the beginning of the Report. An example
of the Executive Summary Statement is presented in Appendix A. The Executive Summary Statement
generated by the Benchmark Kit must be used.

First Page of the Executive Summary Statement

The first page of the Executive Summary Statement must include the following:

¢ Sponsor’s name
e Measured server’s name

e TPCx-V Specification version number under which the benchmark is published

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 118 of 271

8.2.2

8.2.2.1

8.2.2.2

8223

TPC-Pricing Specification version number under which the benchmark is published
Report date and /or Revision Date

Reported Throughput in tpsV (see Clause 5.7.1)

Price/Performance Metric (see TPC Pricing Specification)

Availability Date (see TPC Pricing Specification)

Total System Cost (see TPC Pricing Specification)

Database server’'s Operating System name and version

Database Manager name and version

Number of Processors/Cores/Threads that were enabled for the benchmark (see TPC Policies
located at www.tpc.org)

Memory in GB configured on the SUT

A diagram (see Clause 8.3.1.2) describing the components of the Priced Configuration (see TPC
Pricing Specification)

Initial Database Size in GB of each Tier B VM
Redundancy Level and Redundancy Level implementation details
Priced number of Durable Media (disks) for the database

Additional Pages of Executive Summary Statement

The Price Spreadsheet must be included in the Executive Summary Statement as specified by the TPC
Pricing Specification.

Price Spreadsheet Categories:

The major categories for division of the price spreadsheet are:

Server Hardware
Server Storage
Server Software
Client Hardware
Client Software

Infrastructure (networking, UPS, consoles, other components that do not fit into the above categories)

State whether a Pre-Publication Board or a TPC-Certified Audor, whose name must be included after
the Price Spreadsheet, has audited and approved the Result.

The numerical quantities listed below must be included in the Executive Summary Statement after the
Price Spreadsheet:

Reported Throughput in tpsV (see Clause 5.7.1)

Configured Customers and Active Customers (see Clause 2.4)

Measurement Interval in hh:mm:ss (hours, minutes, seconds) (see Clause 5.6.1.5),
Ramp-up time in hh:mm:ss (see Clause 5.6.1.2),

Business Recovery Time in hh:mm:ss (see Clause6.5.7.1),

The number of Transactions in the Transaction Mix completed within the Measurement Interval,
(report the total, and the number per Transaction type) (see Clause 5.3.1)

The number of each Transaction type (including Data-Maintenance) completed within the
Measurement Interval

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 119 of 271

8.3

8.3.1

8.3.1.1

8.3.1.2

e Percentage of Transaction Mix for each Transaction type completed within the Measurement
Interval (see Clause 5.3.1).

e Ninetieth percentile, minimum, maximum and average Response Times must be reported for all
Transactions of the Transaction Mix completed within the Measurement Interval (see Clause 5.5.1).

¢ Maximum, minimum and average Response Times must be reported for Data-Maintenance.

Report Disclosure Requirements

Report Introduction

A statement identifying the benchmark Sponsor(s) and other participating companies must be reported
in the Report.

Diagrams of both Measured and Priced Configurations must be reported in the Report, accompanied
by a description of the differences. This includes, but is not limited to:

Number and type of processors, number of cores and number of threads.

Size of allocated memory, and any specific mapping/ partitioning of memory unique to the test.
Number and type of disk units (and controllers, if applicable).

Number of channels or bus connections to disk units, including their protocol type.

Number of LAN (e.g. Ethernet) connections, including routers, workstations, etc., that were
physically used in the test or incorporated into the pricing structure.

Type and the run-time execution location of software components (e.g. VMMS , DBMS, client,
processes, transaction monitors, software drivers, etc.).

Comment: Detailed diagrams for system configurations and architectures can widely vary, and it is
impossible to provide exact guidelines suitable for all implementations. The intent here is to describe the
system components and connections in sufficient detail to allow independent reconstruction of the
measurement environment.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 120 of 271

8.3.1.3 The following sample diagram illustrates a server benchmark (Measured) Configuration using a 32-
processor server. The server uses 3 SCSI Controllers each attached to four 72GB 15Krpm drives. Gigabit
Ethernet is used to link the Driver machine to the middle-tier machines, and the middle-tier machines
to the server. Note that this diagram does not depict or imply any optimal configuration for the
TPCx-V benchmark measurement.

/ Server: 1 x GrosSystem \
Model xxx CPU @ 5 GHz

32 Proc., 64 Cores, 128 Threads
1,024 GB Memory

3 SCSI Controllers

1 Gigabit Ethernet Controller

)

H)

)

H)

)

—RIRnARY

=)

Driver

3x4x72GB
= L @ 15,000 rpm
Virtualized Server

System Under Test
_ y J

Figure 8a - Example of Measured Benchmark Configuration

8.3.14 A description of the steps taken to configure all of the hardware must be reported in the Report. Any
and all configuration scripts or step-by-step GUI instructions are reported in the Supporting Files (see
Clause 8.4.1.1). The description, scripts and GUI instructions must be sufficient such that a reader
knowledgeable of computer systems and the TPCx-V specification could recreate the hardware
environment. This includes, but is not limited to:

e A description of any firmware updates or patches to the hardware.

e A description of any GUI configuration used to configure the system hardware.

e A description of exactly how the hardware is combined to create the complete system. For example,

if the SUT description lists a base chassis with 1 processor, a processor update package of 3
processors, a NIC controller and 3 disk controllers, a description of where and how the processors,

NIC and disk controllers are placed within the base chassis must be reported in the Report.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 121 of 271

8.3.1.5

e A description of how the hardware components are connected. The description can assume the

reader is knowledgeable of computer systems and the TPCx-V specification. For example, only a
description that Controller 1 in slot A is connected to Disk Tower 5 is required. The reader is assumed
to be knowledgeable enough to determine what type of cable is required based upon the component
descriptions and how to plug the cable into the components.

A description of the steps taken to configure all software must be reported in the Report. Any and all
configuration scripts or step-by-step GUI instructions are reported in the Supporting Files (see Clause
8.4.1.2). The description, scripts and GUI instructions must be sufficient such that a reader
knowledgeable of computer systems and the TPCx-V specification could recreate the software
environment. This includes, but is not limited to:

A description of any updates or patches to the software.

A description of any changes to the software.

A description of any GUI configurations used to configure the software.

Comment: The TPCx-V benchmark fully supports the Licensed Compute Services pricing model
introduced in version 2.0 of the TPC Pricing Specification, as long as the configuration and parameters
settings of the underlying VMMS are disclosed in full detail to allow a reader knowledgeable of computer

systems and the TPCx-V specification to recreate the software environment.

8.3.2 Clause 2 Database Design, Scaling & Population Related Items
8.3.2.1 A description of the steps taken to create the database for the Reported Throughput must be reported
in the Report. No changes may be made to the database schema as created by the DDL and DML in the
TPCx-V Benchmark Kit. The output of the setup.sh script must be captured and included in the
supporting files. The distribution of tables, partitions and logs across all media must be explicitly
depicted for the Measured and Priced Configurations.
Comment: The intent is to provide sufficient detail to allow independent reconstruction of the test
database. There are a large number of virtual disks in the VMs, and the virtualization layer may not
expose how space for each virtual disk is allocated from physical resources. Therefore, it is not required
to have a row for each virtual disk. But a combination of text, a table, and perhaps a diagram should
provide enough detail for reconstruction of the VMs and their virtual disks.
Drives
Disk # Controller # Slot # Enclosure model Partition/file system Size Use
RAID level
2 X 36.4GB EEENNN .
1 3 Enclosure RAID 10 / 20.00GB Root file system
6 X 36.4GB EEENNN
2 4 Enclosure RAID 10 /pgxlog 60.00GB DB Log
14 X 74.8GB EEENNN DB data
2 4 Enclosure RAID 10 / dbstore 400.00GB tablespace
8 X 74.8GB EEENNN . DB index
3 5 Enclosure RAID 10 / dbstore / tpev-index 200.00GB tablespace

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 122 of 271

8.3.2.2

8.3.3

8.3.3.1

8.3.4

8.3.4.1

8.3.4.2

8.3.4.3

8.3.5

8.3.5.1

8.3.5.2

8.3.5.3

8.3.5.4

8.3.5.5

8.3.6

8.3.6.1

8.3.6.2

8.3.6.3

8.3.6.4

8.3.6.5

The methodology used to load the database must be reported in the Report.

Clause 3 SUT, Driver, and Network Related Items

The Network configurations of both the Measured and Priced Configurations must be described and
reported in the Report. This includes the mandatory Network between the Driver and Tier A (see
Clause 10.1.2.2) and any optional Database Server interface networks (see Clause 0).

Benchmark Kit Related Items

The version of Benchmark Kit used in the benchmark must be reported in the Report (see Clause
10.7.3.1).

A statement that the required TPC-provided Benchmark Kit was used in the benchmark must be
reported in the Report.

If the Test Sponsor modified the Benchmark Kit, a statement that Benchmark Kit has been modified
must be reported in the Report. All formal waivers from the TPC documenting the allowed changes to
Benchmark Kit must also be reported in the Report (see Clause 1.5.)

Clause 5 Performance Metrics and Response Time Related Items

The number of VGenDriverMEE and VGenDriverCE instances used in the benchmark must be
reported in the Report (see Clause 10.2.3).

The Measured Throughput must be reported in the Report (see Clause 5.7.1.2).

The Measured Throughput of each Group must be reported, and be within 2% of its expected
contribution to the aggregate Measured Throughput (see Clause 5.7.1.3).

A Test Run Graph of throughput versus elapsed wall clock time must be reported in the Report for the
Trade-Result Transaction (see Clause 5.7.2).

The recorded averages over the Measurement Interval for each of the Transaction input parameters
specified by clause 5.4.1 must be reported in the Report.

Clause 6 Transaction and System Properties Related Items

The results of the ACID tests must be reported in the Report along with a description of how the ACID
requirements were met, and how the ACID tests were run.

The Test Sponsor must report in the Report the Redundancy Level (see Clause 6.6.4.1) and describe the
Data Accessibility test(s) used to demonstrate compliance. A list of all combinations of Durable Media
technologies tested in Clause 6.6.3.5 must be reported in the Report.

A Data Accessibility Graph for each run demonstrating a Redundancy Level must be reported in the
Report (see Clause 6.6.4.2).

The Test Sponsor must describe in the Report the test(s) used to demonstrate Business Recovery.

The Business Recovery Time Graph (see Clause 6.5.7.2) must be reported in the Report for all Business
Recovery tests.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 123 of 271

8.3.7

8.3.7.1

8.3.8

8.3.8.1

8.4

Clause 7 Pricing Related Items

The Auditor’s Attestation Letter or the Pre-Publication Board’s report, which indicate compliance,

must be included in the Report.

Supporting Files Index Table

An index for all files required by Clause 8.4 Supporting Files must be provided in the Report. The
Supporting Files index is presented in a tabular format where the columns specify the following:

e The first column denotes the clause in the TPC Specification

e The second column provides a short description of the file contents

e The third column contains the path name for the file starting at the SupportingFiles directory.

If there are no Supporting Files provided then the description column must indicate that there is no
supporting file and the path name column must be left blank.

Comment: This may be the common case for Clause 8.4.4 where Benchmark Kit modifications are required

in the Supporting Files.

The following table is an example of the Supporting Files Index Table that must be reported in the
Report. With the large number of VMs and databases used by this benchmark, it is not necessary to

have a row for each VM or database.

Clause Description Pathname

Database Tunable Parameters SupportingFiles/Introduction/ vmNNN/DBtune.txt
Introduction |OS Tunable Parameters SupportingFiles /Introduction/ vmNNN / OStune.txt

VM Tunable paramegters SupportingFiles/Introduction/ vmNNN/VMtune.txt
Clause 2 Log of database creation SupportingFiles/Clause2 /vmNNN/setup.out
Clause 4 Document any modifications to the kit
Clause 5 Database Growth SupportingFiles/Clause5/vmNNN /DatabaseGrowth
Clause 6 Output of ACID tests SupportingFiles/Clause6/ ACID output/XYZ.out

Driver Configuration SupportingFiles/Clause10/ vcfg.properties

VGenLoader Parameters SupportingFiles/Clause10/ create_TPCx-V_flat_files.sh
Clause 10 CE VGenLogger Output SupportingFiles/Clause10/CELogger-NNN.log

DM VGenLogger Output SupportingFiles/Clause10/DM_Msg-Tile-Group-Vcon.log

MEE VGenLogger Output SupportingFiles/Clause10/MEE_Msg-Tile-Group-Vcon.log

Supporting Files

The Supporting Files contain human readable and machine executable (i.e., able to be performed by the

appropriate program without modification) scripts that are required to recreate the benchmark Result.
If there is a choice of using a GUI or a script, then the machine executable script must be provided in the

Supporting Files. If no corresponding script is available for a GUI, then the Supporting Files must
contain a detailed step-by-step description of how to manipulate the GUL

The directory structure under SupportingFiles must follow the clause numbering from the TPCx-V
Standard Specification (i.e., this document). The directory name is specified by the 8.4 third level Clauses

immediately preceding the fourth level Supporting Files reporting requirements. If there is more than
one instance of one type of file, subfolders may be used for each instance

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 124 of 271

8.4.1

8.4.1.1

8.4.1.2

8.4.2

8.4.2.1

8.4.3

8.4.3.1

8.4.4

8.4.4.1

8.4.4.2

8.4.4.3

8.4.5

8.4.6

8.4.6.1

File names should be chosen to indicate to the casual reader what is contained within the file. For
example, if the requirement is to provide the scripts for all table definition statements and all other
statements used to set-up the database, file names of 1, 2, 3, 4 or 5 are unacceptable. File names that
include the text “tables”, “index” or “frames” should be used to convey to the reader what is being
created by the script.

SupportingFiles/Introduction Directory
All scripts required to configure the hardware must be reported in the Supporting Files.

All scripts required to configure the software must be reported in the Supporting Files. This includes
any Tunable Parameters and options which have been changed from the defaults in commercially
available products, including but not limited to:

¢ Database tuning options.

e Recovery/commit options.

e Consistency /locking options.

e Operating System and application configuration parameters.

e Compilation and linkage options and run-time optimizations used to create/install applications, OS,
and/or databases.

e Parameters, switches or flags that can be changed to modify the behavior of the product.

Comment: This requirement can be satisfied by providing a full list of all parameters and options.
SupportingFiles/Clause2 Directory

Outputs of the setup.sh script on all VMs of all Groups of all Tiles must be reported in the Supporting
Files.

SupportingFiles/Clause3 Directory

No requirements

SupportingFiles/Clause4 Directory
If the Test Sponsor modified Benchmark Kit, the changes must be reported in the Supporting Files.
The VGenLoader parameters used must be reported in the Supporting Files.

The VGenLogger output for each CCE object, CMEE object and CDM object must be reported in the
Supporting Files (see Clause 10.7.7.1).

SupportingFiles/Clause5 Directory

SupportingFiles/Clause6 Directory

The output of the ACID tests must be reported in the Supporting Files.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 125 of 271

9.1

9.1.1

9.1.2

9.1.3

9.14

9.1.5

CLAUSEY9 AUDIT

General Rules

Prior to its publication, a TPCx-V Result must be reviewed by either a TPC-Certified, independent
Auditor or a Pre-Publication peer review board. Throughout this specification, the term “Auditor”
applies to either the TPC-Certified, independent Auditor, or the TPCx-V Pre-Publication Board,
except where the term TPC-Certified independent Auditor is explicitly used.

Comment 1: The term TPC-Certified is used to indicate that the TPC has reviewed the qualification of the
Auditor and has certified his/her ability to verify that benchmark Results are in compliance with this

specification. (Additional details regarding the Auditor certification process and the audit process can
be found in the TPC Policy document.)

Comment 2: The Auditor must be independent from the Sponsor in that the outcome of the benchmark
carries no financial benefit to the Auditor, other than fees earned as a compensation for performing the
audit. More specifically:

. The Auditor is not allowed to have supplied any performance consulting for the benchmark
under audit.

The Auditor and the Pre-Publication board are not allowed to be financially related to the Sponsor or to
any one of the suppliers of a measured/priced component (e.g., the Auditor or Pre-Publication board
members cannot be an employee of an entity affiliated with or owned wholly or in part by the Sponsor
or by the supplier of a benchmarked component, and the Auditor cannot own a significant share of stocks
from the Sponsor or from the supplier of any benchmarked component, etc.)

The Pre-Publication board shall have 3 members, appointed by the subcommittee for a 6-month term.
The board will elect a chair, who will handle the communications of the board, including generating the

board’s approval report. The procedures of the Pre-Publication board are determined by the TPC
policies document.

All audit requirements specified in the version of the TPC Pricing Specification, located at www.tpc.org
must be followed. For clarity and readability the TPC Pricing Specification requirements may be

repeated in the TPCx-V Specification.

A generic audit checklist is provided as part of this specification. The Auditor may choose to provide
the Sponsor with additional details on the TPCx-V audit process.

The generic audit checklist specifies the TPCx-V requirements that should be checked to ensure a
TPCx-V Result is compliant with the TPCx-V Specification. The TPCx-V requirements may also be
required to be reported in the FDR. Not only should the TPCx-V requirement be checked for accuracy
but also the Auditor must ensure that the FDR accurately reflects the audited Result. For example, if
the audit checklist indicates to “verify that a Business Recovery Time Graph is generated as specified”,

the graph must be verified to be accurate and verified to be the same graph that is reported in the FDR
as specified by Clause 8.3.6.5.

If an independent, TPC-Certified Auditor has audited the Result, the Auditor’s opinion regarding the
compliance of a Result must be consigned in an Attestation Letter delivered directly to the Sponsor.
To document that a Result has been audited, the Attestation Letter must be included in the Report and
made readily available to the public. Upon request, and after approval from the Sponsor, a detailed
audit report may be produced by the Auditor.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 126 of 271

9.1.6

9.1.7

9.2

The scope of the audit is limited to the functions defined in this specification. The ability to perform
arbitrary functions against the SUT (e.g., executing Transactions unrelated to those defined in Clause

3.3, generating input data unrelated to those produced by the CE and the MEE, creating data structures
unrelated to those necessary to implement Clause 2, etc.) is outside of the scope of the audit.

A Sponsor can demonstrate compliance of a new Result produced without running any performance
test by referring to the Attestation Letter of another Result, if the following conditions are all met:

e The referenced Result has already been published by the same or by another Sponsor.

e The new Result must have the same hardware and software architecture and configuration as the
referenced Result. The only exceptions allowed are for elements not involved in the processing logic
of the SUT (e.g., number of peripheral slots, power supply, cabinetry, fans, etc.)

e The Sponsor of the already published Result gives written approval for its use as referenced by the
Sponsor of the new Result.

e The TPC-Certified, independent Auditor or the Pre-Publication board verifies that there are no
significant functional differences between the priced components used for both Results (ie.,
differences are limited to labeling, packaging and pricing.)

e The TPC-Certified, independent Auditor or the Pre-Publication board reviews the FDR of the new
Result for compliance. The new Attestation Letter of the Auditor or the report of the Pre-Publication
board must be included in the Report of the new Result.

Comment 1: The intent of this clause is to allow publication of benchmarks for systems with different

packaging and model numbers that are considered to be identical using the same benchmark run. For
example, a rack mountable system and a freestanding system with identical electronics can use the same

Test Run for publication, with, appropriate changes in pricing.

Comment 2: Although it should be apparent to a careful reader that the FDR for the two Results are based
on the same set of performance tests, the FDR for the new Result is not required to explicitly state that it
is based on the performance tests of another published Result.

Comment 3: When more than one Result is published based on the same set of performance tests, only
one of the Results from this group can occupy a numbered slot in each of the benchmark Result “Top
Ten” lists published by the TPC. The Sponsors of this group of Results must all agree on which Result
from the group will occupy the single slot. In case of disagreement among the Sponsors, the decision
will be made by the Sponsor of the earliest publication from the group.

Self-validation, Self-audit, and the role of the Auditor

Some of the requirement in this Clause, e.g. Clause 9.4, can be satisfied by verifying that the Test Sponsor
has used the mandatory, TPC-supplied TPCx-V Benchmark Kit without any modifications.

The TPCx-V Benchmark Kit includes Audit Tools that perform many of the mechanical database audit
tasks that are typically performed by an Auditor. The Benchmark Kit also automatically validates many
of the numerical quantities that need to be checked after a Test Run, e.g., the Transaction Mix,
Transaction input value mix requirements, Transaction Response Times, distribution of load among
Tiles and Groups, etc.

It is expected that the numerical validation reports and the output of Audit Tools will greatly facilitate
the work of an Auditor, and result in a faster, simpler, less costly audit process. Nonetheless, the tools
are meant to assist the Auditor and simplify the audit process, not replace the need for an independent
audit. The opinion of the Auditor, not the outputs of numerical validation or Audit Tools, ultimately
determines whether a TPCx-V Result is compliant with the TPCx-V Specification.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 127 of 271

9.2.1

9.2.2

9.3

Numerical validation by the Benchmark Kit

At the conclusion of a Test Run, the Benchmark Kit produces a number of files that contain various,
detailed results from the run. The file audit_check.log file contains the results of checking of the following
numerical quantities:

e Input Value Mix percentages (see Clause 5.4.1)
e The Transaction Mix (see Clause 5.3)

¢ Response Time requirements (see Clause 5.5) for each Transaction type in each Phase in each Group
in each Tile.

e The reported Trade-Result throughput in each Phase in each Group in each Tile.

The benchmark kit tests every one of these conditions, and produces a PASSED or FAILED outcome to

be used by the Auditor in validating the Test Run. It is expected that a valid run will not have any FAILED
results.

Audit Tools

At the conclusion of a Test Run, the Test Sponsor must use the xVAudit application of the Benchmark

Kit to run the supplied database audit tests. These tests provide much of the data that the Auditor needs
for verifying the requirements laid out in Clauses 9.3, 9.4, 9.7, and 9.8. Below is the list of xVAudit
commands, and their primary use cases.

e The commands xVAudit.Atomicity.AtomicityAudit, xVAudit.Consistency.Consistency Audit,
xVAudit.Isolation.PlinReadOnlyAudit, xVAudit.Isolation.PlinRead Write Audit, and
xVAudit.Isolation.P2inReadWriteAudit test the Atomicity, Consistency, and Isolation properties of
the databases.

e The command xVAudit.Cardinality. TestBedCardinality Audit audit TPCx-V table cardinalities at all
the Tiles in the SUT.

e The command xVAudit.Schema.DatabaseStructureAudit produces a dump of the database schemas
for verifying the requirements of Clause 9.3.1

e The command xVAudit.StoredProcs.StoredProcAudit produces a dump of the stored procedures for
verifying the requirements of Clause 9.4.

e The commands xVAudit.Tables.DuplicatePrimaryKeyAudit, xVAudit.RLRIAudit, and
xVAudit.Tables. RangeMaxValueAudit are used to verify the requirements of Clause 9.3.1.7.

Auditing the Database

The Auditor must verify that the implementation of the measured database meets the TPCx-V
Specification requirements. The Auditor may require the review of any and all source code and
associated scripts or programs used to create and populate the database. The Auditor can require

additional database verification not specified in the TPCx-V Specification to ensure the validity of the
database.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 128 of 271

9.3.1

9.3.1.1

9.3.1.2

9.3.1.3

9314

9.3.1.5

9.3.1.6

9.3.1.7

9.3.1.8

9.3.1.9

9.3.1.10

9.3.2

9.3.21

9322

9.32.3

Schema Related Items

Verify that the data types used to implement the columns of the TPCx-V required tables meet the
requirements from Clause 2.2.1.

Verity that the data Meta-types used to implement the columns of the TPCx-V required tables meet the
requirements of Clause 2.2.2.

Verify that the 9 tables in the Customer set have all of the required properties (see Clause 2.2.4).
Verify that the 9 tables in the Broker set have all of the required properties (see Clause 2.2.5).
Verify that the 11 tables in the Market set have all of the required properties (see Clause 2.2.6).
Verity that the 4 tables in the Dimension set have all of the required properties (see Clause 2.2.7).

Verify that all Primary Keys, all Foreign Keys, and all check constraints specified are maintained by the
database (see Clause 2.2.3).

Verify that Primary Keys are not a direct representation of the physical disk addresses of the row (see
Clause 10.3.8).

Verity that the implementation of the database satisfies the integrity rules (see Clause 10.4).

Comment: A check for the condition in clause 10.4.2 is not required, but the requirement still exists.

Verify that the implementation of the database satisfies the data access transparency requirements (see
Clause 10.5).

Population Related Items

Verify that the version of VGenLoader used is compliant with the current version of the TPCx-V
specification (see Clause 10.7.6.1).

Verify that none of the VGenLogger output contains “NO”. A “NO” indicates that the associated
VGenDriver or VGenLoader configuration parameter is not compliant with the current TPCx-V

Specification (see Clause 10.7.2.7).

Verify that the database is populated using data generated by VGenLoader (see Clause 2.4.1.1).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 129 of 271

9324

9.3.2.5

9.3.2.6

9327

9.3.2.8

9.4

94.1

9.5

9.5.1

952

9.6

9.6.1

Verify that the database is populated with an integral number of Load Units (see Clause 2.4.1.2).

Verify that the number of Load Units in each VM is compliant with the requirements in Clauses 2.4.1.2,
24.1.3,and 4.3.4.2.

Verify that the initial database population consists of a number of Business Days equal to ITD (see
Clause 2.4.1.6).

Verify that the cardinality of the TPCx-V required tables in the initially populated database meets the
requirements of Clause 2.4.1.

Verify that each non-Growing Table can grow by a number of rows equal to at least 5% of the table
cardinality (see Clause 10.3.9).

Auditing the Transactions

The Auditor must verify that the implementation of the Transactions meets the TPCx-V Specification
requirements. The Auditor may require the review of any and all source code and associated scripts or
programs for the Transactions. The Auditor can require additional Transaction verification not specified
in the TPCx-V Specification to ensure the validity of the Transactions.

Verify that the implementation of each Transaction specified in Clause 3.3 is compliant with its
respective input parameters, output parameters, Database Footprint and Frame Implementation
requirements. More specifically verify that the stored procedures and the Frame Implementation in the
TPCx-V Benchmark Kit have not been modified.

Auditing the SUT, Driver and Networks

The Auditor must verify that the implementation of the test environment meets the TPCx-V Specification
requirements. The Auditor may require the review of any and all source code implementing the various
components involved and associated scripts or programs. The Auditor can require additional verification
not specified in the TPCx-V Specification to ensure the validity of the test environment.

Verify the presence and use of a Network to communicate between the Driver and Tier A (see Clause
10.1.3.1.6).

Verify that the restrictions on operator interventions are met (see Clause 4.3.3).

Auditing Benchmark Kit

Verify that the version of Benchmark Kit used is compliant with the version of the TPCx-V
specification used for publication (see Clause 10.7.3).

o Verify that the VGenSourceFiles used have not been modified (see Clause 10.7.5).

o If the Test Sponsor modified Benchmark Kit in response to a formal waiver issued by the TPC,
verify that the changes fall under the scope of the waiver (see Clause 1.5.8).

e If the Test Sponsor modified Benchmark Kit outside of an existing TPC waiver, review the
changes to verify that it was done for the exclusive purpose of correcting a newly discovered

error in Benchmark Kit (see Clause 1.5.7).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 130 of 271

9.7

9.7.1

9.7.1.1

9.7.1.2

9.7.13

9.7.14

9.7.2

9.7.2.1

Auditing the Execution Rules and Metrics

The Auditor must verify that all TPCx-V execution rules have been followed by the Test Sponsor. The
Auditor may require the review of any and all output of the benchmark environment. The Auditor can
require additional verification not specified in the TPCx-V Specification to ensure the validity of the
Benchmark Execution Rules and the resulting Reported Throughput.

Pre-run Configuration Items
Verity that the contents of the database meet the requirements of Clause 5.6.2.1 and Clause 5.6.2.3.

Verity that the Trade-Cleanup Transaction was executed prior to the start of the Test Run or that the
database was in its initially populated state (e.g., verify that the final TRADE count minus the number
of Trade-Orders completed by the Driver during the Test Run is equal to the initial TRADE count) (see
Clause 5.6.2.2).

Verity that no executions of the Trade-Cleanup Transaction occur during the Test Run (see Clause
5.6.1.1).

Verify that the system clocks are synchronized as required by Clause 4.3.2.

Runtime Configuration Items

Verity that, for specific global inputs, each instance of the CE, DM and the MEE is using the same
values as those used by the VGenLoader instances during the initial database population (see Clause
10.7.7.4). This requirement applies to the following global inputs:

e The contents of each flat_in file.

o The value for Scale Factor (SF).

e The number of Initial Trade Days.

¢ The number of Configured Customers and Active Customers.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 131 of 271

9.7.2.2

9.7.3

9.7.3.1

9.7.3.2

9.7.3.3

9.7.3.4

9.7.3.5

9.7.3.6

9.7.4

9.74.1

9.74.2

9.7.5

9.7.5.1

9.7.5.2

9.7.6

9.7.6.1

9.7.7

9.7.7.1

9.7.7.2

9.7.7.3

9.7.8

Verify that none of the VGenLogger output contains “NO”. A “NO” indicates that the associated
VGenDriver or VGenLoader configuration parameter is not compliant with the current TPCx-V
Specification (see Clause 10.7.2.7).

Runtime Data Generation Items

Verify that the reported Transaction Mix over the Measurement Interval only counts Valid
Transactions (see Clauseb.3).

Verify that the reported Transaction Mix over the Measurement Interval excludes the Data-
Maintenance Transactions (see Clause 5.3.1).

Verify that the specified mix of Transactions over the Measurement Interval meets the requirements
(see Clause 5.3.1).

Verify that the reported Transaction Mix over the Measurement Interval is computed and reported
with the required precision and rounding (see Clause 5.3.2).

Verity that the CE Driver generated input data with a random variability that stays within the specified
ranges (see Clause 5.4.1).

Verity that the number of Load Units configured for the database is equal to the number of Load Units
actually accessed during the Test Run (see Clauses 2.4.1.7 and 5.6.8.6).

Response Time Items
Verify that the Transaction Response Times meet the requirements of Clause 5.5.1.2.

Verify for each type of Transaction that its average Response Times does not exceed its 90th percentile
Response Time (see Clause 5.5.1.4)

Throughput Items

Verify that each Measured Throughput is between 80% and 102% of the corresponding Nominal
Throughput (see Clause 5.7.1.2).

Verify that the Reported Throughput is not greater than the Nominal Throughput (see Clause 5.7.1).
Market-Feed Items

Verify the transaction rate requirements (see Clause 5.3.1) and response time requirements (see Clauses
5.5.1.2 and 5.5.1.5) for Market-Feed transactions.

Data-Maintenance Items

Verify that one, and only one, Data-Maintenance Transaction generator is used during the Test Run
(see Clause 0).

Verify that during the Measurement Interval the Data-Maintenance Transaction is invoked every 60
seconds and completes within no more than 55 seconds (see Clause 5.3.3).

Verify that the Data-Maintenance Transaction modified the rows specified in Clause 10.6.11.

Steady State Items
TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 132 of 271

9.7.8.1

9.7.8.2

9.7.8.3

9.7.8.4

9.7.9

9.79.1

9.8

Verify that the Ramp-up period is at least 12 minutes.

Verify that the Steady State meets the requirements of Sustainable performance as specified by Clause
5.6.3.

Verify that all events performed at regular intervals during Steady State are present before and during
the Steady State as required (see Clause 5.6.4.1) and that the duration of Steady State meets all the
requirements listed in Clause 5.6.4.2.

Verify that the Measurement Interval meets all the requirements of Clause 5.6.5.

Space Calculation Items

Verify that the Data Growth is computed as specified and that sufficient space to accommodate it is
available on-line (see Clause 5.6.6).

Auditing the ACID Tests

The Auditor must verify that the implementation of the ACID tests sufficiently demonstrates compliance
with the TPCx-V ACID requirements. The Auditor may require the review the source code
implementing these tests and any associated scripts or programs. The Auditor can require additional
verification not specified in the TPCx-V Specification to ensure the validity of the ACID tests.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 133 of 271

9.8.1 Atomicity Items
9.8.1.1 Verify that the atomicity test is implemented as specified in Clause 6.2.2.

9.8.1.2 Verify that the atomicity test correctly demonstrates the atomicity property (see Clause 6.2.1).

9.8.2 Consistency Items
9.8.2.1 Verify that the consistency tests are implemented as specified in Clause 6.3.3.

9.8.22 Verify that the consistency conditions are successfully demonstrated by the tests (see Clause 6.3.2)

9.8.3 Isolation Items
9.8.3.1 Verify that the isolation tests are implemented as specified in Clause 6.4.2.

9.8.3.2 Verify that the isolation tests correctly demonstrate the isolation requirements (see Clause 6.4.1.3).

9.8.4 Data Accessibility Items
9.8.4.1 Verify that the Durability tests for Data Accessibility are implemented as specified (see Clause 6.6.3.5).

9.8.4.2 Verify that the Redundancy Level chosen by the Sponsor is successfully demonstrated by the Data
Accessibility test (see Clause 6.6.3.5).

9.8.43 Verify that the Redundancy Level chosen by the Sponsor is correctly reported in the Report (see Clause
6.6.3.4).

9.8.4.4 Verify that a Data Accessibility Graph is generated as specified in Clause 6.6.4.2.

9.8.4.5 Verify that all components of Durable Media technologies tested in Clause 6.6.3.5 are correctly
reported in the Report.

9.8.5 Business Recovery Items
9.8.5.1 Verify that the Durability tests for Business Recovery are implemented as specified (see Clause 6.5.7).

9.8.5.2 Verify that recovery from each required single failure scenario is successfully demonstrated by one or
more Business Recovery tests (see Clause 6.5.7).

9.85.3 Verify that the Business Recovery Time correctly measures the time between the start of Business
Recovery and the end of Business Recovery (see Clause 6.5.5.10).

9.8.5.4 Verity that a Business Recovery Graph is generated as specified in Clause 6.5.7.2.

9.9 Auditing the Pricing

9.9.1 Rules for auditing Pricing information are specified in the effective version of the TPC Pricing
Specification, located at www.tpc.org.

9.9.2 Verify that the greater of the 1 Business Day Space or the data storage configured during the
measurement is included in the Priced Configuration (see Clause 7.3).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 134 of 271

9.9.3

994

9.10

9.10.1

9.10.2

9.10.3

9.104

9.10.5

9.10.6

9.10.7

9.10.8

Verify that additional operational components or additional software that might be customary on a

customer installed configuration or might be necessary to build and run the Application are included
(see Clause 7.4.1 and Clause 7.4.2).

Verify that all component Substitutions are compliant with the TPC Pricing Specification and with the
TPCx-V specific restrictions (see Clause 7.5).

Auditing the FDR

For the Audit requirements specified in Clauses 9.6 through 9.9, the Auditor must ensure that if required
by Clause 8 , the items, requirements or values are correctly reported in the FDR.

For those items, requirements or values that are reported in the FDR and not required to be audited, the
Auditor need only ensure that they are in the FDR and appear to be reasonable. For example, the Auditor
cannot be held responsible for accuracy of the Availability Date but can ensure that it is reported in the
FDR and does not fall outside the 6-month availability window starting from the publication date.

Verify that table partitioning, if used, meets the requirements from Clause 10.3.3.

Verify that the reported Transaction Mix over the Measurement Interval is computed and reported
with the required precision and rounding (see Clause 5.3.2).

Verify that the Reported Test Run Graph meets the requirements (see Clause 5.7.2).

Verify that the Executive Summary Statement is accurate and complies with the reporting
requirements as specified in Clause 8.2.

For those items that are required by Clause 8.3 to be reported in the Report and are also required by
Clauses 9.6 through 9.9 to be verified by the Auditor, verify that the items are accurately reported in
the Report. For those items that are required to be reported by Clause 8.3 but are not required to be
verified by the Auditor, ensure that the items are reported in the Report and appear to be reasonable.

Verify that the Supporting Files specified by Clause 8.4 exist and appear to be reasonable.

Verify that the following sections of the FDR are accurate:

e Verify that the diagram illustrating the Measured Configuration is accurate (see Clause 8.3.1.2)
e Verify that the diagram illustrating the Priced Configuration is accurate (see Clause 8.3.1.2)
e Verify that the textual descriptions required by Clause 8.3.2 are accurate.

e Verify that any Benchmark Kit changes made by the Sponsor comply with the requirements listed
in Clause 1.5, and are reported in detail in the FDR (see Clause 8.3.4.3).

A complete review of the Report by the Auditor, beyond the sections listed above, can be requested by
the Sponsor, but is not required.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 135 of 271

CLAUSE 10 TPCX-V BENCHMARK KIT DESIGN DOCUMENT

10.1

10.1.1

10.1.1.1

10.1.1.2

Description of SUT, Driver, and Network

Overview

TPCx-V is a distillation of an abstraction of multiple virtualized “real-world” OLTP environment. In
order to understand what TPCx-V tests and, as a consequence, what TPCx-V does not test, it is necessary
to understand the base “real-world” environment (Clause 10.1.1.1 Description of Real-World OLTP
Environment), the abstraction of that base environment (Clause 10.1.1.2 Functional Component
Abstraction of the Real-World OLTP Environment) and the distillation of that abstraction (Clause 10.1.1.3

Distillation of Functional Components into the TPCx-V Environment).

Description of the Real-World OLTP Environment

The figure below shows the “real-world” environment upon which TPCx-V is based. Users connect to
the brokerage house over a network using a myriad of possible interface devices (e.g. PCs or handheld
units). The brokerage house is also able to connect via a network to external businesses (e.g. the stock

market exchanges).

Examples of
User Interfaces

Cell phone
N

Stock-Market

External Business

Modeled Business

T S

Presentation
Services

Network Application
And Database
Business Logic Services

Services

Exchange (Customer)
Sponsor Provided
Stock Market]

Example of [

Figure 10.a - Diagram of the Real-World OLTP Environment

Functional Component Abstraction of the Real-World OLTP Environment

From the diagram of the real-world OLTP environment, the following diagram of the key functional
components can be abstracted.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 136 of 271

10.1.1.3

Modeled Business

e —— e ——————

Presentation

A}
Presentation — !
et i - Services A Xcatlon Datab :
Interfaces ~And atabase | :
Business Logic Services | !
Services |
1
1
Market | —~ = TTTTTTTTTTTTTTToToTomomommomsomooommomsmomooooooeeot
Exchange
[Customer]

| Sponsor Provided |

[Stock-Market]

Figure 10.b - Abstraction of the Functional Components in an OLTP
Environment

A user makes use of some device to connect, via the network, to the business’s presentation services. As
is typical in a Customer-to-Business environment, the presentation layer provides a way for the user to
navigate the available services, select the desired operation, enter data and read results. A practical
example of this would be a customer using a home PC to connect to a web site to conduct business.

The brokerage house would likewise connect via a network to an external business, such as the market
exchange. As is typical of a Business-to-Business environment, presentation services are not needed.
Rather, data can be exchanged directly without the need for a human-readable format.

Regardless of how the data arrives at the brokerage house, it ultimately will pass through transaction
management functions where connection multiplexing / de-multiplexing occurs; routing may also occur
here as well as other possible functions. The transaction management layer ensures the data will be
delivered to the right business logic code that can perform the requested task.

A critical step in the business logic occurs when the data is handed off to some function or method

implementation for database processing. This method implementation will include Database Interface
code for packaging up the appropriate data and sending it to the database application logic (e.g. stored
SQL procedure) running in the context of the DBMS. The database application logic will then use DBMS
services to perform the necessary tasks, and the results will ultimately be returned “up-stream” as
appropriate.

Distillation of Functional Components into the TPCx-V Environment

By design, TPCx-V virtualized business model is database-centric. Therefore, even though Presentation
Services are an important part of a complete Customer-to-Business solution, they have been distilled out

of the TPCx-V workload. As a practical matter, Presentation Services often scale out such that a Test
Sponsor will configure (replicate) enough servers to run the Presentation Services so they are not a

limiting factor for the benchmark. So, to focus on what is being evaluated and to facilitate ease of
benchmarking, Presentation Services are not a functional component in the test configuration.

In the context of the diagram of the functional components of the target system model, the role of the
Customer is that of a decision maker and data provider (i.e., deciding what transaction to do and
supplying the necessary inputs for that transaction). However, the absence of Presentation Services in

TPCx-V leads to some simplifications in the test configuration emulation of the User. The decision
making and data input generation characteristics of the User are still essential, but characteristics of the
User like typing rates and think times are not necessary.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 137 of 271

The role of the User Interface Device (UID) is to accept inputs from the User and send those inputs to the
Presentation Services, and accept outputs from the Presentation Services and display those outputs to
the User. However, TPCx-V does not define or require display layouts (since there are no Presentation
Services). Consequently there is no requirement to transmit transaction input and output data in a
display format. For example, there is no need to send and receive fully formed HTML pages via HTTP;
transaction inputs and outputs may be communicated in a binary format (i.e. by sending C++ data
structures over a socket).

Based on these items and the diagram of the functional components of the target system model, a diagram
for the functional components of the test configuration can be derived. Note that the implementation of
these functional components implies a combination of hardware and software.

Sponsor ‘r Driving and Reporting Legend)

Provided ~ V
T 4 CE... MEE... DM...
VGenDriver ar VGenDriverCE || VGenDriverMEE | | VGenDriverDM [TPC Provided]
a el b Fommercial ProductJ

...CE ...MEE ...DM
L —— N —
- TPC Defined
Sponsor Q VGenDriver Connector _) W= Em =S hterface y
Provided
Mandatory Network
Between Driver and Tier A VMs
Commercial j Virtual Machine Management Software
Product L
Tier A VM1
Tier B VM2
DBMS

2 (Database Logic)
> - =
Sm
Sponsor . ==]
Provided Frame Implementation 2 T Tier B VM3
= ©
g < DBMS
88
Z

(_ Database Logic_)

Product

Sponsor J’ VGenTxnHarness Connector
Provided
VGenTxnHarness TPCx-V Logic and Frame Calls)

Commercial L Database Interface)

Figure 10.c - Functional Components of the Test Configuration

Driving & Reporting — The TPC provided Benchmark Kit includes functionality to set up, administer and
execute a Test Run, collect data and generate summary reports. The TPC provided kit invokes VGenDriver to

generate input parameter for transactions according to this specification. The Benchmark Kit also performs
validation of the generated results.

CE - TPC provided functionality to set up, administer and execute the Customer Emulator. The TPC written kit
invokes VGenDriverCE.

MEE - TPC provided functionality to set up, administer and execute the Market-Exchange Emulator. The TPC
written kit invokes VGenDriverMEE.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 138 of 271

DM - TPC provided functionality to set up, administer and execute the Data-Maintenance Transaction once a
minute. The TPC written kit invokes VGenDriverDM. The Benchmark Kit also provides functionality to call the
Trade-Cleanup Transaction once prior to the start of the run (see description of VGenDriverDM below).

A TPC Defined Interface is a C++ class member that is designed to exchange data (and transfer execution
control) between various components of the TPC provided Benchmark Kit. The table in appendix A.14 lists the
TPC Defined Interfaces and the associated C++ classes and member functions.

VGenDriver - TPC provided C++ source code that implements essential functionality during a Test Run. The
use of VGenDriver is mandatory. The following are parts of VGenDriver.

¢ VGenDriverCE — Customer Emulator that provides the required Transaction Mix and user
input data generation

¢ VGenDriverMEE - Market Exchange Emulator that provides the stock market functionality and
data generation

¢ VGenDriverDM - Data-maintenance functionalities that generates data for and invokes the
Data-Maintenance Transaction. Also, supplies an interface that can be used by the Benchmark
Kit to invoke the Trade-Cleanup Transaction.

VGenDriver Connector - TPC provided functionality that complies with a TPC Defined Interface. The
VGenDriver Connector is invoked from inside VGenDriver through the interface. The VGenDriver Connector
is responsible for sending the VGenDriver generated data to, and receiving the corresponding resultant data

back from, the VGenTxnHarness Connector via the Network. An example of the hardware and software needed
to implement the Connector is:

e TPC provided code
e An Operating System that provides a socket API and the underlying functionality

e The hardware system the Operating System runs on and the network interface card necessary
to connect to the Network (the network cable coming out of the NIC to connect it to the Network
would not be considered part of the Connector but rather part of the Network).

A Network is defined as Sponsor-provided functionality that must support communication through an industry
standard communications protocol using a physical means. One outstanding feature of the

Connector<~ Network < Connector communication is that it follows the relevant standards and must imply more
than just an application package. It must be possible to have concurrent use of the means by other applications.
Physical transport of the data is required and the underlying means of this transport must be capable of operating
over arbitrary globally geographic distances.

TPC/IP over a local area network is an example of an acceptable Network implementation.

Virtual Machine Management Software (VMMS) — Commonly referred to as a Hypervisor, a commercially
available framework or methodology of dividing the resources of a system into multiple computing
environments. Each of these computing environments allows a completely isolated software stack including an
operating system to run in complete isolation from anything else running on the system. The VMMS allows for
the creation of multiple computing environments on the same system.

Comment: The term VMMS is not meant to include the static partitioning of a system that occurs at boot
time or any dynamic partitioning that may take place through operator intervention.

Virtual Machine (VM) — A self-contained operating environment, managed by the VMMS, that behaves as if it
were a separate computer.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 139 of 271

VGenTxnHarness Connector — TPC provided functionality responsible for receiving the data sent from, and
sending the appropriate resultant data back to, the VGenDriver Connector via the Network. The
VGenTxnHarness Connector provides the data to, and accepts the resultant data from, VGenTxnHarness by

invoking a TPC Defined Interface. The VGenDriver Connector example implementation above applies here as
well.

VGenTxnHarness — TPC provided C++ source code that implements essential functionality during a Test Run.
VGenTxnHarness invokes the TPC’s implementations of the Transaction Frames, providing the necessary inputs

and accepting the necessary outputs through a TPC Defined Interface. The use of VGenTxnHarness is
mandatory.

Frame Implementation is TPC provided functionality that accepts inputs from, and provides outputs to,
VGenTxnHarness through a TPC Defined Interface. The Frame Implementation and all down-stream

functional components are responsible for providing the appropriate functionality outlined in the Transaction
Profiles (Clause 3.3).

Database Interface is a commercially available product used by the Frame Implementation to communicate with

the Database Server. It is possible that the Database Interface may communicate with the Database Server over a
Network, but this is not a requirement.

A Database Server is a commercially available product(s). TPC provided logic may run in the context of the
Database Server (e.g. a stored SQL procedure). An example of a Database Server is:

e commercially available DBMS running on a

e commercially available Operating System running on a

e commercially available hardware system utilizing

e commercially available storage

Database Logic is TPC provided Frame implementation logic (e.g. stored SQL procedure)

Comment: VGenDriver Connector and VGenTxnHarness Connector implementations are allowed to
perform modifications to the format of the data provided to them if and only if: such modifications are
done to support differing characteristics of the underlying transport mechanisms. For example,
transporting the data from a big-endian machine to a little-endian machine or from an ASCII
environment to an EBCDIC environment will require changes in the data format.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 140 of 271

10.1.2 Driver & System Under Test (SUT) Definitions

The diagram of the functional components of the Test System can be leveraged to provide pictorial
definitions of the Driver, SUT, Tier A and Tier B.

C Driving and Reporting)
w) , — N T
) egend
-
E MEE..._ - m
® E VGenDriverME| VGenDriverDB
= Sy DM L 7PC Provided)
; CE y MEE , -
[Commercial Produc}
Q VGenDriver Connector)
TPC Defined
Mandatory Network L WEEED
Between Driver and Tier A VMs
/- (Virtual Machine Management Softwarta
Tier A VM1 Tier B VM2
VGenTxnHarness Connector DBMS
___________ [Database Logic)J
TPCX-V Logic and Frame Calls Tier B VM3
___________ - ier
C Frame Implementation) DBMS Group 1
L [Database Logic)
Q Database Interface)
(¢))] VGenTxnHarness Connector DBNIS
f’ _————— == = = = = [[Database Logic)J
- TPCX-V Logic and Frame Calls
P - ———— Tier B VM3 ~ | Group 2
3 L Frame Implementation) {L DBMS
Database Logic_
(Cn cC 4 (__ Database Interface) Database Logic)J
=
da Tier A VM1 Tier B VM2
2 VGenTxnHarness Connector DBMS
- | | === [Database Logic)J
(o) TPCX-V Logic and Frame Calls
D et 4 Tier B VM3 > | Group 3
-+ C Frame Implementation DBMS
L (Database Logic)
L Database Interface))
Tier A VM1 Tier B VM2 \
VGenTxnHarness Connector DBNIS
TPCX-V Logic and Frame Calls {[Database Logic
___________ - Tier B VM3 Group 4
C Frame Implementation) DBNS
Database Logic
Q Database Interface) L [i)

.

Figure 10.d - Defined Components of the Test Configuration

The clauses below define some terms used in this specification. A TPCx-V configuration has a single
instance of some components, e.g. the driver, and multiple of others, e.g., Tier B.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 141 of 271

10.1.2.1

10.1.2.2

10.1.2.3

10.1.2.4

10.1.2.5

10.1.2.6

10.1.2.7

10.1.2.8

10.1.2.9

10.1.2.10

10.1.3

10.1.3.1

The Driver — is defined to be all hardware and software needed to implement the Driving & Reporting,
VGenDriver and up-stream Connector functional components.

The use of a Network (as defined in Clause 10.1.1.3) between the Driver and Tier A is mandatory.

The use of commercially available Virtual Machine Management Software (VMMS) product (as
defined in Clause 10.1.1.3) is mandatory.

Virtual Machine (VM) is defined as: A Virtual Machine (VM) is a self-contained operating
environment, managed by the VMMS, and that behaves as if it were a separate computer (as defined in
Clause 10.1.1.3). TPCx-V requires that there shall be three VMs per Group: one Tier A VM and two
transactional specific Tier B VMs.

Tier A is defined as: Tier A consists of all hardware and software needed to implement the down-
stream Connector, VGenTxnHarness, Frame Implementation and Database Interface functional
components.

Tier B is defined as: Tier B consists of all hardware and software needed to implement the Database
Server functional components, encapsulated within two transaction-specific Virtual Machines,
contained within the same Group. This includes data storage media sufficient to satisfy the initial
database population requirements of Clause 2.4.1 and the Business Day growth requirements of Clause
5.6.6.4 and Clause 5.6.6.5.

Tile is defined as: Tile is the unit of replication of TPCx-V configuration and load distribution. Each
Tile consists of 4 Groups. A valid TPCx-V configuration has 1 or more Tiles, with all Tiles
contributing identical proportions of the total load. The number of Tiles and the number of Load Units
configured in the initial populations of the databases in each Group are dependent on the Nominal
Throughput, and are determined by a formula defined in Clause 4.3.4.

Group is defined as: Each Tile has four Groups, with Groups 1, 2, 3, and 4 contributing an average of
10%, 20%, 30%, and 40% of the total throughput of the Tile, respectively. Each Group consists of one
Tier A Virtual Machine and two transaction-specific Tier B Virtual Machines.

System Under Test is defined as: System Under Test (SUT) is the total collection of all hardware and
software components in all Tiles, to include their Tier A and Tier B Virtual Machines.

Measured Configuration - See System Under Test.
Further Requirements for SUT and Driver Implementations

Restrictions on the Driver

The purpose of this section is to limit the knowledge (or use of the knowledge by the Driver) of the SUT,
the contents of the databases and the transactions.

During the Test Run the TPC provided code to implement the Driver must not:

¢ make decisions based upon the contents of the databases (including VGenInputFiles)

e provide information to the SUT or any of the VMs that results in a performance advantage

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 142 of 271

The no-peeking-in-the-packet rule: Data predicated routing (based on the content of the packet) in VGenDriver

Connector or VGenTxnHarness Connector is not allowed. Data predicated routing (based on the Transaction
type of the packet only) in VGenTxnHarness Connector is allowed for Transaction routing of Trade-Lookup and
Trade-Update to VM2 and all other Transactions to VM3. No other packet data access usage is allowed in
VGenTxnHarness Connector.

The TPC provided code executed between VGenDriver (i.e. the following APIs: CESUTInterface,
MEESUTInterface, DMSUTInterface) and the mandatory Network may not make any decision related to routing,
timing, reordering or pacing of that Transaction or any other Transaction based on that Transaction’s type or
input values.

Comment: These restrictions include direct knowledge (e.g., obtained by peeking in the packet) or implied
knowledge (e.g., obtained by card counting, message size, etc.).

Any TPC provided code that sends a market request from the SUT to the Driver (i.e. SendToMarketInterface)
may not make any decisions related to routing, timing, reordering, or pacing of that request or any other request
based on that request’s input values.

Comment: These restrictions include direct knowledge or implied knowledge.

The TPCx-V model allows the Frame Implementation within Tier A to select VM2 or VM3 as the destination of a
transaction based on the transaction types described in Clause 5.3.1. Otherwise, if routing is done within a Frame

Implementation, a transaction monitor must perform the routing (see Clause 3.2.1.9). The Sponsor’s
implementation of SendToMarketFromFrame interface is not governed by this clause but the implementation still
must conform to Clause 0

10.2 Driver Implementation Architectures

The driver architecture has an impact on understanding and interpreting the benchmark execution rules.
Therefore, this section provides an overview of key architectural modules. These models are examples

only and do not represent an exhaustive list. For simplicity, the focus will be on the CE, but the same
principles apply to the MEE as well.

10.2.1 The Simple CE

In its simplest form, the CE has:

e Asingle thread of execution

e Asingle instance of the CCE class (i.e. a VGenDriverCE of size 1)

e Asingle blocking Network connection to the SUT

During the Test Run, the CE cycles through a process of calling from Sponsor provided code into
VGenDriverCE code to generate the next Transaction type and the necessary input data, calling from
the VGenDriverCE code into Sponsor provided code to record the Transaction’s start time, send the
input data to the SUT, wait for the Transaction to execute, receive in the output data from the SUT,

record the Transaction’s end time, and then finally return from the Sponsor code back through the
VGenDriverCE code back to the initial Sponsor code. The following diagram captures this pictorially.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 143 of 271

10.2.2

Commercial Product

Figure 10.e - The Simple CE

The Replicated CE

There are limits to the amount of throughput the Simple CE can generate. So replication of the Simple
CE is permitted. This allows multiple copies of the Simple CE to generate the necessary Nominal
Throughput for any size database. Since there will be multiple instances of the CCE class, this is
equivalent to a VGenDriverCE of size N (where N is the number of CCE instances).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 144 of 271

10.2.3

10.3

10.3.1

10.3.2

VGenDriverCE

N

Commercial Product

The mandatory use of VGenDriverCE’s auto-RNG seeding (see Clause 10.7.7.2) means that these will
not be exactly identical copies of the Simple CE. Each copy will start off at a different point in the RNG
stream. The following diagram shows the Replicated CE.

Figure 10.f The Replicated CE

Driver Reporting Requirements

The TPCx-V Express Benchmark Kit reports the number of VGenDriverMEE and VGenDriverCE
instances used in the benchmark in the Report.

Implementation Rules

The physical clustering of records within the database is allowed.

All TPCx-V required tables must have the properly scaled number of rows as defined by the database
population requirements in Clause 2.4.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 145 of 271

10.3.3

10.3.3.1

10.3.3.2

10.3.3.3

10.3.4

10.3.5

10.3.6

10.3.7

10.3.8

10.3.9

Table Partitioning

Horizontal partitioning of tables is allowed. Groups of rows from a table may be assigned to different
files, disks, or areas. If implemented, the details of such partitioning must be reported in the Report.

Vertical partitioning of tables is allowed. Groups of columns of one table may be assigned to files,
disks, or areas different from those storing the other columns of that table. If implemented, the details
of such partitioning must be reported in the Report (see Clause 10.5 for limitations).

Assignment of data to different files, disks, or areas, not based on knowledge of the logical structure of
the data (e.g., knowledge of row or column boundaries), is not considered partitioning. For example,
distribution or striping over multiple disks of a physical file which stores one or more logical tables is
not considered partitioning as long as this distribution is done by the hardware or software without
knowledge of the logical structure stored in the physical file.

Replication is allowed for all tables. All copies of TPCx-V tables that are replicated must meet all
requirements for atomicity, consistency, and isolation as defined in Clauses 6.2, 6.3 and 6.4. If

implemented, the details of such replication must be reported in the Report.

Comment: Only one copy of a replicated TPCx-V table needs to meet the Durability requirements defined
in Clause 6.5.

Columns may be added and/or duplicated from one TPCx-V table to another as long as these changes
do not improve performance.

Each TPCx-V column, as described by the table definitions in Clause 2.2, must be logically discrete and

independently accessible by the DBMS. For example, ADDRESS.AD_LINE1 and
ADDRESS.AD_LINE2 are not allowed to be implemented as two sub-parts of a single column
ADDRESS.AD_LINE.

Each TPCx-V column, as described by the table definitions in Clause 2.2, must be accessible by the

DBMS as a single column. For example, NEWS_ITEMS.NI_ITEM is not allowed to be implemented as
two separate columns NEWS_ITEMS.NI_ITEM1 and NEWS_ITEMS.NI_ITEM2.

The Primary Key of each table must not directly represent the physical disk addresses of the row or any

offsets thereof. The Application is not allowed to reference rows using relative addressing since they
are simply offsets from the beginning of the storage space. This does not preclude hashing schemes or
other file organizations that have provisions for adding, deleting, and modifying records in the
ordinary course of processing.

Comment 1: It is the intent of this clause that the Application Program (see Clause 1.2) executing the
transaction, or submitting the transaction request, not use physical identifiers, but logical identifiers for
all accesses, and contain no user written code which translates or aids in the translation of a logical key
to the location within the table of the associated row or rows. For example, it is not legitimate for the
Application to build a "translation table" of logical-to-physical addresses and use it to enhance
performance.

Comment 2: Internal record or row identifiers, for example, Tuple IDs or cursors, may be used under the
following condition. For each transaction executed, initial access to any row must be via the column(s)

specified in the transaction Profile and no other columns. Initial access includes insertion, deletion,
retrieval, and update of any row.

While inserts and deletes are not performed on all tables, the system must not be configured to take
special advantage of this fact during the test. Although inserts are inherently limited by the storage
space available on the configured system, there must be no restriction on inserting in any of the non-

Growing Tables a minimum number of rows equal to 5% of the table cardinality.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 146 of 271

10.3.10

10.3.11

10.3.11.1

10.4

10.4.1

10.4.2

10.4.3

Comment: It is required that the space for the additional 5% table cardinality (and corresponding growth
in associated User-Defined Objects, such as indices) be configured for the Test Run and priced (as Fixed
Space per Clause 5.6.6.2) accordingly. For systems where space is configured and dynamically allocated
at a later time, this space must be considered as allocated and included as Fixed Space when priced.

The implementation of the BLOB object must satisfy the following properties:

e Changes to the data in the object must be under the same transactional control as the changes to the
objects of any other type.

e Recovery after Catastrophic failure must be capable of restoring all objects, including BLOBs, to the
same point in time.

e The object, and any associated references to it, must be treated as a unit with respect to atomicity.

Comment: The implementation of BLOB in the NEWS_ITEM table may be implemented either by specific
inclusion of the BLOB in the table or by use of a reference to a BLOB object stored elsewhere on the

System Under Test.

User-Defined Objects

Any object defined in the database is considered a User-Defined Object, except for the following:
e aTPCx-V Table (see clause 2.2.3)

e arequired Primary Key (see clause 2.2.3.1)

e arequired Foreign Key (see clause 2.2.3.2)

e arequired constraint (see clause 2.2.3.3)

Database Metadata

There are no restrictions on User-Defined Objects, provided that:

¢ all Transaction and Frame implementation rules from clause 3.2 are met

¢ all ACID requirements in clause 7 are met

Integrity Rules

In any Committed state, the Primary Key values must be unique within each table. For example, in the

case of a horizontally partitioned table, Primary Key values of rows across all partitions must be
unique.

In any Committed state, no ill-formed rows may exist in the database. An ill-formed row occurs when
the value of any column cannot be determined. For example, in the case of a vertically partitioned
table, a row must exist in all the partitions.

Referential Integrity (RI) must be enforced by the database for all Foreign Key (FK) and Primary Key
(PK) relations defined between TPCx-V tables.

Comment: Referential Integrity preserves the relationship of data between tables, by restricting actions
performed on Primary Keys and Foreign Keys in a table. Referential Integrity prevents removing rows
containing Primary Keys that are referenced by Foreign Keys in other tables in the database without also
removing the rows with corresponding/referencing Foreign Keys. Referential Integrity also prevents
adding rows containing Foreign Keys that refer to Primary Keys whose rows are not already present in
the database. Referential Integrity does not allow modifications to Primary Key columns of rows that
are referenced by Foreign Keys in other tables in the database without also modifying the
corresponding / referencing Foreign Keys to be equal to the new Primary Key.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 147 of 271

10.5

10.5.1

10.5.2

10.5.3

10.6

10.6.1

10.6.1.1

Data Access Transparency Requirements

Data Access Transparency is the property of the system that removes from the Application Program any
knowledge of the location and access mechanisms of partitioned data. An implementation that uses
vertical and / or horizontal partitioning must meet the requirements for transparent data access described
here.

No finite series of tests can prove that the system supports complete data access transparency. The
requirements below describe the minimum capabilities needed to establish that the system provides
transparent data access.

Comment: The intent of this clause is to require that access to physically and/or logically partitioned data
be provided directly and transparently by services implemented by commercially available layers below

the Application Program such as the data/file manager (DBMS), the Operating System, the hardware,
or any combination of these.

Each of the tables described in Clause 2.2 (and any additional tables used in the implementation of the
Transactions) must be identifiable by names that have no relationship to the partitioning of tables. All
data manipulation operations in the Application Program (see Clause 1.2) must use only these names.

The system must prevent any data manipulation operation performed using the names described in
Clause 10.5.1 that would result in a violation of the integrity rules (see Clause 10.4). For example: the

system must prevent a non-TPCx-V application from committing the insertion of a row in a vertically
partitioned table unless all partitions of that row have been inserted.

Using the names which satisfy Clause 10.5.1, any arbitrary non-TPCx-V application must be able to
manipulate any set of rows or columns:

e Identifiable by any arbitrary condition supported by the underlying DBMS

e Using the names described in Clause 10.5.1 and using the same data manipulation semantics and
syntax for all tables.

For example, the semantics and syntax used to update an arbitrary set of rows in any one table must also
be usable when updating another arbitrary set of rows in any other table.

Comment: The intent is that the TPCx-V Application Program uses general-purpose mechanisms to
manipulate data in the database.

The Transactions

The Broker-Volume Transaction

The Broker-Volume Transaction is designed to emulate a brokerage house’s “up-to-the-minute” internal

business processing. An example of a Broker-Volume Transaction would be a manager generating a
report on the current performance potential of various brokers.

Broker-Volume is invoked by VGenDriverCE. It consists of a single Frame. The Transaction searches
the pending limit orders to find orders that are associated with a given list of brokers responsible for
stocks of a given sector. The value of each order is calculated based upon bid price and quantity of shares
and added to the running total volume for the appropriate broker. The list of brokers with their
associated total volume sorted in descending volume order is returned.

Broker-Volume Transaction Parameters

The inputs to the Broker-Volume Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Broker-Volume Interfaces Module/Data Structure

CE Input generation GenerateBrokerVolumelnput()

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 148 of 271

TBrokerVolumeTxnInput

Transaction Input/Output Structure TBrokerVolumeTxnOutput

TBrokerVolumeTxnInput

Frame 1 Input/Output Structure TBrokerVolumeFramelOutput

Broker-Volume Transaction Parameters:

Parameter Direction [Description

A list of twenty to forty distinct broker name strings as defined by B_NAME in
broker list[] [IN BROKER table. Names are randomly selected from the broker range, with uniform

- distribution. The list size is determined by the first null input name in the
broker_list array.

A randomly selected sector name string as defined in SC_NAME in SECTOR table

sector_name IN . . TR
using uniform distribution.

list_len ouT Number of items in the list being returned.

status ouT Code indicating the execution status for this transaction.

A list of numbers, sorted in descending order, representing the sum of all trade
request values (TR_QTY * TR_BID_PRICE) in the TRADE_REQUEST table for
stocks in a given sector grouped by broker names provided by broker_list. The list
size is determined by list_len parameter.

volume[] ouT

10.6.1.2 Broker-Volume Transaction Database Footprint

This Transaction is read-only and makes no changes to the database. The Broker-Volume Database
Footprint is as follows:

Broker-Volume Database Footprint

Frame
Table Column
1
BROKER B_NAME Return

TR_BID_PRICE |Reference
TRADE_REQUEST

TR_QTY Reference

Start

Transaction Control Commit

10.6.1.3 Broker Volume Transaction Frame 1 of 1
The database access methods used in Frame 1 are all Returns.

The VGenTxnHarness controls the execution of Frame 1 as follows:

{
invoke (Broker-Volume_Frame-1)
if (list_len < 0) or (list_len > max_broker_list_len) then
{
status = -111
}
}

Broker-Volume Frame 1 of 1 Parameters:

Parameter Direction [Description

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 149 of 271

A list of twenty to forty distinct broker name strings as
defined by B_NAME in BROKER table. Names are randomly
broker_list[] IN selected from the broker range, with, uniform distribution.
The list size is determined by the first null input name in the
broker_list array.

IN A randomly selected sector name string as defined in

sector_name SC_NAME in SECTOR table using uniform distribution.

A list of broker name strings sorted in descending order of
broker_name[] |OUT the “volume” associated with the broker. The list size is
determined by list_len parameter.

list_len ouT Number of items in the list being returned.

status ouT Code indicating the execution status for this Frame.

A list of numbers, sorted in descending order, representing
the sum of all trade request values (TR_QTY *

volume[] ouT TR_BID_PRICE) in the TRADE_REQUEST table for stocks in
a given sector grouped by broker names provided by
broker_list. The list size is determined by list_len parameter.

Broker-Volume_Frame-1 Pseudo-code: Broker Volume

start transaction

// Should return 0 to 40 rows

select

broker_name[] = B_NAME,

volume[] = sum(TR_QTY * TR_BID PRICE)
from

TRADE_REQUEST,
SECTOR,
INDUSTRY
COMPANY,
BROKER,
SECURITY
where
TR B ID = B_ID and
TR S SYMB = S_SYMB and
S_CO_ID = CO_ID and
CO_IN ID = IN ID and
SC_ID = IN SC_ID and
B_NAME in (broker_ list) and
SC_NAME = sector_name
group by
B_NAME
order by
2 DESC

// row_count will frequently be zero near the start of a Test Run when
// TRADE_REQUEST table is mostly empty.
list _len = row_count

commit transaction

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 150 of 271

10.6.2

10.6.2.1

Broker-Volume_ Frame-1 Pseudo-code: Broker Volume

The Customer-Position Transaction

The Customer-Position Transaction is designed to emulate the process of retrieving the customer’s
profile and summarizing their overall standing based on current market values for all assets. This is
representative of the work performed when a customer asks the question “What am I worth today?”

Customer-Position is invoked by VGenDriverCE. It consists of three Frames, (Frame 2 and 3 are
mutually exclusive). The customer is specified either by a customer ID or a customer tax ID. If the

customer ID passed into the Transaction is 0, then the customer tax ID is used to look up the customer
ID. Detailed information about the customer’s profile is retrieved. In addition, for each of the customer’s
accounts, the cash balance of the account and the total current market value of all holdings in the account
are returned.

If a history of trading activity has been requested, information is retrieved on the ten most recent trades
for a randomly chosen account among the customer’s accounts.

Customer-Position Transaction Parameters

The inputs to the Customer Position Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Customer-Position Interfaces Module/Data Structure

CE Input generation GenerateCustomerPositionInput()

TCustomerPositionTxnInput

Transaction Input/Output Structure TCustomerPosition TxnOutput

TCustomerPositionFramellnput

Frame 1 Input/Output Structure TCustomerPositionFramelOutput

TCustomerPositionFrame2Input

Frame 2 Input/Output Structure TCustomerPositionFrame2Output

Frame 3 Input/Output Structure TCustomerPositionFrame3Output

Customer-Position Transaction Parameters:

Parameter Direction |Description
Index to one of the customer’s accounts. This

acct_id_idx IN indexed account will be used in frame 2 if
get_history is TRUE.

cust_id IN Customer id or 0, selected by the driver.

. Selected by the driver to be 1 if Frame 2 is to be
get_history IN invoked or 0 if not.
tax_id IN gqstomer tax id or empty string selected by the
river.

acct_id[max_acct_len] ouT Array of customer account IDs.

acct_len OUT Number of customer accounts (max_acct_len (10) or
less)

asset_total[max_acct_len] ouT Array of asset totals for each customer account.

c_ad_id ouT Customer address identifier.

c_area_l ouT Area code for customer’s first phone number.

c_area_2 ouT Area code for customer’s second phone number.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 151 of 271

10.6.2.2

c_area_3 ouT Area code for customer’s third phone number.
c_ctry_1 ouT Country code for customer’s first phone number.
c_ctry_2 ouT Country code for customer’s second phone number.
c_ctry_3 ouT Country code for customer’s third phone number.
c_dob ouT Customer date of birth.

c_email_1 ouT Customer’s first email address.

c_email_2 ouT Customer’s second email address.

cext 1 OouT Customer’s extension for the first phone number.
c_ext 2 ouT Customer’s extension for the second phone number.
c_ext 3 ouT Customer’s extension for the third phone number.
c_f name ouT Customer first name.

c_gndr ouT Customer gender.

c_l_name ouT Customer last name.

c_local_1 OouT Customer’s first phone number.

c_local_2 OouT Customer’s second phone number.

c_local_3 ouT Customer’s third phone number.

c_m_name ouT Customer middle name.

c_st_id ouT Customer Status id.

c_tier ouT Customer tier.

cash_bal[max_acct_len] ouT Array of cash balances for each customer account.
hist_dts[max_hist_len] OUT Eizig rf}c])r each transaction date from the transaction
hist_len ouT Number of records from the transaction history
qty[max_hist_len] OUT lliggrb;r of shares involved in each event from
status oUT Sca)ggaicrliircl;.ating the execution status for this
symbol[max_hist_len] ouT Security involved in each event from history.
trade_id[max_hist_len] ouT Trade ID for each event from history.
trade_status[max_hist_len] ouT Trade Status for each event from history.

Customer-Position Transaction Database Footprint

The Customer-Position Database Footprint is as follows:

Customer-Position Database Footprint

Frame
Table Name Column
1 23 3*
C_AD_ID Return
C_AREA_1 Return
C_AREA_2 Return
CUSTOMER C_AREA_3 Return
C_CTRY_1 Return
C_CTRY_2 Return
C_CTRY_3 Return

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 152 of 271

10.6.2.3

C_DOB Return

C_EMAIL_1 Return

C_EMAIL_2 Return

C_EXT_1 Return

C_EXT_2 Return

C_EXT_3 Return

C_F_NAME Return

C_GNDR Return

C_L_NAME Return

C_LOCAL_1 Return

C_LOCAL_2 Return

C_LOCAL_3 Return

C_M_NAME Return

C_ST_ID Return

C_TIER Return

CA_BAL Return
CUSTOMER_ACCOUNT

CA_ID Return
HOLDING_SUMMARY HS_QTY Reference
LAST_TRADE LT_PRICE Reference
STATUS_TYPE ST_NAME Return
TRADE_HISTORY TH_DTS Return

T ID Return
TRADE T_QTY Return

T_S SYMB Return
Transaction Control Start Commit Commit

Customer-Position Transaction Frame 1 of 3

If the cust_id input parameter is set to 0, the Frame must use the tax_id input parameter to search the
The Frame retrieves the detailed customer

CUSTOMER table and find the ID of the customer.

information and finds the cash balance for each of the customer’s accounts as well as the total value of

the holdings in each account. In addition to the detailed customer information, the Frame returns a list
of accounts and their associated cash balance and asset value sorted by asset value.

The database access methods used in Frame 1 are Reference and Return.

The VGenTxnHarness controls the execution of Frame 1 as follows:

{

invoke (Customer-Position_Frame-1)

if (acct_len < 1) or (acct_len > max_acct_len) then

{
status = -211

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 153 of 271

Customer-Position Frame 1 of 3 Parameters:

Parameter Direction |[Description

cust_id IN/OUT Customer id or 0, selected by the driver.

tax_id IN Customer tax id or empty string selected by the driver.
acct_id[max_acct_len] ouT Array of customer account IDs.

acct_len ouT Number of customer accounts (max_acct_len (10) or less).
asset_total[max_acct_len] |OUT Array of asset totals for each customer account.
c_ad_id ouT Customer address identifier.

c_area_l OouT Area code for customer’s first phone number.
c_area_2 OouT Area code for customer’s second phone number.
c_area_3 ouT Area code for customer’s third phone number.
c_ctry_1 ouT Country code for customer’s first phone number.
c_ctry_2 ouT Country code for customer’s second phone number.
c_ctry_3 ouT Country code for customer’s third phone number.
c_dob ouT Customer date of birth.

c_email_1 ouT Customer’s first email address.

c_email_2 OouT Customer’s second email address.

c_ext 1 OouT Customer’s extension for the first phone number.
c_ext 2 OouT Customer’s extension for the second phone number.
c_ext 3 OouT Customer’s extension for the third phone number.
c_f name ouT Customer first name.

c_gndr ouT Customer gender.

c_l_name ouT Customer last name.

c_local_1 OouT Customer’s first phone number.

c_local_2 OouT Customer’s second phone number.

c_local_3 ouT Customer’s third phone number.

c_m_name ouT Customer middle name.

c_st_id ouT Customer Status id.

c_tier ouT Customer tier.

cash_bal[max_acct_len] ouT Array of cash balances for each customer account.
status ouT Code indicating the execution status for this Frame.

Customer-Position_Frame-1 Pseudo-code: Get the customer's total assets

{
start transaction
if (cust_id == null_cust_id) then {
select

cust_id = C_ID
from
CUSTOMER

where

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 154 of 271

Customer-Position_Frame-1 Pseudo-code: Get the customer's total assets

C_TAX ID = tax_id

}

select
c_st_id = C_ST ID,
c_1l name = C_L_NAME,
c_f name = C_F_NAME,
c_m name = C_M NAME,
c_gndr = C_GNDR,
c_tier = C_TIER,
c_dob = C_DOB,
c_ad_id = C_AD ID,
c ctry 1 = C_CTRY 1,
c_area_ 1 = C_AREA 1,
c_local_1 = C_LOCAL_1,
c_ext 1 = C_EXT_1,
c_ctry 2 = C_CTRY_2,
c_area 2 = C_AREA 2,
c_local_2 = C_LOCAL_2,
c_ext 2 = C_EXT_2,
c_ctry 3 = C_CTRY_3,
c_area 3 = C_AREA 3,
c_local_ 3 = C_LOCAL_3,
c_ext_3 = C_EXT_3,
c_email 1 = C_EMAIL 1,
c_email 2 = C_EMAIL 2

from
CUSTOMER

where

C_ID = cust_id

// should return 1 to max_acct_len (10).

select first max_acct_len rows

acct_id[] = CA_ID,

cash_bal[] = CA_BAL,

assets_total[] = ifnull((sum(HS_QTY * LT PRICE)),0)
from

CUSTOMER_ACCOUNT left outer join
HOLDING_SUMMARY on HS_CA_ID = CA_ID,
LAST TRADE

where
CA C_ID = cust_id and
LT _S_SYMB = HS_S_SYMB

group by
CA _ID, CA BAL

order by

3 asc

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 155 of 271

10.6.2.4

Customer-Position_Frame-1 Pseudo-code: Get the customer's total assets

acct_len = row_count

Customer-Position Transaction Frame 2 of 3

This Frame is only executed if the Transaction parameter get_history value is set to TRUE. Using the

customer account ID the Frame must search the TRADE and TRADE_HISTORY tables to find up to 30
history rows that correspond with the 10 most recent trades executed by the customer account. For each

event the Frame must return the T_ID, T_S SYMB, T_QTY, TH_DTS, and ST_NAME for all events in a
descending order of date found in TH_DTS. This Frame completes the work and commits the

Transaction

The database access methods used in Frame 2 are all Returns.

The VGenTxnHarness controls the execution of Frame 2 as follows:

{
if (get_history == 1) then
{
frame2.acct_id = framel.acct_id[acct_id_idx]
invoke (Customer-Position_Frame-2)
if (hist_len < 10) or (hist_len > max_hist_len) then
{
status = -221
}
exit
}
}
Customer-Position Frame 2 of 3 Parameters:
Parameter Direction Description
acct_id IN Customer account identifier
hist_dts[max_hist_len] ouT Date for each transaction date from the transaction history
hist_len OUT ﬁ:ﬁiﬁ;ﬁ{eﬁi}ﬁs hff;)r;b .the transaction history, at most
qty[max_hist_len] ouT Number of shares involved in each event from history
status ouT Code indicating the execution status for this Frame.
symbol[max_hist_len] ouT Security involved in each event from history.
trade_id[max_hist_len] ouT Trade ID for each event from history.
trade_status[max_hist_len] [OUT Trade Status for each event from history.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 156 of 271

Customer-Position_Frame-2 Pseudo-code: Get the customer's trade history

// Should return 10 to 30 rows.
select first 30 rows
trade_id[] = T ID,
symbol[] = T_S_SYMB,
atyl] = T_QTY,
trade_status[] = ST_NAME,
hist dts[] = TH DTS
from
(select first 10 rows
T ID as ID
from
TRADE
where
T CA_ID = acct_id
order by T DTS desc) as T,
TRADE,
TRADE_HISTORY,
STATUS_TYPE
where
T _ID = ID and
TH T ID = T _ID and
ST ID = TH_ST ID
order by
TH_DTS desc

hist_len = row_count

commit transaction

10.6.2.5 Customer-Position Transaction Frame 3 of 3

This Frame is only executed if get_history Transaction input parameter is set to FALSE. The Frame
simply Commits the Transaction started in Frame 1 and returns the status.

There are no database access methods used in Frame 3. This Frame is only using Transaction control
operations.

The VGenTxnHarness controls the execution of Frame 3 as follows:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 157 of 271

if (get_history != 1)

{
invoke (Customer-Position_Frame-3)
}
}
Customer-Position Frame 3 of 3 Parameters:
Parameter Direction Description
status ouT Frame Status.

Customer-Position_Frame-3: End database transaction

commit transaction

10.6.3 The Market-Feed Transaction

The Market-Feed Transaction is designed to emulate the process of tracking the current market activity.
This is representative of the brokerage house processing the “ticker-tape” from the market exchange.

Market-Feed is invoked by VGenDriverMEE. It consists of a single Frame. The Transaction receives the
latest trade activity information (symbol, price, quantity, etc.) from the market exchange. As a result of
processing the ticker feed, the prices for securities will increase or decrease. These changes in price may
trigger pending limit orders.

Each Market-Feed ticker consists of 20 entries (max_feed_len constant in TxnHarnessStructs.h). These
entries are generated by the MEE to simulate the reporting of trades from other brokerage houses. The
Market-Feed Transaction is allowed to process any number of ticker elements (from one to all) per
Database Transaction.

10.6.3.1 Market-Feed Transaction Parameters

The inputs to the Market-Feed Transaction are generated by the VGenDriverMEE code in MEE.cpp. The
data structures defined in TxnHarnessStructs.h must be used to communicate the input and output

parameters.
Market-Feed Interfaces Module/Data Structure
MEE Input generation CMEESUTInterface::MarketFeed()
. TMarketFeed TxnInput
Transaction Input/Output Structure TMarketFeed TxnOutput

TMarketFeedFramellnput

Frame 1 Input/Output Structure TMarketFeedFramelOutput

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 158 of 271

10.6.3.2

10.6.3.3

Market-Feed Transaction Parameters:

Parameter

Direction

Description

price_quote[]

IN

A list of numeric prices the Market Exchange Emulator generated for each
entry on the ticker list. Each security’s price fluctuates between a low and high
price, the fluctuation has a predefined frequency.

symbol][|

IN

A list of strings containing the Security Symbol for each security on the ticker.
The security symbol string follows the definition of LT_S_SYMB in the
LAST_TRADE table. The ticker was generated by the Market Exchange
Emulator.

trade_qty[]

IN

A list of numbers representing the number of shares of a security that were
traded for this ticker entry. The trade_qty is the same as the trade_qty
requested in the Trade Request.

status

ouT

Code indicating the execution status for this transaction.

Market-Feed Transaction Database Footprint

The Market-Feed Database Footprint is as follows:

Market-Feed Database Footprint
Frame
Table Name Column
1
LT _DTS Modify
LAST TRADE LT_PRICE Modify
Reference
LT_VOL Modify
Start
Transaction Control Cc?fnmit

Market-Feed Transaction Frame 1 of 1

Using the entries in the ticker list, the Frame is responsible for:

¢ modifying the rows in the LAST_TRADE table with the new prices, the new daily volumes and
the new last trade dates

e identifying any pending limit orders that should be triggered by these ticker prices, processing

them, and submitting them to the MEE

The database access methods used in Frame 1 are Modify and Reference.

The VGenTxnHarness controls the execution of Frame 1 as follows:

{

invoke (Market-Feed_Frame-1)

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 159 of 271

Market-Feed Frame 1 of 1 Parameters:

Parameter Direction |Description

A list of numeric prices the Market Exchange Emulator generated for
price_quote[] IN each entry on the ticker list. Each security’s price fluctuates between a
low and high price, the fluctuation has a predefined frequency.

A list of strings containing the Security Symbol for each security on the
ticker. The security symbol string follows the definition of LT_S_SYMB
in the LAST_TRADE table. The ticker was generated by the Market
Exchange Emulator.

symbol][| IN

A list of numbers representing the number of shares of a security that
trade_qty][] IN were traded for this ticker entry. The trade_qty is the same as the
trade_qty requested in the Trade Request.

status ouT Code indicating the execution status for this Frame.

Market-Feed_Frame-1 Pseudo-code: Record the stock price and update the volume
and datetime for securities contained in the ticker feed.

{
declare now_dts DATETIME
declare rows_updated int
get_current_dts(now_dts)
rows_updated = 0
start transaction
update
LAST TRADE
set
LT PRICE = price_gquote[],
LT _VOL = LT VOL + trade_gty[],
LT_DTS = now_dts
where
LT S SYMB = symbol[i]
rows_updated = row_count
commit transaction
if (rows_updated != max feed len) then
{
status = -311
}
}

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 160 of 271

10.6.4

10.6.4.1

The Market-Watch Transaction

The Market-Watch Transaction is designed to emulate the process of monitoring the overall performance
of the market by allowing a customer to track the current daily trend (up or down) of a collection of
securities. The collection of securities being monitored may be based upon a customer’s current holdings,
a customer’s watch list of prospective securities, or a particular industry.

Market-Watch is invoked by VGenDriverCE. It consists of a single Frame. This Transaction calculates
the percentage change in value of the market capitalization of a collection of securities at a chosen day’s
closing prices compared to the current market prices. The chosen day is non-uniformly selected from the
1305 days of market data that was loaded during initial population of the database. The calculation is
done by looking at the chosen day’s closing price for each security in the list and multiplying that by the
number of outstanding shares for that security. This product is added to a running total for the chosen
day’s closing market capitalization. In addition, the current price for each security in the list is multiplied
by the number of outstanding shares for that security. This product is added to a running sum for the
current market capitalization. The difference between the total market capitalization for the chosen day's
closing and the current total, expressed as a percentage, is returned.

The Transaction supports this market watch calculation on a group of securities chosen based on the
following list of criteria:

e Prospective-Watch - The collection of securities is chosen using all the securities in a customer’s
watch list.

e Industry-Watch - The collection of securities is chosen using all the securities in an industry
belonging to companies within a specified range. The industry name is chosen at random from the
possible industry names using a uniform distribution.

e Portfolio-Watch - The collection of securities is chosen using all the securities that are held in a
customer’s account. The rules for determining the range of available customers are described in
clause 10.6.1.1. The customer account identifier is chosen at random from all the possible accounts
for that customer using a uniform distribution.

Market-Watch Transaction Parameters

The inputs to the Market-Watch Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp. The data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Market-Watch Interfaces Module/Data Structure

CE Input generation GenerateMarketWatchInput()

TMarketWatchTxnInput

Transaction Input/Output Structure TMarketWatchTxnOutput

TMarketWatchFramelInput

Frame 1 Input/Output Structure TMarketWatchFramelOutput

Market-Watch Transaction Parameters:

Parameter Direction |Description

A single customer is chosen non-uniformly by customer tier, from the
range of available customers. A single customer account id, as defined by
CA_ID in CUSTOMER_ACCOUNT, is chosen at random, uniformly,
acct_id IN from the range of customer account ids for the chosen customer. This
input will be used 35% of the time. The securities collection will be all the
securities held this customer account. The other 65% of the time when
this input is not being used its value will be 0.

A number randomly selected from the possible customer identifiers as
defined by C_ID in CUSTOMER table using a non-uniform by customer
cust_id IN tier distribution. This input will be used 60% of the time. The securities
collection will be all the securities in this customer’s watch list. The other
40% of the time when this input is not being used its value will be 0.

i) Company identifier of the last company in the range of 5,000 companies
ending_co_id IN to be searched for companies in IN_NAME industry. The value will be
starting_co_id +4,999. This input will only be used when industry_name

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 161 of 271

10.6.4.2

10.6.4.3

is used which is 5% of the time. The other 95% of the time when this
input is not being used its value will be zero.

A randomly selected industry name string as defined in IN_NAME in
INDUSTRY table using uniform distribution. This input will be used 5%
industry_name |IN of the time. The securities collection will be all the securities of companies
in this industry. The other 95% of the time when this input is not being
used its value will be an empty string.

A date non-uniformly selected from the 1305 days in the
start_date IN DAILY_MARKET table. The closing price of securities on this date is
used in the market capitalization calculations.

A number randomly selected from the range of possible company
identifiers minus 4,999. Company identifier of the first company in the
range of 5,000 companies to be searched for companies in IN_NAME
industry. This input will only be used when industry_name is used
which is 5% of the time. The other 95% of the time when this input is not
being used its value will be zero.

starting_co_id IN

Numeric value calculated during the transaction by finding the
percentage change from chosen day’s close of business capitalization for

pet_change ouT the collection of securities and the current capitalization for the collection
of securities.
status ouT Code indicating the execution status for this transaction.

Market-Watch Transaction Database Footprint
The Market-Watch Database Footprint is as follows:

Market-Watch Database Footprint

Frame
Table Column
1
CO_ID Reference*
COMPANY
CO_IN_ID Reference*
DAILY_MARKET DM_CLOSE Reference

HOLDING_SUMMARY HS_S_SYMB Reference®

IN_ID Reference*
INDUSTRY

IN_NAME Reference*
LAST_TRADE LT_PRICE Reference

S CO_ID Reference*
SECURITY S NUM_OUT [Reference

S SYMB Reference*
WATCH_ITEM WIS SYMB Reference*

WL_C_ID Reference*
WATCH_LIST

WL_ID Reference*

Start

Transaction Control Commit

Market-Watch Transaction Frame 1 of 1
The database access methods used in Frame 1 are all References.

The VGenTxnHarness controls the execution of Frame 1 as follows:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 162 of 271

if (acct_id != 0) or (cust_id != 0) or (industry_name != “”) then

{

invoke (Market-Watch_Frame-1)

else

status

}

= -411

Market-Watch Frame 1 of 1 Parameters:

Parameter

Direction

Description

acct_id

IN

A single customer is chosen non-uniformly by customer tier, from the
range of available customers. A single customer account id, as defined by
CA_ID in CUSTOMER_ACCOUNT, is chosen at random, uniformly,
from the range of customer account ids for the chosen customer. This
input will be used 35% of the time. The securities collection will be all the
securities held this customer account. The other 65% of the time when
this input is not being used its value will be 0.

cust_id

IN

A number randomly selected from the possible customer identifiers as
defined by C_ID in CUSTOMER table using a non-uniform by customer
tier distribution. This input will be used 60% of the time. The securities
collection will be all the securities in this customer’s watch list. The other
40% of the time when this input is not being used its value will be 0.

ending_co_id

IN

Company identifier of the last company in the range of 5,000 companies
to be searched for companies in IN_NAME industry. The value will be
starting_co_id + 4,999. This input will only be used when industry_name
is used which is 5% of the time. The other 95% of the time when this
input is not being used its value will be zero.

industry_name

IN

A randomly selected industry name string as defined in IN_NAME in
INDUSTRY table using uniform distribution. This input will be used 5%
of the time. The securities collection will be all the securities of companies
in this industry. The other 95% of the time when this input is not being
used its value will be an empty string.

start_date

IN

A date non-uniformly selected from the 1305 days in the
DAILY_MARKET table. The closing price of securities on this date is
used in the market capitalization calculations.

starting_co_id

IN

A number randomly selected from the range of possible company
identifiers minus 4,999. Company identifier of the first company in the
range of 5,000 companies to be searched for companies in IN_NAME
industry. This input will only be used when industry_name is used
which is 5% of the time. The other 95% of the time when this input is not
being used its value will be zero.

pct_change

ouT

Numeric value calculated during the transaction by finding the
percentage change from chosen day’s close of business capitalization for
the collection of securities and the current capitalization for the collection
of securities.

status

ouT

Code indicating the execution status of this Frame.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 163 of 271

Market-Watch_Frame-1 Pseudo-code: Build list of securities and compute
percentage

start transaction
if (cust_id != 0) then {

declare stock_list cursor for

select
WI_S_SYMB
from
WATCH_ITEM,
WATCH_LIST
where

WI_WL ID = WL_ID and
WL_C_ID = cust_id
} else if (industry name != "") then {
declare stock_list cursor for
select
S_SYMB
from
INDUSTRY,
COMPANY,
SECURITY
where
IN_NAME = industry_name and
CO_IN ID = IN ID and
CO_ID between (starting co_id and ending_co_id) and
S_CO_ID = CO_ID
} else if (acct_id != 0) then {
declare stock_list cursor for
select
HS_S_SYMB
from
HOLDING_SUMMARY
where
HS_CA_ID = acct_id
}
old _mkt_cap

0.0

new_mkt _cap = 0.0
pct_change = 0.0
open stock_list
do until (stock list.end of cursor) {
fetch from
stock_list cursor
into

symbol

select

new_price = LT PRICE

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 164 of 271

10.6.5

Market-Watch_Frame-1 Pseudo-code: Build list of securities and compute
percentage

from
LAST TRADE
where

LT _S_SYMB = symbol

select

s_num_out = S_NUM OUT
from

SECURITY
where

S_SYMB = symbol

// Closing price for this security on the chosen day.
select
old price = DM_CLOSE
from
DAILY MARKET
where
DM_S_SYMB = symbol and
DM DATE = start_date

old mkt _cap += s_num out * old price

new _mkt cap += s_num_out * new_price
if (old _mkt cap != 0) then

// value of 0.00 for pct change is valid
pct_change = 100 * (new mkt cap / old mkt cap - 1)
}
else
{
// no rows found, this can happen rarely when an account has no holdings

pct_change = 0.0

}
close stock_list

commit transaction

The Security-Detail Transaction

The Security-Detail Transaction is designed to emulate the process of accessing detailed information on
a particular security. This is representative of a customer doing research on a security prior to making a
decision about whether or not to execute a trade.

Security-Detail is invoked by VGenDriverCE. It consists of a single Frame. For a given security, the

Transaction will return detailed security and company information, a list of the company’s competitors,
current and historical financial data, and recent news items about the company.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 165 of 271

10.6.5.1 Security-Detail Transaction Parameters

The inputs to the Security-Detail Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Security-Detail Interfaces Module/Data Structure

CE Input generation GenerateSecurityDetaillnput()

TSecurityDetail TxnInput

Transaction Input/Output Structure TSecurityDetail TxnOutput

TSecurityDetailFramellnput

Frame 1 Input/Qutput Structure TSecurityDetailFramelOutput

Security-Detail Transaction Parameters:

Parameter Direction [Description

If 1, access the complete news articles for the company. If 0, access just the

access_lob_flag IN news headlines and summaries.

An integer value, randomly selected between 5 and 20 with a uniform
max_rows_to_return |IN distribution. This value determines how many rows must be returned
from the DAILY_MARKET table for this security.

A date randomly selected from a uniform distribution of dates between 3
January 2000 and max_rows_to_return days before 1 January 2005. The
DAILY_MARKET table contains data for the period 3 January 2000 to 31

start_day IN December 2004. The transaction will return max_rows_to_return worth of
rows from the DAILY_MARKET table for this security beginning with the
row for start_day.

symbol IN Security symbol, randomly selected from a uniform distribution.

last_vol ouT Volume of last trade

news_len ouT Number of news items returned in news array.

status ouT Code indicating the execution status for this transaction.

10.6.5.2 Security-Detail Transaction Database Footprint

The Security-Detail Database Footprint is as follows:

Security-Detail Database Footprint
Frame
Table Column
1

AD_CTRY Return

AD_LINE1 Return
ADDRESS

AD_LINE2 Return

AD_ZC_CODE Return

CO_CEO Return

CO_DESC Return

CO_NAME Return
COMPANY

CO_OPEN_DATE Return

CO_SP_RATE Return

CO_ST_ID Return

CP_CO_ID Reference
COMPANY_COMPETITOR

CP_COMP_CO_ID Reference

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 166 of 271

CP_IN_ID Reference

DM_CLOSE Return
DM_DATE Return
DAILY_MARKET DM_HIGH Return
DM_LOW Return
DM_VOL Return
EX_CLOSE Return
EX_DESC Return
EXCHANGE EX_NAME Return
EX_NUM_SYMB Return
EX_OPEN Return
FI_ASSETS Return
FI_BASIC_EPS Return
FI_DILUT_EPS Return
FI_INVENTORY Return
FI_LIABILITY Return
FI_MARGIN Return
FINANCIAL FI_NET_EARN Return
FI_OUT_BASIC Return
FI_OUT_DILUT Return
FI_QTR Return

FI_QTR_START_DATE Return

FI_REVENUE Return
FI_YEAR Return
INDUSTRY IN_NAME Return
LT_OPEN_PRICE Return
LAST_TRADE LT_PRICE Return
LT _VOL Return
NI_AUTHOR Return
NI_DTS Return
NI_HEADLINE Return*
NEWS_ITEM
NI_ITEM Return*®
NI_SOURCE Return
NI_SUMMARY Return*
NX_CO_ID Reference
NEWS_XREF
NX_NIL_ID Reference
S_52_WK_HIGH Return
S_52_WK_HIGH_DATE ([Return
S_52_WK_LOW Return
SECURITY S_52_ WK_LOW_DATE Return
S_DIVIDEND Return
S_ NAME Return
S_NUM_OUT Return

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 167 of 271

S PE Return
S_START_DATE Return
S_YIELD Return
ZC_DIV Return
ZIP_CODE
ZC_TOWN Return
. Start
Transaction Control Commit

10.6.5.3 Security Detail Transaction Frame 1 of 1
The database access methods used in Frame 1 are Returns and References.

The VGenTxnHarness controls the execution of Frame 1 as follows:

{
invoke (Security-Detail_Frame-1)
if (day_len < min_day_len) or (day_len > max_day_len) then
{
status = -511
}
else if (fin_len != max_fin_len) then
{
status = -512
}
else if (news_len != max news_len) then
{
status = -513
}
}
Security-Detail Frame 1 of 1 Parameters:
Parameter Direction [Description
access_lob_flag IN If 1, access the complete news articles for the company. If 0, access just
the news headlines and summaries.
An integer value, randomly selected between 5
(iSecurityDetailMinRows) and 20 (iSecurityDetailMaxRows) with a
max_rows_to_return IN X . X .
uniform distribution. This value determines how many rows must be
returned from the DAILY_MARKET table for this security.
A date randomly selected from a uniform distribution of dates between
3 January 2000 and max_rows_to_return before 31 December 2004. The
start da IN DAILY_MARKET table contains data for the period 3 January 2000 to 31
-day December 2004. The transaction will return max_rows_to_return worth
of rows from the DAILY_MARKET table for this security beginning
with the row for start_day.
symbol IN Security symbol, randomly selected from a uniform distribution.
52_wk_high ouT Number showing 52 week high value for the security.
52_wk_high_date ouT Date showing when the 52_wk_high happened.
52_wk_low ouT Number showing 52 week low value for the security.
52_wk_low_date ouT Date showing when 52_wk_low happened.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 168 of 271

ceo_name OouT CEO name, based on a list of distinct first and last names.
co_ad_ctry ouT Company country, USA or Canada
co_ad_div ouT Company county or state or province
co_ad_linel ouT Line 1 from a real company address
co_ad_line2 ouT Line 2 from a real company address
co_ad_town ouT Company town
co_ad_zip OUT %011)11%3?; ZIP or postal code. Contains partly realistic US or Canadian
co_desc ouT Short description of the company. Readable English text.
co_name OouT Company name
co_st_id ouT Contains the value ‘ST1’
Array of strings containing the company names of competitors for this
cp_co_name[max_comp_len] [(OUT securities’ company. VGen loads the COMPANY_COMPETITOR table
with 3 competitors for each company, so max_comp_len is 3.
Array of strings containing the name of the industries in which
cp_in_namefmax_comp_len] [OUT [E5EEARY SOOI TR able with 3 competiors fo each com
| petitors for each company,
so max_comp_len is 3.
day[max_day_len] OUT é)rég? of numbers containing daily data. max_day_len is a constant set
day_len ouT Elements in the Day array
divid ouT Number containing security dividend
ex_ad_ctry ouT Exchange country
ex_ad_div ouT Exchange county or town or province
ex_ad_linel ouT Line 1 from real exchange address
ex_ad_line2 ouT Line 2 from real exchange address
ex_ad_town ouT Exchange town
ex_ad_zip ouT Exchange ZIP code
ex_close ouT Time the exchange closes, 2 possible values.
ex_date ouT Date listed on exchange. Not earlier than Start_date
ex_desc ouT Description of the exchange
ex_name ouT Name of the exchange. 4 values
ex_num_symb OouT Number of securities traded
ex_open OouT Time the exchange opens
fin[max_fin_len] OUT iﬁriﬁz \c;fG r;in;ggs with financial data. max_fin_len (20) is a constant set
fin_len ouT Length of the array
last_open ouT Price of security at last exchange open
last_price ouT Price for security
last_vol ouT Volume of last trade
news[max_news_len] OUT ?Orrrlzg; g{ :;vrrsl i&fgm\; élgrciléz) 21}15 security’s company. max_new_len (2) is a
news_len ouT Number of news items returned in news array.
num_out ouT Number of outstanding shares. Valid range is 4,000,000 to 9,500,000,000.
open_date ouT Date the company opened. Valid range is 01/01/1800 to build date

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 169 of 271

pe_ratio ouT Price/earning ratio. A random value between 1.00 and 120.00
s_name OouT Security name, 6850 distinct values

sp_rate ouT Standards & Poor rating for the company, one of 39 values.
start_date ouT Date of trade started. Range id between 01/01/1900 and build date.
status ouT Code indicating the execution status for this Frame.

yield ouT Number containing yield for the security

Security-Detail_Frame-1 Pseudo-code: Get all details about the security

co_ad_linel
co_ad_line2
co_ad_town
co_ad_div
co_ad_zip
co_ad_ctry
num_out
start_date
exch_date
pe_ratio
52_wk_high
52_wk_high date
52_wk_low
52_wk_low_date
divid
yield
ex_ad_div
ex_ad_ctry
ex_ad_linel
ex_ad_line2
ex_ad_town
ex_ad_zip
ex close

ex desc

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 170 of 271

{

Declare co_id IDENT T

start transaction

select
S_name = S_NAME,
co_id = CO_ID,
Co_name = CO_NAME,
sp_rate = CO_SP_RATE
ceo_name = CO_CEO,
co_desc = CO_DESC,
open_date = CO_OPEN_DATE,
co_st_id = CO_ST ID,

CA.AD_LINEL,
CA.AD_LINE2,
ZCA.ZC_TOWN,
ZCA.ZC_DIV,
CA.AD_ZC_CODE,
CA.AD_CTRY,
S_NUM_OUT,
S_START DATE,
S_EXCH_DATE,
S_PE,
S_52WK_HIGH,

S 52WK_HIGH DATE,
S_52WK_LOW,
S_52WK_LOW_DATE,
S_DIVIDEND,
S_YIELD,
ZEA.ZC DIV,
EA.AD_CTRY
EA.AD_LINEL,
EA.AD_LINE2,
ZEA.ZC_TOWN,
EA.AD_ZC_CODE,
EX_CLOSE,
EX_DESC,

Security-Detail_Frame-1 Pseudo-code: Get all details about the security

ex_name = EX_NAME,

ex_num_symb = EX NUM SYMB,

ex_open = EX_OPEN
from

SECURITY,

COMPANY,

ADDRESS CA,
ADDRESS EA,
ZIP_CODE ZCA,
ZIP_CODE ZEA,
EXCHANGE

where
S_SYMB = symbol and
CO_ID = S_CO_ID and
CA.AD ID = CO_AD ID and
EA.AD ID = EX AD ID and
EX_ID = S_EX ID and
ca.ad_zc_code = zca.zc_code and

ea.ad_zc_code =zea.zc_code

// Should return max_comp_len (3) rows

select first max comp_len rows

cp_co_name[] = CO_NAME,
cp_in name[] = IN_NAME
from

COMPANY_COMPETITOR, COMPANY, INDUSTRY
where

CP_CO_ID = co_id and

CO _ID = CP_COMP_CO_ID and

IN ID = CP_IN ID

// Should return max_fin len (20) rows

select first max fin_len rows

fin[].year = FI_YEAR,
fin[].qtr = FI_QTR,
fin[].strart_date = FI_QTR START_ DATE,
fin[].rev = FI_REVENUE,
fin[].net_earn = FI_NET_EARN,
fin[].basic_eps = FI_BASIC_EPS,
fin[].dilut_eps = FI_DILUT EPS,
fin[].margin = FI_MARGIN,
fin[].invent = FI_INVENTORY,
fin[].assets = FI_ASSETS,
fin[].liab = FI_LIABILITY,
fin[].out_basic = FI_OUT_BASIC,
fin[].out_dilut = FI_OUT_ DILUT
from

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 171 of 271

Security-Detail_Frame-1 Pseudo-code: Get all details about the security

FINANCIAL
where
FI_CO_ID = co_id
order by
FI_YEAR asc,
FI_QTR

fin len = row_count

// Should return max_rows_to_return rows
// max_rows_to_return is between 5 and 20
select first max rows_to_return rows
day[].date = DM DATE,
day[].close = DM_CLOSE,

day[].high = DM_HIGH,

day[].low = DM_LOW,

day[].vol = DM_VOL
from

DAILY_ MARKET
where
DM_S_SYMB = symbol and
DM DATE >= start_day
order by
DM_DATE asc

day_len = row_count

select

last_price = LT_PRICE,

last_open = LT OPEN_PRICE,
last_vol = LT _VOL

from
LAST TRADE

where

LT _S_SYMB = symbol

// Should return max_news_len (2) rows
if (access_lob_flag)

select first max news_len rows

news[].item = NI_ITEM,
news|[].dts = NI_DTS,
news|[].src = NI_SOURCE,
news|[].auth = NI_AUTHOR,
news[].headline = “~,
news|[].summary = “”"

from

NEWS_XREF,

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 172 of 271

10.6.6

Security-Detail_Frame-1 Pseudo-code: Get all details about the security

NEWS_ITEM
where
NI ID = NX NI ID and
NX CO_ID = co_id
else

select first max_news_len rows

.headline = NI_HEADLINE,

news[].item = unr,
news|[].dts = NI_DTS,
news|[].src = NI_SOURCE,
news|[].auth = NI_AUTHOR,
[1
[1

.summary = NI_SUMMARY

NEWS_XREF,
NEWS_ITEM
where
NI ID = NX NI ID and
NX CO_ID = co_id

news_len = row_count

commit transaction

The Trade-Lookup Transaction

The Trade-Lookup Transaction is designed to emulate information retrieval by either a customer or a
broker to satisfy their questions regarding a set of trades. The various sets of trades are chosen such that
the work is representative of:

e performing general market analysis
e reviewing trades for a period of time prior to the most recent account statement
e analyzing past performance of a particular security

e analyzing the history of a particular customer holding

Trade-Lookup is invoked by VGenDriverCE. It consists of four mutually exclusive Frames. Each Frame
employs a different technique for looking up historical trade data.

Frame 1 accepts a list of trade IDs. Information for each of the trades in the list is returned.

Frame 2 accepts a customer account ID, a start timestamp, end timestamp and a number of trades (N) as
inputs. It returns information for the first N trades for the specified customer account between the start
and end timestamps (inclusive).

Frame 3 accepts a security symbol, a start timestamp, end timestamp and a number of trades (N) as
inputs. It returns information for the first N trades for the given security between the start and end
timestamps (inclusive).

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 173 of 271

Frame 4 accepts a customer account ID and a timestamp as inputs. The first trade for this customer
account at or after the specified timestamp is identified. Then a maximum of 20 historical holding changes
for this trade ID are returned. The historical holding changes report on changes made by this trade to
holdings created by prior trades, and report on changes made by subsequent trades to any holding
created by this trade.

10.6.6.1 Trade-Lookup Transaction Parameters

The inputs to the Trade-Lookup Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp. The data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Trade-Lookup Interfaces Module/Data Structure

CE Input generation GenerateTradeLookupInput()
Transaction Input/Output TTradeLookupTxnInput
Structure TTradeLookupTxnOutput

TTradeLookupFramellnput

Frame 1 Input/Output Structure TTradeLookupFramelOutput

TTradeLookupFrame2Input

Frame 2 Input/Output Structure TTradeLookupFrame20utput

TTradeLookupFrame3Input

Frame 3 Input/Output Structure TTradeLookupFrame3Output

TTradeLookupFrame4Input

Frame 4 Input/Output Structure TTradeLookupFramedOutput

Trade-Lookup Transaction Parameters:

Parameter Direction |Description
. Customer account ID. Used when frame_to_execute is 2 or 4, otherwise set to
acct_id IN 0
For Frames 1 and 4, this parameter is ignored, so it is set to an empty date.
end trade dits IN Used in Frame 2 as the end point in time for identifying a particular trade.
B - Used in Frame 3 as the end point in time for identifying trades for a particular
symbol.
frame_to_execute IN Identifies which of the mutually exclusive frames to execute.
. Used in Frame 3 to identify the maximum customer account ID, otherwise set
max_acct_id IN

to 0.

Used in Frames 1, 2 and 3 for the number of trades to find otherwise set to 0.
max_trades IN The default value for max_trades for each frame is set in the
TTradeLookupSettings structure in DriverParameterSettings.h

For Frame 1, this parameter is ignored, so it is set to an empty date.

Used in Frame 2 as the point in time for identifying a particular trade.
Non-uniform over pre-populated interval.

start trade dts IN Used in Frame 3 as the point in time for identifying trades for a particular
- - symbol.

Uniform over pre-populated interval.

Used in Frame 4 as the point in time for identifying a particular trade.
Uniform over pre-populated interval.

Used in Frame 3 as the security symbol for which to find trades. Uniformly
symbol IN chosen over all securities. For the other frames symbol is set to the empty
string.

Array of non-uniform randomly chosen trade IDs used by Frame 1 to identify
trade_id[] IN a set of particular trades. For the other frames array elements are set to 0. For
Frame 1, max_trades indicates how many elements are to be used in the array.

frame_executed ouT Confirmation of which frame was executed.
is_cash[| ouT Indicates whether the trades used in Frame 1, 2 or 3 were cash transactions.
is_market][] ouT Indicates whether the trades used in Frame 1 were market order trades.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 174 of 271

10.6.6.2

10.6.6.3

Number of trade rows found for frames 1, 2, 3, or number of holding history

num_found ouT rows found for frame 4.
status ouT Code indicating the execution status for this transaction.
trade_list][| ouT List of trade IDs found in Frames 2 and 3.

Trade-Lookup Transaction Database Footprint

The Trade-Lookup Database Footprint is as follows:

Trade-Lookup Database Footprint
Frame
Table Column
1* 2% 3% 4%

CT_AMT Return* |Return*® Return*®
CASH_TRANSACTION CT_DTS Return* [Return® Return®

CT_NAME Return* |Return*® Return*®
HOLDING_HISTORY Row(s) Return®

SE_AMT Return Return Return
SETTLEMENT SE_CASH_DUE_DATE |Return Return Return

SE_CASH_TYPE Return Return Return

T_BID_PRICE Return Return

T_CA_ID Return

T_DTS Reference |Return Reference

T_EXEC_NAME Return Return Return

T_ID Return Return Return
TRADE

T_IS_CASH Return Return Return

T_QTY Return

T_S SYMB Reference

T_TRADE_PRICE Return Return Return

T_TT_ID Return

TH_DTS Return Return Return
TRADE_HISTORY

TH_ST_ID Return Return Return
TRADE_TYPE TT_IS_MRKT Return

. Start Start Start Start Start

Transaction Control Commit Commit |Commit Commit Commit

Trade-Lookup Transaction Frame 1 of 4

The first Frame is responsible for retrieving information about the specified array of trade IDs.

The VGenTxnHarness controls the execution of Frame 1 as follows:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 175 of 271

if(frame_to_execute == 1)

{

invoke (Trade-Lookup_ Frame-1)

if (num_found != max_trades) then

{

status = -611

}

frame_executed

}
[...]

1

Trade-Lookup Frame 1 of 4 Parameters:

Parameter Direction |Description
Number of valid array elements in trade_id[]. The default value (20) is
max_trades IN set in TTradeLookupSettings.MaxRowsFramel in
DriverParameterSettings.h.
trade_id[] IN gl;; jlrartae}zi otfr ;fiaecl.e IDs picked non-uniformly over the set of pre-
bid_price]] OuT The requested unit price.
cash_transaction_amount|] ouT Amount of the cash transaction.
cash_transaction_dts]] ouT Date and time stamp of when the transaction took place.
cash_transaction_name[] ouT Description of the cash transaction.
exec_name| | ouT Name of the person who executed the trade.
is_cash[| ouT Flag that is non-zero for a cash trade, zero for a margin trade.
is_market][] ouT Flag that is non-zero for a market trade, zero for a limit trade.
num_found OouT Number of trade rows returned; should be the same as max_trades.
settlement_amount]|] ouT Cash amount of settlement.
settlement_cash_due_date] | ouT Date by which customer or brokerage must receive the cash.
settlement_cash_type][| ouT Type of cash settlement involved: cash or margin.
status ouT Code indicating the execution status for this frame.
trade_history_dts|][3] ouT Array of timestamps of when the trade history was updated.
trade_history_status_id[][3] |OUT Array of status type identifiers.
trade_price]] OuT Unit price at which the security was traded.

Trade-Lookup_Frame-1 Pseudo-code:
the trade_id array

Get trade information for each trade ID in

declare i int

start transaction

num_found = 0

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 176 of 271

Trade-Lookup_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array

for (i = 0; i++; i < max_trades) do {
// Get trade information
// Should only return one row for each trade
select

bid price[i] = T _BID PRICE,

exec_name[i] T_EXEC_NAME,

is_cash[i] = T_IS_CASH,

is_market[i] TT_IS_MRKT,
trade price[i] = T TRADE_PRICE
from
TRADE,
TRADE_TYPE
where
T _ID = trade id[i] and
T TT ID = TT ID

num_found = num_found + row_count

// Get settlement information

// Should only return one row for each trade

select
settlement amount[i] = SE_AMT,
settlement_cash_due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_type[i] SE_CASH_TYPE
from

SETTLEMENT
where

SE_T_ID = trade_id[i]

// get cash information if this is a cash transaction
// Should only return one row for each trade that was a cash transaction

if (is_cash[i]) then {

select
cash_transaction_amount[i] = CT_AMT,
cash_transaction_dts[i] = CT_DTS,
cash_transaction name[i] = CT_NAME

from
CASH_TRANSACTION
where

CT T ID = trade id[i]

// read trade_history for the trades

// Should return 2 to 3 rows per trade

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 177 of 271

Trade-Lookup_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array

select first 3 rows

trade_history dts[i][] TH_DTS,

trade_history status_id[i][] TH_ST_1ID

from
TRADE_HISTORY
where
TH T ID = trade id[i]
order by
TH_DTS
} // end for loop

commit transaction

10.6.6.4 Trade-Lookup Transaction Frame 2 of 4

The second Frame returns information for the first N trades executed for the specified customer account
between a specified start time and end time. If the specified start time is too close to the specified end
time, then it is possible that fewer than N trades may be returned.

The VGenTxnHarness controls the execution of Frame 2 as follows:
[.--]
else if(frame_to_execute == 2)

{

invoke (Trade-Lookup_Frame-2)

if (num_found < 0) or (num_found > max_trades) then

{
status = -621
}
else if (num_found == 0) then
{
// Can happen rarely in large databases when an account has no trades
// in the last 4 days
status = +621
}

frame_executed = 2

}
[...]

Trade-Lookup Frame 2 of 4 Parameters:

Parameter Direction Description
acct id IN A single customer is chosen non-uniformly by customer tier, from
- the range of available customers. A single customer account id, as

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 178 of 271

defined by CA_ID in CUSTOMER_ACCOUNT, is chosen at
random, uniformly, from the range of customer account ids for the
chosen customer.

end_trade_dts IN Point in time at which to stop searching for N trades.
Maximum number of trades to return. The default value (20) is set

max_trades IN in TTradeLookupSettings.MaxRowsFrame2 in
DriverParameterSettings.h.

start_trade_dts IN Point in time from which to search for N trades.

bid_price]] OuT The requested unit price.

cash_transaction_amount|] ouT Amount of the cash transaction.

cash_transaction_dts]] ouT Date and time stamp of when the transaction took place.

cash_transaction_name[] ouT Description of the cash transaction.

exec_name| | ouT Name of the person who executed the trade.

is_cash[| ouT Flag that is non-zero for a cash trade, zero for a margin trade.

num_found ouT Number of trade rows returned (may be less than max_trades).

settlement_amount]|] ouT Cash amount of settlement.

settlement_cash_due_date] | ouT Date by which customer or brokerage must receive the cash.

settlement_cash_type][| ouT Type of cash settlement involved: cash or margin.

status ouT Code indicating the execution status for this frame.

trade_history_dts[][3] ouT Array of timestamps of when the trade history was updated.

trade_history_status_id[][3] OuT Array of status type identifiers.

trade_list[] ouT Trade ID actually used for retrieving data.

trade_price]] OuT Unit price at which the security was traded.

Trade-Lookup_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time.

declare i int

start transaction

// Get trade information
// Should return between 0 and max_trades rows

select first max_trades rows

bid price[] = T BID PRICE,
exec_name [] = T _EXEC_ NAME,
is _cash[] = T IS CASH,
trade list[] =T ID,
trade price[] = T TRADE PRICE
from
TRADE
where

T CA ID = acct_id and
T DTS >= start trade dts and
T DTS <= end trade dts

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 179 of 271

Trade-Lookup_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time.

order by
T DTS asc

num_found = row_count

// Get extra information for each trade in the trade list.
for (i = 0; i < num_found; i++) {
// Get settlement information

// Should return only one row for each trade

select
settlement amount[i] = SE_AMT,
settlement_cash due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_ type[i] SE_CASH_TYPE
from

SETTLEMENT
where

SE_T_ID = trade_list[i]

// get cash information if this is a cash transaction
// Should return only one row for each trade that was a cash transaction

if (is_cash[i]) then {

select
cash_transaction_amount[i] = CT_AMT,
cash_transaction_dts[i] = CT_DTS
cash_transaction name[i] = CT_NAME

from
CASH_TRANSACTION
where

CT T ID = trade list[i]

// read trade_history for the trades
// Should return 2 to 3 rows per trade

select first 3 rows

trade history dts[i][] = TH_DTS,
trade_history_status_id[i][] = TH_ST ID
from

TRADE_HISTORY
where

TH T ID = trade list[i]
order by

TH_DTS

} // end for loop

commit transaction

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 180 of 271

Trade-Lookup_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time.

10.6.6.5 Trade-Lookup Transaction Frame 3 of 4

The third Frame returns information for the first N trades for a given security between a specified start
time and end time. If the specified start time is too close to the specified end time, then it is possible that
fewer than N trades may be returned.

The VGenTxnHarness controls the execution of Frame 3 as follows:

[...]

else if(frame_to_execute == 3)

{

invoke (Trade-Lookup_Frame-3)

if (num_found < 0) or (num_found > max_trades) then

{
status = -631
}
else if (num_found == 0) then
{
// Can happen rarely in large databases
status = +631
}
frame_executed = 3
}
}
Trade-Lookup Frame 3 of 4 Parameters:
Parameter Direction Description
end_trade_dts IN Point in time at which to end the search.
max_acct_id IN Maximum customer account ID.

Maximum number of trades to find. The default value (20) is set in
max_trades IN TTradeLookupSettings.MaxRowsFrame3 in
DriverParameterSettings.h.

start_trade_dts IN Point in time from which to start search.

symbol IN Security for which to find trades.

acct_id[] ouT Array of accounts for which the trades were done.
cash_transaction_amount[] |OUT Amount of the cash transaction.

cash_transaction_dts]] ouT Date and time stamp of when the transaction took place.
cash_transaction_name[] ouT Description of the cash transaction.

exec_name] | ouT Array of name of the person who executed each of the trades.
is_cash[| ouT Flag that is non-zero for a cash trade, zero for a margin trade.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 181 of 271

num_found OouT Number of TRADE rows returned.

price[] ouT Array of the price that was paid in each trade.

quantity]] ouT Array of the quantity of security bought in each trade.
settlement_amount]|] ouT Cash amount of settlement.

settlement_cash_due_date[] |[OUT Date by which the customer or brokerage must receive the cash.
settlement_cash_type][| ouT Type of cash settlement involved: cash or margin.

status ouT Code indicating the execution status for this frame.
trade_dts] | ouT Array of the timestamps for when the trade was requested.
trade_history_dts][][3] ouT Array of timestamps of when the trade history was updated.
trade_history_status_id[][3] |OUT Array of status type identifiers.

trade_list[] ouT Array of T_IDs found.

trade_type[| ouT Array of the trade type for each trade.

Trade-Lookup_Frame-3 Pseudo-code: Get a list of N trades executed for a
certain security starting from a given point in time.

declare i int

start transaction

// Should return between 0 and max_trades rows.

select first max_trades rows

acct_id[] = T CA_ID,
exec_name[] = T_EXEC_NAME,
is_cash[] = T_IS_CASH,
pricel] = T TRADE PRICE,
quantity[] = T _QTY,
trade_dts[] = T_DTS,
trade_list[] = T _ID,
trade_type[] = T_TT_ID
from
TRADE
where

T_S_SYMB = symbol and
T_DTS >= start_trade_dts and
T_DTS <= end_trade_dts
// The max acct_id “where” clause is a hook used for engineering purposes
// only and is not required for benchmark publication purposes.
// T_CA_ID <= max_acct_id
order by
T_DTS asc

num_found = row_count

// Get extra information for each trade in the trade list.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 182 of 271

Trade-Lookup_Frame-3 Pseudo-code: Get a list of N trades executed for a
certain security starting from a given point in time.

for (i = 0; i < num_found; i++) {
// Get settlement information

// Should return only one row for each trade

select
settlement amount[i] = SE_AMT,
settlement_cash due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_ type[i] SE_CASH_TYPE
from

SETTLEMENT
where

SE_T_ID = trade_list[i]

// get cash information if this is a cash transaction
// Should return only one row for each trade that was a cash transaction

if (is_cash[i]) then {

select
cash_transaction_amount[i] = CT_AMT,
cash_transaction_dts[i] = CT_DTS
cash_transaction name[i] = CT_NAME

from
CASH_TRANSACTION
where

CT T ID = trade list[i]

// read trade_history for the trades
// Should return 2 to 3 rows per trade
select first 3 rows

trade history dts[i][] = TH_DTS,

trade_history_status_id[i][] TH_ST_ID
from
TRADE_HISTORY
where
TH T ID = trade list[i]
order by
TH_DTS asc

} // end for loop

commit transaction

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 183 of 271

10.6.6.6

Trade-Lookup Transaction Frame 4 of 4

The fourth Frame identifies the first trade for the specified customer account on or after the specified
time. Up to the first 20 rows in the HOLDING_HISTORY with a matching trade ID are then returned. If
the specified time is too close to the end of the historical trade data, it is possible that no matching trade
may be found for the specified customer account.

The VGenTxnHarness controls the execution of Frame 4 as follows:
[...]
else if(frame_to_execute == 4)
{
invoke (Trade-Lookup_Frame-4)

if (num_trades_found <> 1) then

{
status = -641
}
if (num_found == 0) then
{
status = +643
}

if (num_found < 0) or (num_found > 20) then

status = -642

frame_executed = 4

}
[...]

Trade-Lookup Frame 4 of 4 Parameters:

Parameter Direction Description

A single customer is chosen non-uniformly by customer tier, from
the range of available customers. A single customer account id, as
acct_id IN defined by CA_ID in CUSTOMER_ACCOUNT, is chosen at
random, uniformly, from the range of customer account ids for the
chosen customer.

start_trade_dts IN Point in time from which to search for a trade.

Array of trade identifiers of the trades that originally created each of

holding_history_id[20] ouT the returned holding rows.

Array of trade identifiers of the trades that modified each of the

holding_history_trade_id[20] ouT returned holding rows.

num_found ouT Number of HOLDING_HISTORY rows returned (may be zero).

num_trades_found OouT Number of TRADE rows found.

Array of quantities of the security that was held after the holding

quantity_after[20] ouT was modified.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 184 of 271

Array of quantities of the security that was held before the holding

quantity_before[20] ouT was modified.
status ouT Code indicating the execution status for this frame.

ID of first trade found for customer account at or after the specified
trade_id ouT time. This is the ID that is used for the look up in

HOLDING_HISTORY.

Trade-Lookup_Frame-4 Pseudo-code: Return HOLDING_HISTORY information for a

particular trade ID.

start transaction

select first 1 row
trade_id = T _ID
from
TRADE
where
T CA_ID = acct_id and
T_DTS >= start_trade_dts
order by
T_DTS asc

if (row_count == 0) then
{
status = +641

}

// The trade_id is used in the subquery to find the original trade_id

// (HH_H T ID), which then is used to list all the entries.

// Should return 0 to (capped)

select first 20 rows

holding history id[]

holding history trade_ id[] =

quantity before]]
quantity after[]
from
HOLDING_HISTORY
where
HH H T ID in
(select
HH H T ID
from
HOLDING_HISTORY

where

HH_ T _ID = trade_id)

num_found = row_count

20 rows.

HH H T_ID,
HH_T ID,
HH_BEFORE_QTY,
HH_AFTER_QTY

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 185 of 271

10.6.7

10.6.7.1

Trade-Lookup_Frame-4 Pseudo-code: Return HOLDING_HISTORY information for a
particular trade ID.

commit transaction

The Trade-Order Transaction

The Trade Order Transaction is designed to emulate the process of buying or selling a security by a
Customer, Broker, or authorized third-party. If the person executing the trade order is not the account

owner, the Transaction will verify that the person has the appropriate authorization to perform the trade
order. The Transaction allows the person trading to execute buys at the current market price, sells at the

current market price, or limit buys and sells at a requested price. The Transaction also provides an
estimate of the financial impact of the proposed trade by providing profit/loss data, tax implications,
and anticipated commission fees. This allows the trader to evaluate the desirability of the proposed
security trade before either submitting or canceling the trade.

The Trade-Order Transaction is invoked by VGenDriverCE. It consists of six Frames. The Transaction

starts by using the account ID passed into the Transaction to obtain information on the customer, the
customer’s account, and the broker for the account.

Next, the Transaction conditionally validates that the person executing the trade is authorized to perform
such actions on the specified account. If the executor is not authorized, then the Transaction rolls back.
However, during the benchmark execution, the CE will always generate authorized executors.

The next step is to estimate the overall financial implications of executing the trade. For limit-orders, the
requested price is used in the estimation; for market orders, the requested price is set to the current
market value of the security and that value is used in the estimation. Estimation includes assessing any
effects the requested trade would have on existing holdings (e.g. the sale of existing long positions, or
the cover of existing short positions). If a profit would be realized as a result of this trade, the capital
gains taxes are calculated. Administrative fees and the broker’s commission for handling the trade are
calculated. If the trade is being submitted on margin, the customer’s total assets for the account are
assessed. All the above information is used for recording the order.

After all the above processing has completed, a small percentage of the Trade-Order Transactions are
selected to emulate either the canceling the order or an error condition by rolling back all modifications.

All other Trade-Order Transactions are Committed. After a successfully Committed market order, the
VGenTxnHarness sends the order for the trade to the appropriate MEE.

Trade-Order Transaction Parameters

The inputs to the Trade-Order Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp. The data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Trade-Order Interfaces Module/Data Structure
CE Input generation GenerateTradeOrderInput()
TTradeOrderTxnInput

Transaction Input/Output Structure TTradeOrderTxnOutput

TTradeOrderFramellnput

Frame 1 Input/Output Structure TTradeOrderFramelOutput

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 186 of 271

Frame 2 Input/Output Structure

TTradeOrderFrame2Input
TTradeOrderFrame2Output

Frame 3 Input/Output Structure

TTradeOrderFrame3Input
TTradeOrderFrame3Output

Frame 4 Input/Output Structure

TTradeOrderFrame4Input
TTradeOrderFrame4Output

Frame 5 Input/Output Structure

TTradeOrderFrame50utput

Frame 6 Input/Output Structure

TTradeOrderFrame6Output

Trade-Order Transaction Parameters:

Parameter

Direction

Description

acct_id

IN

A single customer is chosen non-uniformly by customer tier, from the range of
available customers. A single customer account id, as defined by CA_ID in
CUSTOMER_ACCOUNT, is chosen at random, uniformly, from the range of
customer account ids for the chosen customer.

co_name

IN

The security being traded in this transaction can be specified in one of two ways.
Either by specifying the security’s symbol, or by specifying the company name and
the issue. If the symbol is used to specify the security, then the company name and
the issue are an empty string (i.e. “”). Otherwise the company name and the issue
are both specified and the symbol is an empty string (i.e. “”). For more information,
see Clause 5.4.1.

exec_f_name

IN

First name of the person executing the trade. Note that the person executing this
trade, may not be the registered owner of the account. If this is the case, the
executor’s permission to execute trades for this account will be verified in Frame 2.
For more information, see Clause 5.4.1.

exec_l_name

IN

Last name of the person executing the trade. Note that the person executing this
trade, may not be the registered owner of the account. If this is the case, the
executor’s permission to execute trades for this account will be verified in Frame 2.
For more information, see Clause 5.4.1.

exec_tax_id

IN

Tax identifier for the person executing the trade. Note that the person executing this
trade, may not be the registered owner of the account. If this is the case, the
executor’s permission to execute trades for this account will be verified in Frame 2.
For more information, see Clause 5.4.1.

is_lifo

IN

If this flag is set to 1 then this trade will process against existing holdings from
newest to oldest (LIFO order). If this flag is set to 0, then this trade will process
against existing holdings from oldest to newest (FIFO order).

issue

IN

The security being traded in this transaction can be specified in one of two ways.
Either by specifying the security’s symbol, or by specifying the company name and
the issue. If the symbol is used to specify the security, then the company name and
the issue are an empty string (i.e. “”). Otherwise the company name and the issue
are both specified and the symbol is an empty string (i.e. “”). For more information,
see Clause 5.4.1.

requested_price

IN

For a limit order, this is the requested price for triggering the trade. For a market
order, the input value is undefined and this variable is set to the current market
price for the given security inside Frame 3.

roll_it_back

IN

If this flag is 1 then an intentional rollback (Frame 5) is executed. If 0, then a commit
(Frame 6) is executed. See Clause 5.4.1 for details on the percentage of trades that
will be intentionally rolled back.

st_pending_id

IN

Identifier for the “Pending” order status — passed in for ease of benchmarking.

st_submitted_id

IN

Identifier for the “Submitted” order status — passed in for ease of benchmarking.

symbol

IN

The security being traded in this transaction can be specified in one of two ways.
Either by specifying the security’s symbol, or by specifying the company name and
the issue. If the symbol is used to specify the security, then the company name and
the issue are an empty string (i.e. “”). Otherwise the company name and the issue
are both specified and the symbol is an empty string (i.e. “”). For more information,
see Clause 5.4.1.

trade_qty

IN

The number of shares to be traded for this order.

trade_type_id

IN

Identifier indicating the type of trade - passed in for each of benchmarking. For more
information on the different types of trades generated, see Clause 5.4.1.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 187 of 271

tvpe is marein |[IN If this flag is set to 1, then the order will be done on margin. If the flag is set to 0,
ype_ls_marg then this trade will be done with cash.
b The total dollar amount for the securities bought for a matching sell order. If trade
uy_value ouT . - R
is a buy or sell of new securities then buy_value is zero.
The total dollar value of the securities sold for a matching buy order. If trade is buy
sell_value ouT e .
or sell of new securities then sell_value is zero.
status ouT Code indicating the execution status for this transaction.
The estimated amount of tax that will be incurred as a result of this order. If no
tax_amount ouT - . .
profit is realized, then tax_amount is zero.
trade_id ouT Unique trade identifier generated by the SUT for this order.

10.6.7.2 Trade-Order Transaction Database Footprint
This Transaction includes a mixture of Add, Reference, and Return access methods. The Trade-Order
Database Footprint is as follows:
Trade-Order Database Footprint
Frame
Table Column
1 D& 3 5* 6*
AP_ACL Return
AP_CA_ID Reference
ACCOUNT_PERMISSION |(AP_F_NAME Reference
AP_L_NAME Reference
AP_TAX_ID Reference
BROKER B_NAME Return
CHARGE CH_CHRG Return
COMMISSION_RATE CR_RATE Return
CO_ID Reference*
COMPANY
CO_NAME Return*®
C_F_NAME Return
C_L_NAME Return
CUSTOMER
C_TIER Return
C_TAX_ID Return
CA_BAL Reference*
CA_B_ID Return
CUSTOMER_ACCOUNT CA_C_ID Return
CA_NAME Return
CA_TAX_ST Return
CUSTOMER_TAXRATE CX_TX_ID Reference*
H_PRICE Reference
HOLDING
H_QTY Reference
HOLDING_SUMMARY HS_QTY Reference
LAST_TRADE LT_PRICE Return
S CO_ID Reference*
SECURITY S EX_ID Reference
S_ NAME Return

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 188 of 271

S SYMB Return*®
TAXRATE TX_RATE Reference*
TRADE 1 Row Add
TRADE_HISTORY 1 Row Add
TRADE_REQUEST 1 Row Add*

TT_IS_MRKT Return
TRADE_TYPE

TT_IS_SELL Return

Transaction Control Start Rollback*® Rollback |Commit

10.6.7.3 Trade-Order Transaction Frame 1 of 6

The first Frame is responsible for retrieving information about the customer, customer account, and its
broker.

The VGenTxnHarness controls the execution of Frame 1 as follows:

{
invoke (Trade-Order_Frame-1)
if (num_found <> 1) then
{
status = -711
}
}
Trade-Order Frame 1 of 6 Parameters:
Parameter Direction Description
acct_id IN Identifier of the customer account involved in the transaction.
acct_name ouT Name of the account specified by acct_id.
broker_id ouT Identifier of the broker associated with the specified acct_id.
broker_name OouT Name of the broker associated with the specified acct_id.
cust_f name OUT Eifsttrrﬁgo?fttaljlﬁ f:asi;iorgevrv }‘;\;?eosc;,v;;sj the specified account. This output string
cust_id ouT Unique identifier of the customer who owns the specified account.
cust_1_name oUT Last name of the customer who owns the specified account. This output string
must not contain trailing white space.
cust_tier ouT The brokerage house service level tier this customer belongs to.
num_found OouT Number of CUSTOMER_ACCOUNT rows found.
status ouT Code indicating the execution status for this frame.
tax_id OUT Tax identifier for the customer who owns the specified account. This output
string must not contain trailing white space.
tax_status ouT Tax status of the customer who owns the specified account.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 189 of 271

10.6.7.4

Trade-Order_Frame-1 Pseudo-code: Get customer, customer account, and broker
information

{
start transation
// Get account, customer, and broker information
select
acct_name = CA NAME,
broker id = CA_B_ID,
cust_id = CA_C_ID,
tax_status = CA_TAX_ ST
from
CUSTOMER_ACCOUNT
where
CA_ID = acct_id
if (row_count == 0) then
{
status = -711
}
select
cust_f name = C_F_NAME,
cust_1 name = C_L_NAME,
cust_tier = C_TIER,
tax_id = C_TAX ID
from
CUSTOMER
where
C_ID = cust_id
select
broker name = B_NAME
from
BROKER
where
B_ID = broker_id
}

Trade-Order Transaction Frame 2 of 6

The second Frame is conditionally executed when the Transaction executor’s first name, last name, and
tax id do not match the customer first name, customer last name, and customer tax id returned in Frame

1. Frame 2 is responsible for validating the executor’s permission to order trades for the specified
customer account.

The database access methods used in Frame 2 are all References.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 190 of 271

if (exec_l_name != cust_l_name or
exec_f_name != cust_f name or

exec_tax_id != tax_id) then

{
invoke (Trade-Order_Frame-2)
if (ap_acl[0] == ‘\0’) then
{
status = -721;
}
}
}
Trade-Order Frame 2 of 6 Parameters:
Parameter Direction Description
acct_id IN Identifier of the customer account involved in the transaction.
exec_f_name IN First name of the person executing the trade.
exec_l_name IN Last name of the person executing the trade.
exec_tax_id IN Tax identifier for the person executing the trade.

Account permission access control list string for this executor on this customer
ap_acl ouT account. If a NULL string is returned, then the executor of this transaction does
not have permission to execute trades for the specified account.

status ouT Code indicating the execution status for this frame.

Trade-Order_Frame-2 Pseudo-code : Check executor's permission

{
select
ap_acl = AP_ACL
from
ACCOUNT_PERMISSION
where
AP_CA ID = acct_id and
AP_F_NAME = exec_f name and
AP_L_NAME = exec_l name and
AP_TAX ID = exec_tax id
if (ap_acl is NULL) then
{
rollback
status = -721
}
}

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 191 of 271

10.6.7.5

Trade-Order Transaction Frame 3 of 6

The third Frame is responsible for estimating the overall impact of executing the requested trade. Profit
and loss estimates are calculated and capital gains taxes are estimated based on any profits.
Administrative fees and commission rates are obtained. If this is a margin trade, the customer’s assets

needed to cover the cost of the trade are calculated using current market values.

The database access methods used in Frame 3 are References and Returns.

The VGenTxnHarness controls the execution of Frame 3 as follows:

{
invoke (Trade-Order_Frame-3)
if ((sell_value > buy_value) and
((tax_status == 1) or (tax_status == 2)) and
(tax_amount == 0.00)) then
{
status = -731
}
else if (comm_rate <= 0.0000) then
{
status = -732
}
else if (charge_amount <= 0.00) then
{
status = -733
}
}
Trade-Order Frame 3 of 6 Parameters:
Parameter Direction Description
acct_id IN Identifier of the customer account involved in the transaction.
cust_id IN Unique identifier of the customer who owns the specified account.
cust_tier IN The brokerage house service level tier this customer belongs to.
If this flag is set to 1 then this trade will process against existing holdings
is_lifo IN from newest to oldest (LIFO order). If this flag is set to 0, then this trade will
process against existing holdings from oldest to newest (FIFO order).
. Specifies the particular issue of security for the given company. This value is
issue IN . S wany ; L e
an empty string (i.e. “”) if the security is specified by symbol.
R Identifier for the “Pending” order status — passed in for ease of
st_pending_id IN benchmarking. & P
st_submitted_id IN Identifier for the “Submitted” order status — passed in for ease of
benchmarking.
tax_status IN Tax status of the customer who owns the specified account.
trade_qty IN The number of shares to be traded for this order.
trade_type_id IN Identifier indicating the type of trade - passed in for ease of benchmarking.
. . If this flag is set to 1, then the order will be done on margin. If the flag is set
type_is_margin IN

to 0, then this trade will be done with cash.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 192 of 271

Name of the company for the security being traded. Otherwise, if the trade
~ is being done based on symbol, then co_name is an empty string (i.e. “”) and
co_name IN-OUT will be set appropriately inside the frame. This output string must not
contain trailing white space.

For a limit order, this is the requested price for triggering the trade. For a
requested_price IN-OUT market order, the input value is undefined and this variable must be set to

the current market price for the given security.

The stock symbol for the security being traded. Otherwise, if the trade is

being done based on co_name and issue, then symbol is an empty string (i.e.
symbol IN-OUT “) and will be set appropriately inside the frame. This output string must

not contain trailing white space.

b The total dollar amount for the securities bought for a matching sell order.
uy_value ouT . o :

If trade is a buy or sell of new securities then buy_value is zero.
charge_amount ouT The fee charged by the brokerage house for processing this trade.
comm_rate ouT The broker’s commission rate for processing this trade.

If this trade is being done on margin, this will be set to the sum of the cash
cust_assets ouT balance and the current market value of all holdings in the specified

account.
market_price ouT The current market trading price of the security.
s_name OUT The full name of the security. This output string must not contain trailing

white space.

The total dollar value of the securities sold for a matching buy order. If
sell_value ouT . T .

trade is buy or sell of new securities then sell_value is zero.
status ouT Code indicating the execution status for this frame.

. Identifier indicating the status of this order (either pending or submitted).
status_id ouT . . . e .

This output string must not contain trailing white space.

The estimated amount of tax that will be incurred as a result of this order. If
tax_amount OouT - . .

no profit is realized, then tax_amount is zero.
type_is_market ouT Flag set to 1 for market orders and to 0 for limit orders.
type_is_sell ouT Flag set to 1 for sell orders and to 0 for buy orders.

Trade-Order_ Frame-3 Pseudo-code: Estimate overall effects of the trade

Declare co_id

IDENT T

Declare exch_id CHAR(6)

// Get information on the security

if

(symbol == *“m)

select

then {

co_id = CO_ID

from
COMPANY
where

CO_NAME =

select
exch_id =
S_name =

symbol =

co_name

S_EX_ID,
S_NAME,
S_SYMB

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 193 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

from
SECURITY

where

S CO_ID
S ISSUE =

} else {
select
co_id =
exch_id =

S_name =

co_id and

issue

S _Co_1Dp,
S_EX_ID,
S_NAME

from
SECURITY
where
S_SYMB = symbol
select
co_name = CO_NAME
from
COMPANY
where

CO_ID = co_id

// Get current pricing information for the security
select

market price = LT PRICE
from

LAST TRADE
where

LT _S_SYMB = symbol
// Set trade characteristics based on the type of trade.
select

type_is_market = TT_IS_MRKT,

type_is_sell = TT_IS_SELL
from

TRADE_TYPE
where

TT _ID = trade_type id

// If this is a limit-order, then the requested price was passed in to the frame,
// but if this a market-order, then the requested price needs to be set to the

// current market price.

if(type_is_market) then {

requested price = market price

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 194 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

// Local frame variables used when estimating impact of this trade on
// any current holdings of the same security.

Declare hold price S_PRICE_ T

Declare hold gty S_QTY T

Declare needed_gty S_QTY T

Declare hs_gty S_QTY T

// Initialize variables
buy_value = 0.0
sell value = 0.0

needed gty = trade_gty

select
hs_qty = HS_QTY
from
HOLDING_SUMMARY
where
HS_CA_ID = acct_id and
HS_S_SYMB = symbol

if (hs_gty is NULL) then // No prior holdings exist — no rows returned

hs_gty = 0

if (type_is_sell) then {
// This is a sell transaction, so estimate the impact to any currently held
// long postions in the security.
//
if (hs_gty > 0) then {
if (is_lifo) then {
// Estimates will be based on closing most recently acquired holdings
// Could return 0, 1 or many rows
declare hold list cursor for
select
H QTY,
H PRICE
from
HOLDING
where
H CA_ID = acct_id and
H_S_SYMB = symbol
order by
H_DTS desc
} else {
// Estimates will be based on closing oldest holdings
// Could return 0, 1 or many rows

declare hold list cursor for

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 195 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

select
H QTY,
H PRICE
from
HOLDING
where
H CA_ID = acct_id and
H_S_SYMB = symbol
order by
H_DTS asc

// Estimate, based on the requested price, any profit that may be realized
// by selling current holdings for this security. The customer may have
// multiple holdings at different prices for this security (representing
// multiple purchases different times).
open hold list
do until (needed gty = 0 or end of hold list) {
fetch from
hold list
into
hold gty,
hold price
if (hold gty > needed gty) then {
// Only a portion of this holding would be sold as a result of the
// trade.
buy value += needed_gty * hold price
sell value += needed gty * requested price
needed gty = 0
} else {
// All of this holding would be sold as a result of this trade.
buy value += hold gty * hold price
sell value += hold_gty * requested price

needed gty = needed_gty - hold_gty

}

}

close hold list
}
// NOTE: If needed gty is still greater than 0 at this point, then the
// customer would be liquidating all current holdings for this security, and
// then creating a new short position for the remaining balance of
// this transaction.

} else {

// This is a buy transaction, so estimate the impact to any currently held
// short positions in the security. These are represented as negative H_QTY
// holdings. Short postions will be covered before opening a long postion in

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 196 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

// this security.
if (hs_gty < 0) then { // Existing short position to buy
if (is_lifo) then {
// Estimates will be based on closing most recently acquired holdings
// Could return 0, 1 or many rows
declare hold list cursor for
select
H QTY,
H_PRICE
from
HOLDING
where
H CA_ID = acct_id and
H_S_SYMB = symbol
order by
H_DTS desc
} else {
// Estimates will be based on closing oldest holdings
// Could return 0, 1 or many rows
declare hold list cursor for
select
H QTY,
H_PRICE
from
HOLDING
where
H CA_ID = acct_id and
H_S_SYMB = symbol
order by
H_DTS asc

// Estimate, based on the requested price, any profit that may be realized
// by covering short postions currently held for this security. The customer
// may have multiple holdings at different prices for this security
// (representing multiple purchases at different times).
open hold list
do until (needed gty = 0 or end of hold list) {
fetch from
hold list
into
hold gty,
hold price
if (hold gty + needed gty < 0) then {
// Only a portion of this holding would be covered (bought back) as

// a result of this trade.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 197 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

sell value += needed gty * hold price
buy value += needed_ gty * requested price
needed gty = 0
} else {
// All of this holding would be covered (bought back) as
// a result of this trade.
// NOTE: Local variable hold gty is made positive for easy
// calculations
hold gty = -hold_qgty
sell value += hold_ gty * hold price
buy value += hold gty * requested price
needed gty = needed gty - hold_gty

}
close hold list

// NOTE: If needed gty is still greater than 0 at this point, then the
// customer would cover all current short positions (if any) for this security,
// and then open a new long position for the remaining balance

// of this transaction.

// Estimate any capital gains tax that would be incurred as a result of this
// transaction.
tax_amount = 0.0
if ((sell_value > buy_ value) and
((tax_status == 1) or (tax status == 2)) then {
//
// Customers may be subject to more than one tax at different rates.
// Therefore, get the sum of the tax rates that apply to the customer
// and estimate the overall amount of tax that would result from this order.
/7
Declare tax_rates S_PRICE_T
select
tax_rates = sum(TX_RATE)
from
TAXRATE
where
TX_ID in (
select
CX_TX_ ID
from
CUSTOMER_TAXRATE
where
CX_C_ID = cust_id)

tax_amount = (sell_value — buy value) * tax rates

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 198 of 271

Trade-Order_Frame-3 Pseudo-code: Estimate overall effects of the trade

// Get administrative fees (e.g. trading charge, commision rate)
select
comm_rate = CR_RATE
from
COMMISSION_RATE
where
CR_C_TIER = cust_tier and
CR_TT ID = trade_type id and
CR_EX ID = exch_id and
CR_FROM_QTY <= trade_ gty and
CR_TO_QTY >= trade gty
select
charge_amount = CH_CHRG
from
CHARGE
where
CH_C_TIER = cust_tier and
CH_TT ID = trade_type id

// Compute assets on margin trades
Declare acct_bal BALANCE_T
Declare hold assets S_PRICE_T

cust_assets = 0.0
if (type_is_margin) then {
select
acct_bal = CA_BAL
from
CUSTOMER_ACCOUNT
where

CA_ID = acct_id

// Should return 0 or 1 row
select
hold_assets = sum(HS_QTY * LT PRICE)
from
HOLDING_SUMMARY,
LAST TRADE
where
HS_CA_ID = acct_id and
LT _S_SYMB = HS_S_SYMB

if (hold_assets is NULL) /* account currently has no holdings */
cust_assets = acct_bal

else
cust_assets = hold_assets + acct_bal

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 199 of 271

Trade-Order_ Frame-3 Pseudo-code: Estimate overall effects of the trade

// Set the status for this trade

if (type_is_market then {
status_id = st_submitted id

} else {

status_id = st_pending_ id

10.6.7.6 Trade-Order Transaction Frame 4 of 6

The fourth Frame is responsible for creating an audit trail record of the order and assigning a unique
trade ID to it.

The database access methods used in Frame 4 are all Adds.

{
// Estimate the total commision amount for this trade.
comm_amount = (comm_rate / 100) * trade_qty * requested_price
exec_name = exec_f name + " " + exec_l_name
is_cash = ! (type_is_margin)
invoke (Trade-Order_Frame-4)
{
Trade-Order Frame 4 of 6 Parameters:
Parameter Direction Description
acct_id IN Identifier of the customer account involved in the transaction.
broker_id IN Identifier of the broker associated with the customer account involved in the
transaction.
charge_amount [IN The fee charged by the brokerage house for processing this trade.
comm_amount [IN The broker’s commission for processing this trade.
exec_name IN First and last name of the person executing this trade.

If this flag is set to 1, then this trade will be done with cash. If this flag is set to 0,

is_cash IN then this trade will be done on margin.

If this flag is set to 1 then this trade will process against existing holdings from
is_lifo IN newest to oldest (LIFO order). If this flag is set to 0, then this trade will process
against existing holdings from oldest to newest (FIFO order).

For a limit trade, this is the requested price for triggering action. For a market
requested_price |[IN order, this has been set by the harness code to the current market price for the
given security.

status_id IN Identifier indicating the status of this order (either pending or submitted).
symbol IN The stock symbol for the security being traded.

trade_qty IN The number of shares to be traded for this order.

trade_type_id IN Identifier indicating the type of trade to be executed.

type_is_market [IN Flag set to 1 for market orders and to 0 for limit orders.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 200 of 271

status ouT Code indicating the execution status for this frame.

trade_id ouT Unique trade identifier generated by the SUT for this order.

Trade-Order_Frame-4 Pseudo-code: Record the trade request by making all
related updates

// Get the timestamp and unique trade ID for this trade.
Declare now_dts DATETIME
get_current_dts (now_dts)

get_new_trade_id (trade_id)

// Record trade information in TRADE table.
insert into
TRADE (
T _ID, T DTS, T ST ID, T TT ID, T IS CASH,
T_S SYMB, T QTY, T BID PRICE, T CA_ID, T EXEC NAME,
T TRADE PRICE, T CHRG, T COMM, T TAX, T LIFO
)

values (
trade id, // T_ID
now_dts, // T_DTS
status_id, // T_ST_ID
trade type_ id, // T_TT_ID
is cash, // T_IS CASH
symbol, // T_S_SYMB
trade qty, // T_QTY
requested_price, // T_BID_PRICE
acct_id, // T_CA_ID
exec_name, // T_EXEC_NAME
NULL, // T_TRADE_PRICE
charge amount, // T_CHRG
comm_amount // T_COMM
0, // T TAX
is lifo // T_LIFO

// Record pending trade information in TRADE REQUEST table if this trade is a
// limit trade
if (!type_is_market) {
insert into
TRADE_REQUEST (
TR T ID, TR TT ID, TR S SYMB,
TR_QTY, TR BID PRICE, TR B_ID
)

values (
trade id, // TR_T-ID
trade type_ id, // TR_TT_ID

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 201 of 271

Trade-Order_ Frame-4 Pseudo-code: Record the trade request by making all
related updates

symbol, // TR_S_SYMB
trade qgty, // TR_QTY
requested_price, // TR_BID_PRICE
broker id // TR_B_ID

// Record trade information in TRADE_HISTORY table.
insert into
TRADE_HISTORY (
TH T ID, TH DTS, TH_ ST ID
)

values (
trade id, // TH_T_ID
now_dts, // TH_DTS
status_id // TH_ST_ID

10.6.7.7 Trade-Order Transaction Frame 5 of 6

The fifth Frame is conditionally executed when the parameter roll_it_back is set to 1. This Frame is

responsible for intentionally rolling back all database updates from this Transaction, occasionally
exercising the rollback functionality.

There are no database access methods used in Frame 5. This Frame is only using Transaction control
operations.

The VGenTxnHarness controls the execution of Frame 5 as follows:

{
if (roll_it_back) then {
invoke (Trade-Order_Frame-5)

exit // Rest of transaction and SendToMarket are skipped

{

Trade-Order Frame 5 of 6 Parameters:

Parameter Direction Description

status ouT Code indicating the execution status for this frame.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 202 of 271

Trade-Order_ Frame-5 Pseudo-code: Rollback database transaction

// Intentional rollback of transaction caused by driver (CE).

rollback transaction

10.6.7.8 Trade-Order Transaction Frame 6 of 6

The sixth Frame is conditionally executed when parameter roll_it_back is set to 0. This Frame is
responsible for committing all database updates from this Transaction.

There are no database access methods used in Frame 6. This Frame is only using Transaction control
operations.

The VGenTxnHarness controls the execution of Frame 6 as follows:

{

invoke (Trade-Order_Frame-6)

if (type_is_market) then {
eAction = eMEEProcessOrder

}

else {
eAction = eMEESetLimitOrderTrigger

}

// Send the trade to the Market Exchange Emulator (MEE)

SendToMarketFromHarness (
requested_price,
symbol,
trade_id,
trade_qty,
trade_type_id,
eAction

)

}
Trade-Order Frame 6 of 6 Parameters:
Parameter Direction Description
status ouT Code indicating the execution status for this frame.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 203 of 271

10.6.8

10.6.8.1

Trade-Order Frame 6 Pseudo-code: Commit database transaction

commit transaction

The Trade-Result Transaction

The Trade-Result Transaction is designed to emulate the process of completing a stock market trade.
This is representative of a brokerage house receiving from the market exchange the final confirmation
and price for the trade. The customer’s holdings are updated to reflect that the trade has completed.
Estimates generated when the trade was ordered for the broker commission and other similar quantities
are replaced with the actual numbers and historical information about the trade is recorded for later
reference.

Trade-Result is invoked by VGenDriverMEE. It consists of seven Frames. The Transaction starts by

using the trade ID passed into the Transaction to obtain information about the trade. The information
gathered includes the account ID of the customer account, which is used to lookup additional account
information.

Next the customer’s holdings are updated to reflect the completion of the trade. The particular work done
depends on the type of trade (buy or sell), the number of shares involved and the customer’s current
position (long or short) with respect to the security. When selling shares, current holdings are liquidated
to cover the sale. If the customer does not have enough shares to cover the sale, any currently held shares
are liquidated and a short position is taken for the balance of shares. If the customer already has a short
position and more shares are sold, then the short position is simply extended. An analogous situation
exists when purchasing shares. Any shares bought will first be used to cover any existing short position.
After that, any shares bought will be used to create or extend a long position.

If, when reconciling the trade with the customer’s current holdings, any shares are sold for a profit and
the profit is taxable, the amount of tax due on the profit is calculated.

Next the broker’s commission is calculated and then all information with respect to the trade is recorded.

Finally, settlement records are entered for the trade and if the trade is not on margin, the customer’s
account balance is update accordingly.

The seventh frame is independent of the prior six and is a separate database transaction. It is invoked
only when the separate transaction “trigger_id” input parameter is non-zero. When that condition
occurs, the seventh frame performs the actions required to submit the previously pending limit order
that has now reached its trigger (bid or ask) price.

Trade-Result Transaction Parameters

The inputs to the Trade-Result Transaction are generated by the VGenDriverMEE code in MEE.cpp. The
data structures defined in TxnHarnessStructs.h must be used to communicate the input and output
parameters.

Trade-Result Interfaces Module/Data Structure
MEE Input generation CMEESUTInterface::TradeResult()
TTradeResultTxnInput

Transaction Input/Output Structure TTradeResultTxnOutput

TTradeResultFramellnput

Frame 1 Input/Output Structure TTradeResultFramelOutput

TTradeResultFrame2Input

Frame 2 Input/Output Structure TTradeResultFrame20utput

TTradeResultFrame3Input

Frame 3 Input/Output Structure TTradeResultFrame3Output

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 204 of 271

TTradeResultFrame4Input

Frame 4 Input/Output Structure TTradeResultFrame4Output

TTradeResultFrameSInput

Frame 5 Input/Output Structure TTradeResultFrame5O0utput

TTradeResultFrame6Input

Frame 6 Input/Output Structure TTradeResultFrame6Output

TTradeResultFrame7Input

Frame 7 Input/Output Structure TTradeResultFrame7Output

Trade-Result Transaction Parameters:

Parameter Direction Description
. The Trade ID for the trade to be settled. Trade ID is the primary key of the
trade_id N TRADE table.
trade_price IN The price of the trade.
triogor id IN The Trade ID for the pending trade that has triggered and needs to be to
5867 be submitted to the MEE. Trade ID is the primary key of the TRADE table.
acct_bal ouT Customer account’s cash balance after the trade was completed.
. Customer account ID of the customer account involved in Trade-Result
acct_id ouT N
transaction.
. Load Unit number for the customer account involved in the Trade-Result
load_unit ouT .
transaction.
status ouT Code indicating the execution status for this transaction.

10.6.8.2 Trade-Result Transaction Database Footprint

This Transaction includes a mixture of Reference, Return, Modify, Remove and Add operations. The
Trade-Result Database Footprint is as follows:

Trade-Result Database Footprint
Frame
Table Column
1 2 3* 4 5 6 7
B_COMM_TOTAL Reference
- - Modify
BROKER
Reference

B_NUM_TRADES Modify
CASH_TRANSACTION 1 row Add *
COMMISSION_RATE CR_RATE Return
CUSTOMER C_TIER Reference

Return
CA_BAL Reference*
Modify*

CUSTOMER_ACCOUNT (CA_B_ID Return

CA_C_ID Return

CA_TAX_ST Return
CUSTOMER_TAXRATE CX_TX_ID Reference

H_PRICE Reference

Reference

H_QTY .
HOLDING Modify"

row(s) Remove*

1 row Add*

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 205 of 271

HOLDING_SUMMARY

HS_QTY

Reference

Modify*

1 row

Remove*

1 row

Add*

HOLDING_HISTORY

Row(s)

Add

SECURITY

S_EX_ID

Reference

S_NAME

Reference

SETTLEMENT

1 row

Add

TAX_RATE

TX_RATE

Reference

TRADE

T_CA_ID

Return

T_CHRG

Return

T_COMM

Modify

T_DTS

Modify

Modify*

T_IS_CASH

Return

T_LIFO

Return

T_QTY

Return

T_S_SYMB

Return

T_ST_ID

Modify

Modify*

T_TAX

Modify

T_TRADE_PRICE

Modify

T_TT_ID

Return

TRADE_HISTORY

1 row

Add

Add *

TRADE_REQUEST

TR_BID_PRICE

Return®

TR_QTY

Return®

TR_T_ID

Return®

TR_TT_ID

Return®

Row(s)

Remove*

TRADE_TYPE

TT_IS_MRKT

Return

TT_IS_SELL

Return

TT_NAME

Return

Transaction Control

Start

Commit

Start,
Commit

10.6.8.3 Trade-Result Transaction Frame 1 of 7

The first Frame is responsible for retrieving information about the customer and its trade.

The database access methods used in Frame 1 are all Returns.

The VGenTxnHarness controls the execution of Frame 1 as follows:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 206 of 271

invoke (Trade-Result_Frame-1)

if (num_found <> 1) then

{
status = -811
}
}
Trade-Result Frame 1 of 7 Parameters:
Parameter Direction Description
. The trade ID for the trade to be settled passed to the transaction by the Market-
trade_id IN
Exchange-Emulator.
. Customer account ID of the customer account involved in Trade-Result
acct_id ouT N
transaction.
charge ouT Fee charged for placing this trade request.
hs_qty oUT Current quantity of shares of the security being traded, that the customer holds
in their account.

If this flag is set to 1, then this trade will process against existing holdings from
is_lifo ouT newest to oldest (LIFO order). If this flag is set to 0, then this trade will process
against existing holdings from oldest to newest (FIFO order).

num_found ouT Number of TRADE rows found.

status ouT Code indicating the execution status for this frame.

symbol oUT if;/se?nco}tacrgrcltg rﬁfﬁﬁg Vg}ﬂ istic:;iatcye .that is being traded. This output string
trade_is_cash ouT Boolean indicating trade is for cash (1) or on margin (0).

trade_qty ouT Quantity of securities traded

type_id OUT 3:}?3;3 ;}I;I;Sei.dentiﬁer, (T_TT_ID). This output string must not contain trailing
type_is_market ouT Boolean indicating trade type is a market trade (1) or limit trade (0).
type_is_sell ouT Boolean indicating if this is a sell trade (1) or a buy trade (0).

type_name OouT Trade type name

Trade-Result_Frame-1 Pseudo-code: Get info on the trade and the customer's
account

start transaction

select
acct_id = T CA ID,
type_id = T TT ID,
symbol = T_S_SYMB,
trade_qgty = T_OQTY,
charge = T_CHRG,
is_lifo = T_LIFO,

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 207 of 271

Trade-Result_Frame-1 Pseudo-code: Get info on the trade and the customer's
account

trade_is _cash = T_IS CASH
from

TRADE
where

T_ID = trade_id

num_found = row_count

select
type_name = TT_NAME,
type_is_sell = TT_IS SELL,

type_is_market = TT IS MRKT
from

TRADE_TYPE
where

TT_ID = type id

select
hs_gty = HS_QTY
from
HOLDING_SUMMARY
where
HS_CA_ID = acct_id and
HS_S_SYMB = symbol

if (hs_gty is NULL) then // no prior holdings exist
hs_gty = 0

10.6.8.4 Trade-Result Transaction Frame 2 of 7

The second Frame is responsible for modifying the customer's holdings to reflect the result of a buy or a
sell trade.

The database access methods used in Frame 2 are a mixture of References, Modifies, Removes and
Adds.

The VGenTxnHarness controls the execution of Frame 2 as follows:
{

invoke (Trade-Result_Frame-2)

Trade-Result Frame 2 of 7 Parameters:

Parameter Direction Description

Customer account ID of the customer account involved in the Trade-Result

acct_id IN transaction obtained in Frame 1

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 208 of 271

h Current quantity of shares of the security being traded, that the customer
s_qty IN . .
holds in their account.
If this flag is set to 1, then this trade will process against existing holdings
is_lifo IN from newest to oldest (LIFO order). If this flag is set to 0, then this trade will
process against holdings from oldest to newest (FIFO order).
symbol IN Seven character security identifier obtained in Frame 1
The trade ID for the trade to be settled passed to the transaction by the
trade_id IN Market- Exchange-Emulator. Used for insert(s) into the HOLDING and
HOLDING_HISTORY tables.
. The price of the trade passed to the Trade-Result Transaction by the Market
trade_price IN
Exchange Emulator.
trade_qty IN Quantity of securities traded obtained from Frame 1
type_is_sell IN ?Oc;olean obtained in Frame 1 indicating if this is a sell trade (1) or a buy trade
broker_id ouT ID of the broker who executed the trade.
b The total dollar amount for the securities bought for a matching sell order. If
uy_value ouT . " .
trade is a buy or sell of new securities then buy_value is zero.
. Customer ID of the customer who owns the customer account involved in the
cust_id ouT trade
The total dollar value of the securities sold for a matching buy order. If trade
sell_value OouT . i)
is buy or sell of new securities then sell_value is zero.
status ouT Code indicating the execution status for this frame.
tax_status ouT Customer account tax status
trade_dts ouT Date and time of trade result generated by the SUT.

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or

sell

// Local Frame Variables

Declare hold_id

Declare hold price S _PRICE_ T

Declare hold gty

IDENT T

S QTY T

Declare needed gty S_QTY T

get_current_dts

(trade_dts

// Initialize variables

buy value =
sell value

needed_gty

select
broker i

cust_id

d

0.0
0.0

trade_qgty

tax_status =

from

CA B 1D,
CA_C_1ID,
CA_TAX_ST

CUSTOMER_ACCOUNT

where

)

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 209 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

CA_ID = acct_id

// Determine if sell or buy order

if (type_is_sell) then {

if (hs_gty == 0) then // no prior holdings exist, but one will be inserted
insert into
HOLDING_SUMMARY (
HS_CA ID,
HS_S_SYMB,
HS_QTY
)
values (
acct_id,
symbol,
-trade_gty

else
if (hs_gty != trade_gty) then
update
HOLDING_SUMMARY
set
HS_QTY = hs_gty — trade_ gty
where
HS_CA_ID = acct_id and
HS_S_SYMB = symbol

// Sell Trade:

// First look for existing holdings, H_QTY > 0
if (hs_gty > 0) {
if (is_lifo) then {
// Could return 0, 1 or many rows
declare hold list cursor for
select
H T ID,
H QTY,
H PRICE
from
HOLDING
where
H CA_ID = acct_id and
H_S_SYMB = symbol
order by
H_DTS desc

} else {

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 210 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

// Could return 0, 1 or many rows
declare hold list cursor for
select
H T ID,
H QTY,
H PRICE
from
HOLDING
where
H CA_ID = acct_id and
H_S_SYMB = symbol
order by
H_DTS asc
}
// Liquidate existing holdings. Note that more than
// 1 HOLDING record can be deleted here since customer
// may have the same security with differing prices.
open hold list
do until (needed gty = 0 or end of hold list) {
fetch from
hold list
into
hold_id,
hold gty,
hold price
if (hold gty > needed gty) then {
//Selling some of the holdings
insert into
HOLDING_HISTORY (
HH H T ID,
HH T ID,
HH BEFORE_QTY,
HH AFTER_ QTY
)

values (
hold id, // H_T_ID of original trade
trade_ id, // T_ID current trade
hold qgty, // H_QTY now

hold gty - needed_qgty // H_QTY after update

update
HOLDING

set

H_QTY = hold gty - needed gty

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 211 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

where

current of hold list

buy value += needed_gty * hold price
sell value += needed gty * trade price

needed gty = 0

} else {
// Selling all holdings
insert into
HOLDING_HISTORY (
HH H T ID,
HH T ID,
HH BEFORE_QTY,
HH AFTER QTY
)

values (
hold id, // H_T_ID original trade
trade_ id, // T_ID current trade
hold qgty, // H_QTY now
0 // H_QTY after delete

delete from
HOLDING
where

current of hold list

buy value += hold_gty * hold price
sell value += hold_gty * trade price

needed gty = needed gty - hold_gty

}
close hold list

// Sell Short:
// If needed_gty > 0 then customer has sold all existing
// holdings and customer is selling short. A new HOLDING
// record will be created with H_QTY set to the negative
// number of needed shares.
if (needed gty > 0) then {
insert into
HOLDING_HISTORY (
HH H T _ID,
HH_T ID,

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 212 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell
HH BEFORE_ QTY,
HH AFTER QTY
)
values (
trade_id, // T_ID current is original trade
trade_ id, // T_ID current trade
0, // H_QTY before
(-1) * needed_gty // H_QTY after insert
)
insert into
HOLDING (
H T ID,
H CA ID,
H S _SYMB,
H DTS,
H_PRICE,
H QTY
)
values (
trade_ id, // H_T_ID
acct_id, // H_CA_ID
symbol, // H_S_SYMB
trade dts, // H_DTS
trade price, // H_PRICE
(-1) * needed_gty //* H_QTY
)
else
if (hs_gty = trade_gty) then
delete from
HOLDING_SUMMARY
where
HS_CA_1ID = acct_id and
HS_S_SYMB = symbol
}
} else { // The trade is a BUY

if (hs_gty == 0) then
insert into
HOLDING_SUMMARY
HS_CA ID,
HS_S_SYMB,
HS_QTY
)
values (
acct_id,

symbol,

// no prior holdings exist, but one will be inserted

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 213 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

trade_gty
)
else // hs_gty != 0
if (-hs_gty != trade gty) then
update

HOLDING_SUMMARY
set

HS_QTY = hs_gty + trade_qgty

where
HS_CA_ID = acct_id and
HS_S_SYMB = symbol

// Short Cover:
// First look for existing negative holdings, H_QTY < 0,
// which indicates a previous short sell. The buy trade
// will cover the short sell.
if (hs_gty < 0) then {
if (is_lifo) then {
// Could return 0, 1 or many rows
declare hold list cursor for
select
H T ID,
H QTY,
H PRICE
from
HOLDING
where
H CA_ID = acct_id and
H_S_SYMB = symbol
order by
H_DTS desc
} else {
// Could return 0, 1 or many rows
declare hold list cursor for
select
H T ID,
H QTY,
H PRICE
from
HOLDING
where
H CA_ID = acct_id and
H_S_SYMB = symbol
order by
H_DTS asc

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 214 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

}

// Buy back securities to cover a short position.
open hold list
do until (needed gty = 0 or end of hold list) {
fetch from
hold list
into
hold_id,
hold gty,
hold price
if (hold gty + needed gty < 0) then {
// Buying back some of the Short Sell
insert into
HOLDING_HISTORY (
HH H T ID,
HH T ID,
HH BEFORE_QTY,
HH AFTER QTY
)

values (
hold id, // H_T_ID original trade
trade_ id, // T_ID current trade
hold qgty, // H_QTY now

hold gty + needed_qgty // H_QTY after update

update

HOLDING
set

H_QTY = hold gty + needed gty
where

current of hold list

sell value += needed gty * hold price
buy value += needed_gty * trade price
needed gty = 0
} else {
// Buying back all of the Short Sell
insert into
HOLDING_HISTORY (
HH H T ID,
HH T ID,
HH BEFORE_QTY,
HH AFTER_ QTY
)

values (

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 215 of 271

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

hold id, // H_T_ID original trade
trade_ id, // T_ID current trade
hold qgty, // H_QTY now

0 // H_QTY after delete

delete from
HOLDING
where

current of hold list

// Make hold gty positive for easy calculations
hold gty = -hold gty

sell value += hold gty * hold price

buy value += hold_gty * trade_ price

needed gty = needed_gty - hold_gty

}
close hold list

// Buy Trade:
// If needed_gty > 0, then the customer has covered all
// previous Short Sells and the customer is buying new
// holdings. A new HOLDING record will be created with
// H_QTY set to the number of needed shares.
if (needed gty > 0) then {
insert into
HOLDING_HISTORY (

HH H T ID,

HH T ID,

HH BEFORE_QTY,

HH AFTER QTY

)

values (
trade_id, // T_ID current is original trade
trade_ id, //* T_ID current trade
0, // H_QTY before

needed gty // H_QTY after insert

insert into
HOLDING (
H T ID,
H CA_ID,
H S _SYMB,

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 216 of 271

10.6.8.5

Trade-Result_Frame-2 Pseudo-code: Update the customer's holdings for buy or
sell

H DTS,
H_PRICE,
H_QTY
)
values (
trade id // H_T_ID
acct_id, // H_CA_ID
symbol, // H_S_SYMB
trade dts, // H_DTS

trade_price, // H_PRICE
needed gty // H_QTY

}

else

if (-hs_gty = trade_gty) then
delete from

HOLDING_SUMMARY

where
HS_CA_ID = acct_id and
HS_S_SYMB = symbol

Trade-Result Transaction Frame 3 of 7

The third Frame is responsible for computing the amount of tax due by the customer as a result of the

trade. Frame 3 is only executed if the customer is liquidating existing holdings, and the liquidation has
resulted in a gain, and the customer's tax status is either 1 or 2. The amount of tax due is recorded in the
TRADE table.

Comment: The parameter tax_amount is used by the VGenTxnHarness to compute the value of the
parameter se_amount just before Frame 6. Thus, the parameter tax_amount is initialized to zero and is
passed in and out of Frame 3.

The database access methods used in Frame 3 are a mixture of References and Modifies.

The VGenTxnHarness controls the execution of Frame 3 as follows:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 217 of 271

tax_amount = 0.00

if ((tax_status == 1 or tax_status == 2)

and (sell_value > buy_value)) then

{
invoke (Trade-Result_Frame-3)
if (tax_amount <= 0.00) then
{
status = -831
}
}
}
Trade-Result Frame 3 of 7 Parameters:
Parameter Direction Description
buy_value IN The total dollar amount for the securities bought for a matching sell order.
cust_id IN Cust.omelj ID of the customer involved in the Trade-Result transaction, which was
obtained in Frame 1.
sell_value IN The total dollar value of the securities sold for a matching buy order.
trade_id IN The Trade ID for the trade to be settled passed to the transaction by the Market-
Exchange-Emulator.
status ouT Code indicating the execution status for this frame.
tax_amount |OUT Tax_amount is initialized to 0.0 by the VGen code and modified by Frame 3.

Trade-Result_Frame-3 Pseudo-code: Compute and record the tax liability

// Local Frame variables

Declare tax_rates

select

S_PRICE T

tax rates = sum(TX_RATE)

from

TAXRATE

where

TX_ID in (select

CX_TX_ID

from

CUSTOMER_TAXRATE

where

CX_C_ID = cust_id)

tax_amount = (sell_value — buy value) * tax rates

update

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 218 of 271

Trade-Result_Frame-3 Pseudo-code: Compute and record the tax liability

TRADE
set

T TAX = tax_amount
where

T_ID = trade_id

10.6.8.6 Trade-Result Transaction Frame 4 of 7
The fourth Frame is responsible for computing the commission for the broker who executed the trade.
The database access methods used in Frame 4 are all References.

The VGenTxnHarness controls the execution of Frame 4 as follows:

{
invoke (Trade-Result_Frame-4)
if (comm_rate <= 0.00) then
{
status = -841
}
}
Trade-Result Frame 4 of 7 Parameters:
Parameter Direction Description
cust_id IN Cust.ome1j ID of the customer involved in the Trade-Result transaction, which was
obtained in Frame 1.
symbol IN Seven character security identifier, which was obtained in Frame 1
trade_qty IN Quantity of securities traded, which was obtained in Frame 1
type_id IN Trade type identifier, which was obtained in Frame 1
comm_rate ouT The broker commission rate. Ranges from 0.00 to 100.00.
s_name ouT Name of security traded
status ouT Code indicating the execution status for this frame.

Trade-Result_Frame-4 Pseudo-code: Compute and record the broker's commission

select
s_ex id = S _EX ID,
s_name = S_NAME
from

SECURITY

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 219 of 271

10.6.8.7

Trade-Result_Frame-4 Pseudo-code: Compute and record the broker's commission

where

S_SYMB = symbol

select

c_tier = C_TIER
from

CUSTOMER
where

C_ID = cust_id

// Only want 1 commission rate row
select first 1 row
comm_rate = CR_RATE
from
COMMISSION_RATE
where
CR_C_TIER = c_tier and
CR_TT ID = type id and
CR_EX ID = s_ex id and
CR_FROM_QTY <= trade_ gty and
CR_TO_QTY >= trade_ gty

Trade-Result Transaction Frame 5 of 7
The fifth Frame is responsible for recording the result of the trade and the broker's commission.
The database access methods used in Frame 5 are a mixture of Modifies, Adds and Removes.

The VGenTxnHarness controls the execution of Frame 5 as follows:

{
comm_amount = (comm_rate / 100) * (trade_qty * trade_price)
invoke (Trade-Result_Frame-5)
}
Trade-Result Frame 5 of 7 Parameters:
Parameter Direction Description
broker_id IN Broker ID, which was obtained in Frame 1.
comm_amount IN The broker commission amount, computed by the VGen code
st_completed_id IN The index ID value into STATUS_TYPE for “Completed” status.
trade_dts IN Trade date and time provided by the output of Frame 2.

The Trade ID for the trade to be settled passed to the transaction by the Market

trade_id IN Exchange Emulator.
trade_price IN Trade price provided by the Market Exchange Emulator.
status ouT Code indicating the execution status for this frame.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 220 of 271

Trade-Result_Frame-5 Pseudo-code: Record the trade result and the broker's

commission
{
update
TRADE
set
T_COMM = comm_amount,
T_DTS = trade_dts,
T_ST ID = st_completed id,

T _TRADE_PRICE = trade price
where

T_ID = trade_id

insert into
TRADE_HISTORY (
TH T ID,
TH DTS,
TH_ST ID
)
values (
trade_id,
trade_dts,

st_completed_id

update
BROKER

set
B_COMM_TOTAL = B_COMM_TOTAL + comm amount,
B_NUM TRADES = B_NUM TRADES + 1

where

B_ID = broker_id

10.6.8.8 Trade-Result Transaction Frame 6 of 7
The sixth Frame is responsible for settling the trade.
The database access methods used in Frame 6 are a mixture Adds and Modifies.

The VGenTxnHarness controls the execution of Frame 6 as follows:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 221 of 271

due_date = (trade_date + 2 days)

if (type_is_sell) then

{
se_amount = (trade_qty * trade_price) — charge — comm_amount
} else {
se_amount = -((trade_qty * trade_price) + charge + comm_amount)
}
if (tax_status == 1) then
{
se_amount = se_amount — tax_amount
}
invoke (Trade-Result_Frame-6)
}
Trade-Result Frame 6 of 7 Parameters:
Parameter Direction Description
. Customer account ID of the customer involved in the Trade-Result transaction,
acct_id IN . . .
which was obtained in Frame 1.
due_date IN Date and time when trade is due to be settled.
s_name IN Name of security traded, which was obtained in Frame 4
se_amount IN The trade settlement amount.
trade_dts IN Date and time of trade result generated by the SUT, and output in Frame 2.
. The trade ID for the trade to be settled, passed to the transaction by the Market
trade_id IN
Exchange Emulator.
trade_is_cash IN Boolean obtained in Frame 1 indicating trade is for cash (1) or on margin (0).
trade_qty IN Quantity of securities traded, which was obtained from Frame 1
type_name IN Trade type name, which was obtained in Frame 1.
acct_bal ouT Customer account’s cash balance (needed for one of the isolation tests)
status ouT Code indicating the execution status for this frame.

Trade-Result_Frame-6 Pseudo-code: Settle the trade

// Local Frame Variables

Declare cash_type char(40)

if (trade_is_

cash_type
else

cash_type

cash) then

= “Cash Account”

= “Margin”

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 222 of 271

Trade-Result_Frame-6 Pseudo-code: Settle the trade

insert into
SETTLEMENT (
SE_T_1ID,
SE_CASH_TYPE,
SE_CASH_DUE_DATE,
SE_AMT
)
values (
trade_id,
cash_type,
due_date,

se_amount

if (trade_is_cash) then {
update
CUSTOMER_ACCOUNT
set
CA_BAL = CA_BAL + se_amount
where

CA_ID = acct_id

insert into
CASH_TRANSACTION (
CT DTS,
CT T 1ID,
CT_AMT,
CT_NAME
)
values (
trade_dts,
trade_id,
se_amount,

type_name + " + trade_gty + " shares of + s_name

}
select
acct_bal = CA_BAL
from
CUSTOMER_ACCOUNT
where

CA_ID = acct_id

commit transaction

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 223 of 271

10.6.8.9 Trade-Result Transaction Frame 7 of 7

The seventh Frame is responsible for submitting a pending limit order that has been triggered. It is
therefore independent of the prior six frames and performs as a separate database transaction.

The database access methods used in Frame 7 are a mixture Add, Modify, Remove and Return.

The VGenTxnHarness controls the execution of Frame 7 as follows:

{
if (trigger_id != 0) then
{
invoke (Trade-Result_Frame-7)
eAction = eMEEProcessOrder
// Send the trade to the Market Exchange Emulator (MEE)
SendToMarketFromHarness (
bid_price,
symbol,
trade_id,
trade_qty,
trade_type_id,
eAction
}
}
Parameter Direction Description
status_submitted |IN The string ID value for the STATUS_TYPE Submitted status.
trigger_id IN The Trade ID for the pending trade that has triggered and needs to be to be
submitted to the MEE. Trade ID is the primary key of the TRADE table.
bid_price ouT Requested bid /ask price for triggered limit trade.
num_found ouT Number of TRADE rows found to trigger.
status ouT Code indicating the execution status for this frame.
symbol ouT Security symbol for triggered limit trade.
trade_id ouT Trade ID of triggered limit trade.
trade_qty ouT Requested share quantity.
trade_type_id ouT Trade type of triggered limit trade.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 224 of 271

10.6.9

10.6.9.1

Trade-Result_Frame-7 Pseudo-code: Submit the triggered limit trade

declare now_dts DATETIME

start transaction

get_current_dts(now_dts)

select TR_T ID,
TR _BID PRICE,
TR_S SYMB,
TR_TT ID,
TR_QTY
from
TRADE_REQUEST
where

TR_T_ID = trigger_id

num_found = row_count

delete TRADE_REQUEST
where TR_T_ID = trigger_id
update TRADE
set T_DTS = now_dts,
T ST ID = status_submitted
where T_ID = trigger id
insert TRADE HISTORY (TH T ID, TH DTS, TH ST ID)

values (trigger_ id, now_dts, status_submitted)

commit transaction

The Trade-Status Transaction

The Trade-Status Transaction is designed to emulate the process of providing an update on the status of
a particular set of trades. It is representative of a customer reviewing a summary of the recent trading
activity for one of their accounts.

Trade-Status is invoked by VGenDriverCE. It consists of a single Frame. For the given account ID, Trade-
Status returns the trade ID and status of the 50 most recent trades.

Trade-Status Transaction Parameters

The inputs to the Trade-Status Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp and the data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Trade-Status Interfaces

Module/Data Structure

CE Input generation

GenerateTradeStatusInput()

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 225 of 271

10.6.9.2

10.6.9.3

Transaction Input/Output Structure

TTradeStatusTxnInput
TTradeStatusTxnOutput

Frame 1 Input/Output Structure

TTradeStatusFramellnput
TTradeStatusFramelOutput

Trade-Status Transaction Parameters:

Parameter Direction Description
A single customer is chosen non-uniformly by customer tier, from the range of

acct id IN available customers. A single customer account id, as defined by CA_ID in

= CUSTOMER_ACCOUNT, is chosen at random, uniformly, from the range of

customer account ids for the chosen customer.

status ouT Code indicating the execution status for this transaction.

status_name|] |OUT A list of character strings, each character string as defined by ST_NAME in

= STATUS_TYPE, representing the current status of a trade.
trade_id[] OUT A list of numbers, each number as defined by T_ID in TRADE, assigned by the

brokerage or exchange to identify the specific trade being requested.

Trade-Status Transaction Database Footprint

The Trade-Status Database Footprint is as follows:

Trade-Status Database Footprint
Frame
Table Column
1

BROKER B_NAME Return

C_F_NAME Return
CUSTOMER

C_L_NAME Return
EXCHANGE EX_NAME Return
SECURITY S_ NAME Return
STATUS_TYPE ST_NAME Return

T_CHRG Return

T_DTS Return

T_EXEC_NAME |Return
TRADE

T_ID Return

T_QTY Return

T_S SYMB Return
TRADE_TYPE TT_NAME Return

. Start

Transaction Control Cc?fnmit

Trade-Status Transaction Frame 1 of 1

The database access methods used in Frame 1 are all Returns.

The VGenTxnHarness controls the execution of Frame 1 as follows:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 226 of 271

invoke (Trade-Status_Frame-1)
if (num_found <> max_trade_status_len) then

{
status = -911

}

Trade-Status Frame 1 of 1 Parameters:

Parameter Direction |Description

A single customer is chosen non-uniformly by customer tier, from the range of
available customers. A single customer account id, as defined by CA_ID in
CUSTOMER_ACCOUNT, is chosen at random, uniformly, from the range of
customer account ids for the chosen customer.

acct_id IN

A character string, as defined by B_NAME in BROKER, representing the name of

broker_name ouT the broker who executes transactions on behalf of the customer

A list of numbers, each number as defined by T_CHRG in TRADE, representing

charge[] ouT the cost of executing the trade as charged by the broker.

A character string, as defined by C_F_NAME in CUSTOMER, representing the
cust_f_name ouT . i

first name of the customer who owns the account (acct_id).

A character string, as defined by C_L_NAME in CUSTOMER, representing the
cust_l_name ouT .

last name of the customer who owns the account (acct_id).

A list of character strings, each character string as defined by EX_ZNAME in
ex_name]] OuT EXCHANGE, representing the name of the security exchange where the security

is traded.

A list of character strings, each character string as defined by T_EXEC_NAME in
exec_name]] OuT TRADE, representing the name of the person who initiated the trade on behalf of
the customer (c_f_name, c_l_name).

num_found ouT Number of TRADE rows found.
s_name]] OUT A list of character strings, each character string as defined by S_ZNAME in
= SECURITY, representing the name of the security as listed with the exchange.
status ouT Code indicating the execution status for this frame.
status_name[] |OUT A list of character strings, each character string as defined by ST_NAME in

STATUS_TYPE, representing the current status of the trade.

A list of character strings, each character string as defined by S_SYMB in
symbol [] ouT SECURITY, representing the specific security, as listed with the exchange, being
traded in the trade.

A list of dates and times, each data and time as defined by T_DTS in TRADE, at

trade_dts[] ouT which the Trade-Request was processed by the broker.
trade_id[] oUT A list of numbers, each number as defined by T_ID in TRADE, assigned by the
! brokerage or exchange to identify the specific trade being requested.
A list of numbers, each number as defined by T_QTY in TRADE, representing
trade_qty[] ouT the quantity of the security being traded in the Trade-Request.
A list of character strings, each character string as defined by TT_NAME in
type_name|] OuT TRADE_TYPE, representing the type of trade being executed on behalf of the

customer.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 227 of 271

Trade-Status_Frame-1 Pseudo-code: Retrieve information on the 50 most recent
trades

start transaction
// Only want 50 rows, the 50 most recent trades for this customer account

select first 50 row

trade_id[] = T ID,
trade_dts[] = T_DTS,
status_name[] = ST_NAME,
type_name[] = TT_NAME,
symbol][] = T _S_SYMB,
trade_qgty[] = T_OQTY,
exec_name|] = T EXEC_NAME,
charge][] = T_CHRG,
s_name][] = S_NAME,
ex_name[] = EX_NAME
from
TRADE,

STATUS_TYPE,
TRADE_TYPE,
SECURITY,
EXCHANGE

where
T CA_ID = acct_id and
ST ID = T_ST_ID and
TT ID = T _TT ID and
S_SYMB = T_S_SYMB and
EX_ID = S_EX_ID

order by
T_DTS desc

num_found = row_count

select

cust_1 name = C_L_NAME,
C_F_NAME,

cust_f name
broker name = B_NAME
from
CUSTOMER_ACCOUNT,
CUSTOMER,
BROKER
where
CA_ID = acct_id and
C_ID = CA_C_ID and
B ID = CA B ID

commit transaction

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 228 of 271

10.6.10

10.6.10.1

Trade-Status_Frame-1 Pseudo-code: Retrieve information on the 50 most recent
trades

The Trade-Update Transaction

The Trade-Update Transaction is designed to emulate the process of making minor corrections or
updates to a set of trades. This is analogous to a customer or broker reviewing a set of trades, and
discovering that some minor editorial corrections are required. The various sets of trades are chosen such
that the work is representative of:

e reviewing general market trends

e reviewing trades for a period of time prior to the most recent account statement

e reviewing past performance of a particular security

Trade-Update is invoked by VGenDriverCE. It consists of three mutually exclusive Frames. Each Frame

employs a different technique for looking up historical trade data. Minor corrections are made to the
retrieved data.

Frame 1 accepts a list of trade IDs. Information for each of the trades in the list is returned. The executor’s
name for each trade is modified.

Frame 2 accepts a customer account ID, a start timestamp, end timestamp and a number of trades (N) as

inputs. The Frame returns information for the first N trades for the specified customer account between
the start and end timestamps (inclusive). The settlement cash type for each trade is modified.

Frame 3 accepts a security symbol, a start timestamp, end timestamp and a number of trades (N) as
inputs. The Frame returns information for the first N trades for the given security between the start and
end timestamps (inclusive). For cash trades the description of the Transaction is modified.

Trade-Update Transaction Parameters

The inputs to the Trade-Update Transaction are generated by the VGenDriverCE code in
CETxnInputGenerator.cpp. The data structures defined in TxnHarnessStructs.h must be used to
communicate the input and output parameters.

Trade-Update Interfaces Module/Data Structure

CE Input generation GenerateTradeUpdateInput()
Transaction Input/Output TTradeUpdateTxnInput
Structure TTradeUpdateTxnOutput

TTradeUpdateFramellnput

Frame 1 Input/Output Structure TTradeUpdateFramelOutput

TTradeUpdateFrame2Input

Frame 2 Input/Output Structure TTradeUpdateFrame20utput

TTradeUpdateFrame3Input

Frame 3 Input/Output Structure TTradeUpdateFrame3Output

Trade-Update Transaction Parameters:

Parameter Direction Description

acct_id IN Customer account ID. Used when frame_to_execute is 2, otherwise set to 0.

Used in Frame 2 as the end point in time for identifying a particular trade for an
account.

end_trade_dts IN Used in Frame 3 as the end point in time for identifying trades for a particular
symbol.

For Frame 1, this parameter is ignored, so it is set to an empty date.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 229 of 271

frame_to_execute IN Identifies which of the mutually exclusive frames to execute.

max_acct_id IN Maximum account identifier, used in Frame 3, otherwise set to 0.

Maximum number of trades to find. The default value (20) is defined in the

max_trades IN TTradeUpdateSettings structure in DriverParameterSettings.h.

Maximum number of trades to be modified. The default value (20) is defined in

max_updates IN the TTradeUpdateSetting structure in DriverParameterSettings.h.

Used in Frame 2 as the point in time for identifying a particular trade for an
account.

Non-uniform over pre-populated interval.

start_trade_dts IN Used in Frame 3 as the point in time for identifying trades for a particular
symbol.

Uniform over pre-populated interval.

For Frame 1, this parameter is ignored, so it is set to an empty date.

Used in Frame 3 as the security symbol for which to find trades. Uniformly

symbol IN chosen over all securities. For the other frames, symbol is set to the empty string.

Array of non-uniform randomly chosen trade IDs used by Frame 1 to identify a
trade_id[] IN set of particular trades. For the other frames, array elements are set to 0. For
Frame 1, max_trades indicates how many elements are to be used in the array.

frame_executed ouT Confirmation of which frame was executed.

is_cash][| OouT Indicates whether the trades were cash transactions.

is_market][] ouT Indicates whether the trades used in Frame 1 were market order trades.
num_found OouT Number of trade rows found for frames 1, 2 and 3.

num_updated OouT Number of trade rows modified for frames 1, 2 and 3.

status ouT Code indicating the execution status for this transaction.

trade_list][| ouT List of trade IDs found in Frames 2 and 3.

10.6.10.2 Trade-Update Transaction Database Footprint

The Trade-Update Database Footprint is as follows:

Trade-Update Database Footprint
Frame
Table Column
1* 2% 3*
CT_AMT Return* [Return* Return*®
CASH_TRANSACTION CT_DTS Return* [Return* Return*®
sLk
CT_NAME Return* |Return® [MOdify
eturn
SECURITY S_NAME Return
SE_AMT Return Return Return
SETTLEMENT SE_CASH_DUE_DATE |Return Return Return
SE_CASH_TYPE Return gOdlfy Return
eturn
T_BID_PRICE Return Return
T_CA_ID Return
T_DTS Reference |Reference
TRADE -
T_EXEC_NAME Modify |Return [Retumn
eturn
T_ID Return Return
T_IS_CASH Return Return Return

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 230 of 271

T_QTY Return
T_S SYMB Reference
T_TRADE_PRICE Return Return Return
T_TT_ID Return
TH_DTS Return Return Return
TRADE_HISTORY
TH_ST_ID Return Return Return
TT_IS_MRKT Return
TRADE_TYPE
TT_NAME Return
. Start Start Start
Transaction Control Commit |Commit Commit

10.6.10.3 Trade-Update Transaction Frame 1 of 3

The first Frame is responsible for retrieving information about the specified array of trade IDs and
modifying some data from the TRADE table.

The VGenTxnHarness controls the execution of Frame 1 as follows:

{
if(frame_to_execute == 1)
{
invoke (Trade-Update_Frame-1)
if (num_found != max_trades) then
{
status = -1011
}
if (num_updated != max_updates) then
{
status = -1012
}

frame_executed =1

}
[...]

Trade-Update Frame 1 of 3 Parameters:

Parameter Direction Description

Number of valid array elements in trade_id[]. The default value (20)
max_trades IN is set in TTradeUpdateSettings.MaxRowsFramel in
DriverParameterSettings.h.

Maximum number of TRADE rows to modify. The default value (20)
max_updates IN is set in TTradeUpdateSettings.MaxRowsToUpdateFramel in
DriverParameterSettings.h. Must be <= max_trades.

trade_id[] IN The array of trade IDs picked non-uniformly over the set of pre-
populated trades.

bid_price]] OuT The requested unit price.

cash_transaction_amount[] |OUT Amount of the cash transaction.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 231 of 271

cash_transaction_dts]] ouT Date and time stamp of when the transaction took place.

cash_transaction_name[] ouT Description of the cash transaction.

exec_name| | ouT Name of the person who executed the trade.

is_cash[| ouT Flag that is non-zero for a cash trade, zero for a margin trade.
is_market][] ouT Flag that is non-zero for a market trade, zero for a limit trade.
num_found OouT Number of TRADE rows returned; should be the same as max_trades.

Number of TRADE rows that were modified; should be the same as

num_updated ouT max_updates.

settlement_amount]|] ouT Cash amount of settlement.

settlement_cash_due_date[] [OUT Date by which customer or brokerage must receive the cash.
settlement_cash_type][| ouT Type of cash settlement involved: cash or margin.

status ouT Code indicating the execution status for this frame.
trade_history_dts[][3] ouT Array of timestamps of when the trade history was updated.
trade_history_status_id[][3] |OUT Array of status type identifiers.

trade_price]] OuT Unit price at which the security was traded.

Trade-Update_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array and modify some of the TRADE rows.

declare i int
declare ex name char(49)

start transaction

num_found = 0

num_updated = 0

for (i = 0; i++; i < max_trades) do {
// Get trade information
if (num updated < max_updates) then {

// Modify the TRADE row for this trade.

select

ex_name = T_EXEC_NAME
from

TRADE
where

T _ID = trade_id[i]

num_found = num_found + row_count

if (ex_name like “% X %”) then

select ex name = REPLACE (ex_name, “ X “, “ ")
else

select ex name = REPLACE (ex_name, “ “, " X ")

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 232 of 271

Trade-Update_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array and modify some of the TRADE rows.

update

TRADE
set

T EXEC_NAME = ex_ name
where

T _ID = trade id[i]

num_updated = num_updated + row_count

// Will only return one row for each trade

select

bid price[i] T_BID_PRICE,

T EXEC_NAME,

exec_name[i]
is_cash[i] = T_IS_CASH,
is_market[i] = TT_IS_MRKT,
trade price[i] = T TRADE_PRICE
from
TRADE,
TRADE_TYPE
where
T _ID = trade_id[i] and
T TT ID = TT ID

// Get settlement information

// Will only return one row for each trade

select
settlement amount[i] = SE_AMT,
settlement cash due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_type[i] SE_CASH_TYPE
from

SETTLEMENT
where

SE_T_ID = trade_id[i]

// get cash information if this is a cash transaction
// Will only return one row for each trade that was a cash transaction

if (is_cash[i]) then {

select
cash_transaction_amount[i] = CT_AMT,
cash_transaction_dts[i] = CT_DTS,
cash_transaction name[i] = CT_NAME

from
CASH_TRANSACTION

where

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 233 of 271

Trade-Update_Frame-1 Pseudo-code: Get trade information for each trade ID in
the trade_id array and modify some of the TRADE rows.

CT T ID = trade id[i]
}
// read trade_history for the trades
// Will return 2 or 3 rows per trade

select first 3 rows

trade_history dts[i][] TH_DTS,

trade_history status_id[i][]

TH ST ID
from
TRADE_HISTORY
where
TH T ID = trade id[i]
order by
TH_DTS

} // end for loop

commit transaction

10.6.10.4 Trade-Update Transaction Frame 2 of 3

The second Frame returns information for the first N trades executed for the specified customer account
between a specified start time and end time and modifies the SETTLEMENT row for each trade returned.
If the specified start time is too close to the specified end time, then it is possible that fewer than N trades
may be returned and SETTLEMENT rows modified.

The VGenTxnHarness controls the execution of Frame 2 as follows:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 234 of 271

[...]

else if(frame_to_execute == 2)

{

invoke (Trade-Update_Frame-2)

if (num_updated != num_found) then

-1022

if (num_found > max_trades) then

if (num_updated == 0) then

-1022

{
status = -1021
}
if (num_updated < 0) then
{
status =
}
{
status =
}
{
status = +1021
}

frame_executed

}
[...]

2

Trade-Update Frame 2 of 3 Parameters:

Parameter Direction Description
A single customer is chosen non-uniformly by customer tier, from
the range of available customers. A single customer account id, as

acct_id IN defined by CA_ID in CUSTOMER_ACCOUNT, is chosen at
random, uniformly, from the range of customer account ids for the
chosen customer.

end_trade_dts IN Point in time at which to stop the search for N trades.
Maximum number of trades to return. The default value (20) is set

max_trades IN in TTradeUpdateSettings. MaxRowsFrame2 in
DriverParameterSettings.h.
Maximum number of SETTLEMENT rows to modify. The default

max updates IN value (20) is set in

-up TTradeUpdateSettings.MaxRowsToUpdateFrame2 in

DriverParameterSettings.h.

start_trade_dts IN Point in time from which to search for N trades.

bid_price]] OuT The requested unit price.

cash_transaction_amount|] ouT Amount of the cash transaction.

cash_transaction_dts]] ouT Date and time stamp of when the transaction took place.

cash_transaction_name[] ouT Description of the cash transaction.

exec_name| | ouT Name of the person who executed the trade.

is_cash[| OuT Flag that is non-zero for a cash trade, zero for a margin trade.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 235 of 271

num_found OouT Number of trade rows returned.

num_updated ouT Number of SETTLEMENT rows that were modified.
settlement_amount]|] ouT Cash amount of settlement.

settlement_cash_due_date] | ouT Date by which customer or brokerage must receive the cash.
settlement_cash_type][| ouT Type of cash settlement involved: cash or margin.

status ouT Code indicating the execution status for this frame.
trade_history][]3] ouT Array of timestamps of when the trade history was updated.
trade_history_status_id[][3] ouT Array of status type identifiers.

trade_list[] ouT Trade ID actually used for retrieving data.

trade_price|] ouT Unit price at which the security was traded.

Trade-Update_Frame-2 Pseudo-code

Get trade information for the first N

trades of a given customer account from a given point in time and modify

some of the SETTLEMENT rows.

declare i int
declare cash_type char(40)

start transaction

// Get trade information
// Will return between 0 and max_trades rows

select first max_trades rows

bid price[] = T BID PRICE,
exec_name[] = T _EXEC_ NAME,
is _cash[] = T IS CASH,
trade list[] =T ID,
trade price[] = T TRADE PRICE
from
TRADE
where

T CA ID = acct_id and
T DTS >= start trade dts and
T DTS <= end trade dts
order by
T_DTS asc

num_found = row_count

0

num_updated

// Get extra information for each trade in the trade list.
for (i = 0; i < num_found; i++) {
if (num updated < max_updates) then {
// Modify the SETTLEMENT row for this trade.
select

cash_type = SE_CASH_TYPE

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 236 of 271

Trade-Update_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time and modify
some of the SETTLEMENT rows.

from
SETTLEMENT
where

SE_T_ID = trade_list[i]

if (is_cash[i]) then {
if (cash_type == “Cash Account”) then
cash_type = “Cash”

else
cash_type = “Cash Account”
}
else
if (cash_type == “Margin Account”) then
cash_type = “Margin”
else
cash_type = “Margin Account”
}
update
SETTLEMENT

set
SE_CASH_TYPE = cash_type
where

SE_T_ID = trade_list[i]

num_updated = num_updated + row_count

// Get settlement information

// Will return only one row for each trade

select

settlement amount[i] SE_AMT,
settlement_cash due_date[i] = SE_CASH_DUE_DATE,
SE_CASH_TYPE

settlement cash type[i]
from

SETTLEMENT
where

SE_T_ID = trade_list[i]

// get cash information if this is a cash transaction
// Should return only one row for each trade that was a cash transaction

if (is_cash[i]) then {

select
cash_transaction_amount[i] = CT_AMT,
cash_transaction_dts[i] = CT_DTS
cash_transaction name[i] = CT_NAME

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 237 of 271

Trade-Update_Frame-2 Pseudo-code : Get trade information for the first N
trades of a given customer account from a given point in time and modify
some of the SETTLEMENT rows.

from
CASH_TRANSACTION
where

CT T ID = trade list[i]

// read trade_history for the trades
// Will return 2 or 3 rows per trade

select first 3 rows

trade_history dts[i][] TH_DTS,

TH_ST ID

trade_history status_id[i][]
from

TRADE_HISTORY
where

TH T ID = trade list[i]
order by

TH_DTS

} // end for loop

commit transaction

10.6.10.5 Trade-Update Transaction Frame 3 of 3

The third Frame returns information for the first N trades for a given security between a specified start
time and end time and modifies the related CASH_TRANSACTION row for each trade returned. If the
specified start time is too close to the specified end time, then it is possible that fewer than N trades may
be returned and CASH_TRANSACTION rows modified.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 238 of 271

[...]

The VGenTxnHarness controls the execution of Frame 3 as follows:

else if(frame_to_execute == 3)
{
invoke (Trade-Update_Frame-3)
if (num_found == 0) then
{
status = +1031
}
if (num_found > max_trades) then
{
status = +1032
}

frame_executed

3

Trade-Update Frame 3 of 3 Parameters:

Parameter Direction Description

end_trade_dts IN Point in time at which to stop search.

max_acct_id IN Maximum customer account identifier.

max trades IN Number of trades to find. The default valge (ZQ) is setin .

- TTradeUpdateSettings.MaxRowsFrame3 in DriverParameterSettings.h.

Number of CASH_TRANSACTION rows to modify. The default value

max_updates IN (20) is set in TTradeUpdateSettings.MaxRowsToUpdateFrame3 in
DriverParameterSettings.h.

start_trade_dts IN Point in time from which to start search.

symbol IN Security for which to find trades.

acct_id[] ouT Array of accounts for which the trades were done.

cash_transaction_amount|] ouT Amount of the cash transaction.

cash_transaction_dts]] ouT Date and time stamp of when the transaction took place.

cash_transaction_name[] ouT Description of the cash transaction.

exec_name] | ouT Array of name of the person who executed each of the trades.

is_cash[| OuT Flag that is non-zero for a cash trade, zero for a margin trade.

num_found OouT Number of TRADE rows returned.

num_updated OouT Number of CASH_TRANSACTION rows modified.

price[| OuT Array of the price that was paid in each trade.

quantity]] ouT Array of the quantity of security bought in each trade.

s_name|] ouT Name of the security traded.

settlement_amount]|] ouT Cash amount of settlement.

settlement_cash_due_date] | ouT Date by which the customer or brokerage must receive the cash.

settlement_cash_type][| ouT Type of cash settlement involved: cash or margin.

status ouT Code indicating the execution status for this frame.

trade_dts]] ouT Array of the timestamps for when the trade was requested.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 239 of 271

trade_history_dts][][3] ouT Array of timestamps of when the trade history was updated.
trade_history_status_id[][3] ouT Array of status type identifiers.

trade_list[] ouT Array of T_IDs found.

type_name|] ouT Array of the trade type name for each trade.

trade_type[| ouT Array of the trade type for each trade.

Trade-Update_Frame-3 Pseudo-code: Get a list of N trades executed for a
certain security starting from a given point in time and modify some of the

CASH_TRANSACTION rows.

declare i int

declare ct_name char(100)

start transaction

// Will return between 0 and max_trades rows.

select first max_trades rows

acct_id[] = T CA_ID,
exec_name[] = T_EXEC_NAME,
is_cash[] = T_IS_CASH,
pricel] = T TRADE PRICE,
quantity[] = T _QTY,
S_name][] = S_NAME,
trade_dts[] = T DTS,
trade_list[] = T _ID,
trade_type[] = T_TT_ID,
type_name[] = TT_NAME
from
TRADE,

TRADE_TYPE,
SECURITY

where

T_S_SYMB = symbol and
T_DTS >= start_trade_dts and

T_DTS <= end_trade_dts and

TT _ID = T TT_ID and
S_SYMB = T_S_SYMB

// The max acct_id “where” clause is a hook used for engineering purposes

// only and is not required for benchmark publication purposes.

// and

//T _CA_ID <= max acct_id

order by
T_DTS asc

num_found = row_count

num_updated = 0

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 240 of 271

Trade-Update_Frame-3 Pseudo-code: Get a list of N trades executed for a
certain security starting from a given point in time and modify some of the
CASH_TRANSACTION rows.

// Get extra information for each trade in the trade list.
for (i = 0; i < num_found; i++) {
// Get settlement information

// Will return only one row for each trade

select
settlement_ amount[i] = SE_AMT,
settlement_cash due_date[i] = SE_CASH_DUE_DATE,

settlement_cash_type[i] SE_CASH_TYPE
from

SETTLEMENT
where

SE_T_ID = trade_list[i]

// get cash information if this is a cash transaction
// Will return only one row for each trade that was a cash transaction
if (is_cash[i]) then {
if (num updated < max_updates) then {
// Modify the CASH_TRANSACTION row for this trade.
select
ct_name = CT_NAME
from
CASH_TRANSACTION
where

CT T ID = trade list[i]

if (ct_name like “% shares of %”) then

ct_name = type_name[i] + “ “ + quantity[i] + “ Shares of “ + s _name[i]
else

ct_name = type_name[i] + “ “ + quantity[i] + “ shares of “ + s_name[i]
update

CASH_TRANSACTION
set

CT_NAME = ct_name
where

CT T ID = trade list[i]

num_updated = num_updated + row_count

}

select
cash_transaction_amount[i] = CT_AMT,
cash_transaction_dts[i] = CT_DTS
cash_transaction name[i] = CT_NAME

from

CASH_TRANSACTION

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 241 of 271

10.6.11

Trade-Update_Frame-3 Pseudo-code: Get a list of N trades executed for a
certain security starting from a given point in time and modify some of the
CASH_TRANSACTION rows.

where

CT T ID = trade list[i]

// read trade_history for the trades
// Will return 2 or 3 rows per trade

select first 3 rows

trade_history dts[i][] TH_DTS,

TH_ST ID

trade_history status_id[i][]
from

TRADE_HISTORY
where

TH T ID = trade list[i]
order by

TH_DTS asc

} // end for loop

commit transaction

The Data-Maintenance Transaction

The Data-Maintenance Transaction is designed to emulate the periodic modifications to data that is
mainly static and used for reference. This is analogous to updating

Data-Maintenance is invoked by VGenDriverDM. It consists of one Frame. This Transaction runs once
per minute. It simulates periodic modifications to data tables that are mainly used for reference by the

other Transactions. The Driver provides as input the name of the table to be modified by the
Transaction.

Each time this Transaction is run the Driver alters the next table in the list. This means that each table in
the list will only get altered once every twelve minutes.

The following is the list of table names that can be passed as arguments to this Transaction:
e ACCOUNT_PERMISSION
e ADDRESS
o COMPANY
e CUSTOMER
o CUSTOMER_TAXRATE
e DAILY MARKET
e EXCHANGE
e FINANCIAL
e NEWS_ITEM
e SECURITY
e TAXRATE

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 242 of 271

WATCH_ITEM
The Data-Maintenance Transaction consists of a single Frame.

The intent of the Transaction is to alter data tables that would not otherwise be written to by the
benchmark. The VGenTxnHarness will pick the next table in the list to alter, each time this Transaction
is run.

Below is a description of what kind of alteration is done to each table when that table is selected:

1. ACCOUNT_PERMISSION - The VGenTxnHarness will pass a customer account identifier to the

Data-Maintenance Transaction. Fach customer account will have at least one row in the
ACCOUNT_PERMISSION table. The first ACCOUNT_PERMISSION row for the customer will be

found (The Sponsor may decide which row is first). That row in the ACCOUNT_PERMISSION table
will have an Access Control List (AP_ACL). That access control list will be updated to 1111 if it is not
already 1111. If the access control list is already 1111, the access control list will be updated to 0011.

2. ADDRESS - 67% of the time VGenTxnHarness will pass a customer identifier to the Data-
Maintenance Transaction. The other 33% of the time VGenTxnHarness will pass a company

identifier to the Data-Maintenance Transaction. That customer’s or company’s ADDRESS will be
modified. The AD_LINE2 will be set to “Apt. 10C” or to “Apt. 22” if it was already “Apt. 10C”".

3. COMPANY - The VGenTxnHarness will pass a company identifier to the Data-Maintenance

Transaction. That company’s Standard and Poor credit rating will be updated to “ABA” or to “AAA”
if it was already “ABA”.

4. CUSTOMER - The VGenTxnHarness will pass a customer identifier to the Data-Maintenance

Transaction. The ISP part of that customer’s second email address (C_EMAIL_2) will be updated to
“@mindspring.com” or to “@earthlink.com” if it was already “@mindspring.com”.

5. CUSTOMER_TAXRATE - The VGenTxnHarness will pass a customer identifier to the Data-

Maintenance Transaction. The country tax rate will be modified cyclically to the next rate in the set
{“US1”, “US2”, “US3”, “US4”, “US5”} or in the set {“CN1”, “CN2”, “CN3”, “CN4"}, depending on
the customer’s country.

6. DAILY_MARKET - The VGenTxnHarness will pass a security symbol, a day of the month, and a

random number (positive or negative) to the Data-Maintenance Transaction. All rows in
DAILY_MARKET with matching symbol and day of the month will be updated by adding the
random number to DM_VOL.

7. EXCHANGE - The VGenTxnHarness will not pass any additional information to the Data-

Maintenance Transaction. There are only four rows in the EXCHANGE table. Every row will have
its EX_DESC updated. If EX_DESC does not already end with “LAST UPDATED “ and a date and
time, that string will be appended to EX_DESC. Otherwise the date and time at the end of EX_DESC
will be updated to the current date and time.

8. FINANCIAL — The VGenTxnHarness will pass a company identifier to the Data-Maintenance

Transaction. That company’s FI_QTR_START_DATEs will be updated to the second of the month
or to the first of the month if the dates were already the second of the month.

9. NEWS_ITEM - The VGenTxnHarness will pass a company identifier to the Data-Maintenance
Transaction. The NI_DTS for that company’s news items will be updated by one day.

10. SECURITY - The VGenTxnHarness will pass in a security symbol. That security’s S_ EXCH_DATE
will be incremented by one day.

11. TAXRATE - The EGenTxnHarness will pass in tax rate identifier to the Data-Maintenance

Transaction. That tax rate’s TX_NAME will be updated so that a substring will be toggled between
“Tax” and “tax”.

12. WATCH_ITEM - The EGenTxnHarness will pass in a customer identifier to the Data-Maintenance
Transaction. The middle security in the customer's WATCH_ITEM list will be selected. It will be

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 243 of 271

modified to be the next symbol in the SECURITY table that is not already in the customer’s
WATCH_ITEM list.

10.6.11.1 Transaction Parameters

The inputs to the Data-Maintenance Transaction are generated by the VGenDriverDM in DM.cpp. The
data structures defined in TxnHarnessStructs.h must be used to communicate the input and output

parameters.
Data-Maintenance Interfaces Module/Data Structure
Input generation GenerateDataMaintenancelnput()

TDataMaintenanceTxnInput

Transaction Input/Output Structure TDataMaintenance TxnOutput

TDataMaintenanceFramellnput

Frame 1 Input/Qutput Structure TDataMaintenanceFramelOutput

Data-Maintenance Transaction Parameters:

Parameter Direction |Description

A single customer is chosen non-uniformly by customer tier, from the
range of available customers. A single customer account id, as
defined by CA_ID in CUSTOMER_ACCOUNT, is chosen at random,
uniformly, from the range of customer account ids for the chosen
customer. This input is used when table_name is
“ACCOUNT_PERMISSION”, otherwise it is set to 0.

acct_id IN

A number randomly selected from the possible customer identifiers
as defined by C_ID in CUSTOMER table using a uniform
distribution. This input is always used when table_name is
“CUSTOMER”, or “CUSTOMER_TAXRATE”. This input (instead of
co_id) is used 67% of the time when table_name is “ADDRESS”.
Otherwise this input is set to 0.

c_id IN

A number randomly selected from the possible company identifiers
as defined by CO_ID in COMPANY table using a uniform
distribution. This input is always used when table_name is
“COMPANY”, “FINANCIAL” or “NEWS_ITEM". This input (instead
of c_id) is used 33% of the time when table_name is “ADDRESS".
Otherwise this input is set to 0.

co_id IN

A number randomly selected from 1 to 31 with a uniform
distribution. This input is only used when table_name is

day_of month [IN “DAILY_MARKET”, otherwise it is set to 0. When table_name is
“DAILY_MARKET” all the rows with this day of the Month in
DM_DATE are modified.

A string containing a Security Symbol. The security symbol string
follows the definition of S_SYMB in the SECURITY table. This input
is only used when table_name is “DAILY_MARKET”, or
“SECURITY”, otherwise it is set to empty string.

symbol IN

A string containing the name of the table to be altered. Valid values
are “ACCOUNT_PERMISSION”, “ADDRESS”, “COMPANY”,
table_name IN “CUSTOMER”, “CUSTOMER_TAXRATE”, “DAILY_MARKET”,
“EXCHANGE”, “FINANCIAL”, “NEWS_ITEM”, “SECURITY". This
input is always used.

A randomly selected positive or negative number. This number is
only used when the table_name is “DAILY_MARKET”, otherwise

vol_incr IN vol_incr is set to 0 and ignored. When table_name is
“DAILY_MARKET” this number is added to DM_VOL.
status ouT Code indicating the execution status of this transaction.

10.6.11.2 Data-Maintenance Transaction Database Footprint

This Transaction includes a mix of Reference, Modify, Remove and Add operations. The Transaction
implementation would potentially require access to the following database tables and columns.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 244 of 271

Data-Maintenance Database Footprint
Frame
Table Name Column
1
Reference *
AP_ACL Modify *
ACCOUNT_PERMISSION AP_CA_ID Reference *
Count(*) Reference *
AD_ID Reference *
ADDRESS *
Reference
AD_LINE2 Modify (1 row)*
CO_AD_ID Reference*
COMPANY CO_ID Reference *
Reference *
CO_SP_RATE Modify (1 row)*
C_AD_ID Reference *
Reference *
CUSTOMER C_EMAIL_2 Modify (1 row)*
C_ID Reference *
CX_C_ID Reference *
CUSTOMER_TAXRATE Reference*
CX_TX_ID .
Modify (1 row)*
DM_DATE Reference *
*
DAILY MARKET DM_S_SYMB Reference
Reference *
DM_VOL Modify *
Reference *
EX_DESC .
EXCHANGE Modify *
Count(*) Reference *
FI_CO_ID Reference *
FINANCIAL FI_QTR_START DATE |Reference”
QTR - Modify *
Count(*) Reference *
S_EXCH_DATE Modify *
SECURITY
S SYMB Reference *
NI_DTS Modify *
NEWS_ITEM
NI_ID Reference *
TX_ID Reference *
TAXRATE *
Reference
TX_NAME Modify *
Reference *
WIS SYMB o
WATCH_ITEM Modify
WI_WL_ID Reference *
. Start
Transaction Control Commit

10.6.11.3 Data-Maintenance Transaction Frame 1 of 1

The VGenTxnHarness controls the execution of Frame 1 as follows:

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 245 of 271

invoke (Data-Maintenance_Frame-1)

}

Data-Maintenance Frame 1 of 1 Parameters:

Parameter Direction |[Description

A single customer is chosen non-uniformly by customer tier, from
the range of available customers. A single customer account id, as
defined by CA_ID in CUSTOMER_ACCOUNT, is chosen at
random, uniformly, from the range of customer account ids for the
chosen customer. This input is used when table_name is
“ACCOUNT_PERMISSION”, otherwise it is set to 0.

acct_id IN

A number randomly selected from the possible customer identifiers
as defined by C_ID in CUSTOMER table using a uniform

cid IN distribution. This input is always used when table_name is
“CUSTOMER”, or “CUSTOMER_TAXRATE". This input (instead of
co_id) is used 67% of the time when table_name is “ADDRESS”.
Otherwise this input is set to 0.

A number randomly selected from the possible company identifiers
as defined by CO_ID in COMPANY table using a uniform

IN distribution. This input is always used when table_name is
“COMPANY”, “FINANCIAL” or “NEWS_ITEM”. This input
(instead of c_id) is used 33% of the time when table_name is
“ADDRESS”. Otherwise this input is set 0.

co_id

A number randomly selected from 1 to 31 with a uniform
distribution. This input is only used when table_name is
day_of_month [IN “DAILY_MARKET”, otherwise it is set to 0. When table_name is
“DAILY_MARKET” all the rows with this day of the Month in
DM_DATE are modified.

A string containing a Security Symbol. The security symbol string
follows the definition of S_SYMB in the SECURITY table. This input
is only used when table_name is “DAILY_MARKET”, or
“SECURITY”, otherwise it is set to empty string.

symbol IN

A string containing the name of the table to be altered. Valid values
are “ACCOUNT_PERMISSION”, “ADDRESS”, “COMPANY”,
table_name IN “CUSTOMER”, “CUSTOMER_TAXRATE”, “DAILY_MARKET”,
“EXCHANGE”, “FINANCIAL”, “SECURITY”. This input is always
used.

A randomly selected positive or negative number. This number is
only used when the table_name is “DAILY_MARKET”, otherwise
vol_incr is set to 0 and ignored. When table_name is
“DAILY_MARKET” this number is added to DM_VOL.

vol_incr IN

status ouT Code indicating the execution status of this Frame.

Data-Maintenance Frame 1 Pseudo-code: Update a table

/* Check which table is to be updated. */
if (strcmp(table_name, “ACCOUNT_PERMISSION”)==0) ({

//ACCOUNT_PERMISSION
//Update the AP_ACL to “1111” or “0011” in rows for a

//customer account of c_id.

acl = NULL

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 246 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

select first 1 row
acl = AP_ACL
from
ACCOUNT_PERMISSION
where
AP_CA_ID = acct_id
order by
AP_ACL DESC

if (acl != “1111") then {
update
ACCOUNT_PERMISSION
set
AP_ACL="1111"
where
AP_CA ID = acct_id and
AP_ACL = acl
} else { /*ACL is *“1111” change it to “0011” */
update
ACCOUNT_PERMISSION
set
AP_ACL = ”0011"
where
AP_CA ID = acct_id and
AP_ACL = acl

}
} else if (strcmp(table_name,”ADDRESS”)==0) {
// ADDRESS

// Change AD_LINE2 in the ADDRESS table for
// the CUSTOMER with C_ID of c_id or the COMPANY with CO_ID of co_id.

line2 = NULL
ad_id = 0
// Customer ID provided
if (c_id 1= 0) {
select
line2 = AD LINE2,
ad_id = AD_ID
from
ADDRESS, CUSTOMER
where
AD ID = C_AD ID and
C_ID = c_id
}
// Company ID provided

else {

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 247 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

select
line2 = AD LINE2,
ad _id = AD ID
from
ADDRESS, COMPANY
where
AD ID = CO_AD ID and
CO_ID = co_id

}
if (strcmp(line2, “Apt. 10C”) != 0) {
update
ADDRESS
set
AD_LINE2 = “Apt. 10C”
where
AD ID = ad_id
} else {
update
ADDRESS
set
AD_LINE2 = “Apt. 22"
where
AD ID = ad_id
}
} else if (strcmp(table_name,”COMPANY”)==0) {
// COMPANY

// Update a row in the COMPANY table identified
// by co_id, set the company’s Standard and Poor
// credit rating to “ABA” or to “AAA".
sprate = NULL
select
sprate = CO_SP_RATE
from
COMPANY
where

CO_ID = co_id

if (strcmp(sprate, “ABA") != 0) {
update
COMPANY
set
CO_SP_RATE = “ABA”
where

CO_ID = co_id
} else {
update
COMPANY

set

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 248 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

CO_SP_RATE = “AAA”
where
CO_ID = co_id
}
} else if (strcmp(table name, “CUSTOMER”) == 0) {
// CUSTOMER
// Update the second email address of a CUSTOMER
// identified by c_id. Set the ISP part of the customer’s
// second email address to “@mindspring.com”
// or *“@earthlink.com”.
email2 = NULL
len = 0
lenMindspring = strlen(“@mindspring.com)
select
email2 = C_EMAIL 2
from
CUSTOMER
where
C_ID = c_id
len = strlen(email2)
if (((len — lenMindspring) > 0) and
(strcmp(substr(email2,len-lenMindspring,
lenMindspring),”@mindspring.com”) == 0)) {
update
CUSTOMER
set
C_EMAIL_ 2 = substring(C_EMAIL 2, 1,
charindex(“@”,C_EMAIL 2)) + ‘earthlink.com’
where
C_ID = c_id
} else { /* set to @mindspring.com */
update
CUSTOMER
set
C_EMAIL_ 2 = substring(C_EMAIL 2, 1,
charindex(“@”,C_EMAIL 2)) + ‘mindspring.com’
where
C_ID = c_id
}
} else if (strcmp(table name, “CUSTOMER_TAXRATE”) == 0) {

// CUSTOMER_TAXRATE

// Find the customer’s current country tax rate code.

// Calculate cyclically the next tax rate code for the customer’s country.
// Update to the new country tax rate code.

declare old_tax rate char(3),

new_tax_rate char(3),

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 249 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

tax_num int

select
old _tax_rate = CX_TX ID
from
CUSTOMER_TAXRATE
where
CX_C_ID = c_id and
(CX_TX_ID like “US%” or CX_TX_ID like “CN%")

if (left(old_tax _rate,2) = “US”) {
if (old_tax rate = “US5") {
new_tax_rate = “US1l”
}
else { // Change string US<n> to US<n+1> for n=1, 2, 3, 4
tax_num = CODE(right(old tax rate,l)) — CODE(“0”) + 1
new_tax_rate = “US” + CHAR(tax_num + CODE(“0"))
}
else {
if (old_tax rate = “CN4") {
new_tax rate = “CN1”
}
else { // Change string CN<n> to CN<n+1> for n=1, 2, 3
tax_num = CODE(right(old tax rate,l1)) — CODE(“0”) + 1
new_tax_rate = “CN” + CHAR(tax_num + CODE(“0"))
}
}
update

CUSTOMER_TAXRATE
set
CX_TX_ID = new_tax rate
where
CX_C_ID = c_id and
CX_TX_ID = old tax rate

} else if (strcmp(table name, “DAILY MARKET”) == 0) {
// DAILY MARKET
// A security symbol, a day in the month and a
// random positive or negative number are passed into
// the Data-Maintenance function, when table_name
// is DAILY MARKET. The DM_VOL column in the DAILY MARKET
// table will be updated by adding the random positive or
// negative number.
// The rows to be updated are those for the security
// whose symbol was passed in, and for that day in the

// month that was passed in.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 250 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

update

DAILY_ MARKET
set

DM _VOL = DM_VOL + vol incr
where

DM_S_SYMB = symbol

and substring ((convert(char(8),DM DATE,3),1,2) = day_of month

} else if (strcmp(table name, “EXCHANGE”) == 0) {

// EXCHANGE
// Other than the table_name, no additional
// parameters are used when the table name is EXCHANGE.
// There are only four rows in the EXCHANGE table. Every
// row will have its EX_DESC updated. If EX_DESC does not
// already end with “LAST UPDATED “ and a date and time,
// that string will be appended to EX DESC. Otherwise the
// date and time at the end of EX_DESC will be updated

// to the current date and time.
rowcount = 0

select

rowcount = count(*)
from

EXCHANGE
where

EX DESC like “$LAST UPDATED%”

if (rowcount == 0) {
update
EXCHANGE
set
EX _DESC = EX DESC + “ LAST UPDATED “ + getdatetime()
} else {
update
EXCHANGE
set
EX_DESC = substring(EX_DESC,1,
len(EX_DESC)-len(getdatetime())) + getdatetime()
}
} else if (strcmp(table_ name,”FINANCIAL”) == 0) {
// FINANCIAL
// Update the FINANCIAL table for a company identified by
// co_id. That company’s FI_QTR_START_DATEs will be
// updated to the second of the month or to the first of
// the month if the dates were already the second of the
// month.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 251 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

rowcount = 0
select
rowcount = count(*)
from
FINANCIAL
where
FI_CO_ID = co_id and
substring(convert(char(8),
FI_QTR_START DATE,2),7,2) = “01”
if (rowcount > 0) {
update
FINANCIAL
set
FI_QTR_START DATE = FI_QTR_START_DATE + 1 day
where
FI_CO_ID = co_id
} else {
update
FINANCIAL
set
FI_QTR_START DATE = FI_QTR_START_DATE — 1 day
where
FI_CO_ID = co_id
}
} else if (strcmp(table name, “NEWS_ITEM”) == 0) {
// NEWS_ITEM
// Update the news items for a specified company.
// Change the NI_DTS by 1 day.
update
NEWS_ITEM
set

NI_DTS = NI DTS + lday

where
NI ID = (

select
NX_ NI ID

from
NEWS_XREF

where
NX_CO_ID = @co_id)

} else if (strcmp(table_name,”SECURITY”) == 0) {

// SECURITY
// Update a security identified symbol, increment
// S_EXCH_DATE by 1 day.
update
SECURITY

set

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 252 of 271

Data-Maintenance Frame 1 Pseudo-code: Update a table

S _EXCH DATE = S_EXCH DATE + lday
where
S_SYMB = symbol
}

commit transaction

10.6.12 The Trade-Cleanup Transaction

The Trade-Cleanup Transaction is used to cancel any pending or submitted trades from the database.

The Sponsor may use VGenTxnHarness to call Trade-Cleanup or may invoke the Transaction by other
means.

Trade-Cleanup is used to bring the database to a known state before the start of a Test Run.
The Trade-Cleanup Transaction consists of a single Frame. The Trade-Cleanup Transaction may be
implemented using more than one Database Transaction.

10.6.12.1 Trade-Cleanup Transaction Parameters

The inputs to the Trade-Cleanup Transaction are supplied by the Sponsor. The data structures defined
in TxnHarnessStructs.h must be used to communicate the input and output parameters.

Trade-Cleanup Interfaces Module/Data Structure

TTradesCleanupTxnInput

Transaction Input/Output Structure TTradesCleanupTxnOutput

TTradesCleanupFramellnput

Frame 1 Input/Output Structure TTradesCleanupFramelOutput

Trade-Cleanup Transaction Parameters:

Parameter Direction Description
. Identifier for the “Canceled” trade order status — passed in for ease of
st_canceled_id IN .
benchmarking.
L Identifier for the “Pending” trade order status — passed in for ease of
st_pending_id IN benchmarking.
st_submitted_id IN Identifier for the “Submitted” trade order status — passed in for ease of
benchmarking.

The trade identifier to be used as the start for handling outstanding submitted

trade_id IN and/or pending limit trades.

status ouT Code indicating the execution status for this transaction.

10.6.12.2 Trade-Cleanup Transaction Database Footprint

The Trade-Cleanup Database Footprint is as follows:

Trade-Cleanup Database Footprint

Frame
Table Column
1
TRADE T_DTS Modify
T 1D Reference
T_ST_ID Modify

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 253 of 271

TRADE_HISTORY Row(s) Add

Row(s) Remove

TRADE_REQUEST

TR_T_ID |Reference

Start

Transaction Control Commit

10.6.12.3 Trade-Cleanup Transaction Frame 1 of 1

The database access methods used in Frame 1 are a mixture of References, Modifies, Removes and
Adds.

If VGenTxnHarness is used to invoke the Frame, it controls the execution of Frame 1 as follows:

{
invoke (Trade-Cleanup_Frame-1)
}
Trade-Cleanup Frame 1 of 1 Parameters:
Parameter Direction |Description
. Identifier for the “Canceled” trade order status — passed in for ease of
st_canceled_id IN .
benchmarking.
L Identifier for the “Pending” trade order status — passed in for ease of
st_pending_id IN benchmarking. & P
st_submitted_id IN Identifier for the “Submitted” trade order status — passed in for ease of
benchmarking.
. The trade identifier to be used as the start for handling outstanding submitted
trade_id IN . ..
and/or pending limit trades.
status ouT Code indicating the execution status for this frame.

Trade-Cleanup_ Frame-1 Pseudo-code: cancel pending and submitted trades

start transaction

Declare t_id TRADE_T
Declare tr_t_id TRADE_T
Declare now_dts DATETIME

/* Find pending trades from TRADE REQUEST */

declare pending list for
select
TR T ID
from
TRADE_REQUEST
order by
TR T ID

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 254 of 271

Trade-Cleanup_Frame-1 Pseudo-code: cancel pending and submitted trades

open pending list

/* Insert a submitted followed by canceled record into TRADE_HISTORY, mark the trade

canceled and delete the pending trade */

do until (end_of pending list) {
fetch from
pending list
into

tr t id

get_current_dts (now_dts)

insert into
TRADE_HISTORY (
TH_T_ID, TH DTS, TH_ST_ID
)

values (
tr t id, // TH_T_ID
now_dts, // TH_DTS

st_submitted_id // TH_ST ID

update
TRADE
set
T_ST ID = st_canceled_id,
T_DTS = now_dts
where

T ID = tr_t_id

insert into
TRADE_HISTORY (
TH_T_ID, TH DTS, TH_ST_ID
)

values (
tr t id, // TH_T_ID
now_dts, // TH_DTS

st_canceled_id // TH_ST_ID

} //end of pending list
/* Remove all pending trades */

delete

from

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 255 of 271

Trade-Cleanup_Frame-1 Pseudo-code: cancel pending and submitted trades

TRADE_REQUEST

/* Find submitted trades, change the status to canceled and insert a canceled record
into TRADE_HISTORY*/
declare submit list for
select
T ID
from
TRADE
where
T _ID >= trade_id and
T_ST ID = st_submitted_id

open submit list

do until (end_of submit list) {
fetch from
submit_list
into

t id

get_current_dts (now_dts)

/* Mark the trade as canceled, and record the time */
update
TRADE
set
T_ST ID = st_canceled_id
T_DTS = now_dts
where

T ID = t_id

insert into
TRADE_HISTORY (
TH_T_ID, TH DTS, TH_ST_ID
)

values (
t id, // TH_T_ID
now_dts, // TH_DTS

st_canceled_id // TH_ST_ID

} //end of submit list

commit transaction

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 256 of 271

10.7

10.7.1

10.7.2

10.7.2.1

10.7.2.2

10.7.2.3

10.7.2.4

10.7.2.5

Trade-Cleanup_ Frame-1 Pseudo-code: cancel pending and submitted trades

VGen

Overview

VGen is one of the modules of the Benchmark Kit, and is a TPC provided software package designed to
facilitate the implementation of TPCx-V. VGen provides:

e consistent data generation independent of the underlying environment

e Transaction generation and Frame flow control management

e project build and makefile templates

This clause covers the constraints and regulations governing the use of VGen. For detailed information

on VGen, what features and functionality it provides and how the TPCx-V Benchmark Kit uses those
features and functionality see Clause 10 .

VGen Terms

VGen is a TPC provided software environment that is used in the TPC provided Benchmark Kit
implementation of the TPCx-V benchmark. The software environment is logically divided into three
packages: VGenProjectFiles, VGenInputFiles, and VGenSourceFiles. The software packages provide
functionality to use: VGenLoader to generate the data used to populate the database, VGenDriver to
generate transactional data and VGenTxnHarness to control frame invocation.

VGenProjectFiles is a set of TPC provided files used to facilitate building the VGen packages in a Test
Sponsor's environments.

VGenlnputFiles is a set of TPC provided text files containing rows of tab-separated data, which are
used by various VGen packages as “raw” material for data generation.

VGenSourceFiles is the collection of TPC provided C++ source and header files.

VGenLoader is a binary executable, generated by using the methods described in VGenProjectFiles
with source code from VGenSourceFiles. When executed, VGenLoader uses VGenInputFiles to
produce a set of data that represents the initial state of the TPCx-V database.

VGenDriver comprises the following parts:

o VGenDriverCE provides the core functionality necessary to implement a Customer
Emulator.

o VGenDriverMEE provides the core functionality necessary to implement a Market
Exchange Emulator.

o VGenDriverDM provides the core functionality necessary to implement the Data-
Maintenance Generator.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 257 of 271

10.7.2.6

10.7.2.7

10.7.3

10.7.3.1

10.7.3.2

10.7.3.3

10.7.3.4

10.7.4

10.7.5

VGenDriver provides core transactional functionality (e.g. Transaction Mix and input generation)
necessary to implement a Driver. VGenTxnHarness defines a set of interfaces that are used to control
the execution of, and communication of inputs and outputs, of Transactions and Frames.

VGenLogger logs the initial configuration and any re-configuration of VGenDriver and VGenLoader,
and compares current configuration with the TPCx-V prescribed defaults.

Compliant VGen Versions

The TPC Policies Clause 5.3.1 requires that the version of the specification and VGen must match. The
VGen version can be determined by calling the GetVGenVersion function provided in
VGen/src/VGenVersion.cpp file.

VGen is intended to produce correct data. The TPCx-V Benchmark Kit ensures that the random
distribution of all data values, inputs and Transaction Mix frequencies produced by VGen is compliant
with all constraints documented in the specification (e.g. Transaction Mix, execution rules, population
constraints, etc.).

Any existing errors in a compliant version of VGen, as provided by the TPC, are deemed to be in
compliance with the specification. Therefore, any such errors may not serve as the basis for a
compliance challenge.

VGen is written in ISO C/C++ based on the following standards:

e ISO/IEC 9899:1999 Programming Language C
e ISO/IEC 14882:2003 Programming Language C-++

Failure of a C/C++ compiler to properly compile VGen because of the compiler’s non-conformance with
the above standards does not constitute a bug or error in VGen.

VGenlnputFiles
Modification of VGenInputFiles provided by the TPC is not permitted.

VGenSourceFiles

Modification of VGenSourceFiles provided by the TPC is not allowed, except as permitted by clause
10.7.3.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 258 of 271

10.7.6

10.7.6.1

10.7.6.2

10.7.6.3

10.7.7

10.7.7.1

10.7.7.2

10.7.7.3

10.7.7.4

10.7.7.5

VGenLoader

The data for a compliant TPCx-V database must be generated by VGenLoader. The version of
VGenLoader used must be compliant with the version of the specification the Result is being
published under, as listed in clause 10.7.3.

It is presumed that VGenLoader produces the correct number of rows for each TPCx-V table. However
due to the random nature of the data generated by VGenLoader, the data may not be compliant with
Clause 2 of this specification. In that event the test database is considered invalid.

If VGenLoader generates an empty string, an empty string should be loaded in the database.

VGenDriver

All VGenLogger output must be reported in the Supporting Files. If any VGenLogger output contains
“NO”, indicating the correct default values were not used, the benchmark Result is not compliant.

Sponsors must use a constructor for each object class (CCE, CMEE, or CDM) that does not have
RNGSEED parameter(s).

Sponsors must ensure that the values provided for the UniquelD parameters to the constructors for
each object group (CCE, CMEE or CDM) are unique within each object group.

The Transaction inputs are generated by the VGenDriverCE, VGenDriverMEE and VGenDriverDM
classes. Each CE, MEE and DM instance must be instantiated using consistent values for some global
inputs, and must use the same values used by all VGenLoader instances during the initial data
generation.

The contents of VGenInputFiles used by all VGenLoader instances (when building the database) and
by all CE, MEE and DM instances (when running against the database) must be the VGenInputFiles for
the version of TPCx-V that is used in the benchmark publication.

VGenDriverCE

A compliant CE implementation must use VGenDriverCE.

10.7.7.6

VGenDriverMEE

A compliant MEE implementation must use VGenDriverMEE.

10.7.7.7

VGenDriverDM

A compliant Data-Maintenance Generator must use VGenDriverDM.

One, and only one, instance of the Data-Maintenance Generator is required and allowed during a Test Run.

10.7.8

10.7.8.1

10.7.9

VGenTxnHarness

A compliant TPCx-V implementation must use VGenTxnHarness.

VGen User’s Guide

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 259 of 271

10.7.9.1 Overview

VGen is a TPC provided software package. It is designed to facilitate the implementation of TPCx-V.
This appendix provides information on how a Test Sponsor is to use the features and functionality of

VGen. The definitions, descriptions, constraints and regulations governing the use of VGen are captured
in Clause 1.5.

Comment: Some of the following sections assume the reader has a good understanding of object-oriented
design and programming techniques using ANSI C++.

10.7.9.2 VGen Directory

VGen is distributed in a single directory hierarchy. The following diagram shows the overall VGen directory

hierarchy.

Figure A.a - Hierarchy of VGen Directory

e bin — default target directory for executable binary files
e flat_in - contains flat input files

e flat_out- default target directory for flat file output

e inc - contains header files

¢ inc/win— Windows specific header files

e lib — default target directory for library files

e obj—default target directory for object files

e prj— contains project files

e src— contains source files

e src/win — Windows specific source files
10.7.9.3 VGenProjectFiles

VGenProjectFiles are located in the VGen/ prj directory. These files can be used to facilitate building VGen
components in various environments.
e Windows

A set of Visual Studio 2003 files are provided. VGen.sln is the top level solution file and brings
in all of the necessary .prj files.

e U*x

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 260 of 271

A make file (makefile) is provided to facilitate building the VGen components using a make
utility. The makefile is known to work with GNU make, but other flavors of make may require
some editing of the makefile.

10.7.9.4 VGenlnputFiles

VGenlInputFiles are located in the VGen/flat_in directory. These files are text files containing rows of tab-
separated data. The files are used by VGenLoader to create the data to populate the database and by
VGenDriver components to generate valid input for Transactions. The generated data is based on knowing the
contents of the input files (“raw” material) and the overall scaling factors (Scale Factor, Configured Customers,
Initial Trade Days).

10.7.9.5 VGenSourceFiles
VGenSourceFiles are located in VGen/inc, VGen/src and their associated sub-directories.

VGenSourceFiles contain TPC-provided ANSI C++ code to be used in a compliant TPCx-V implementation.
Functionality is provided to facilitate:

e population of a TPCx-V compliant database
e implementation of a TPCx-V compliant environment

This functionality is described in subsequent sections.
10.7.9.6 VGenLoader

The task of populating a compliant TPCx-V database can be broken into two parts:

e generating compliant data records

¢ loading the records into the database

Comment: The Sponsor is responsible for coming up with scripts to create the database and tables and to
apply the required constraints.

Data generation is a DBMS-neutral task, whereas database population is obviously very DBMS-specific.
Therefore, VGenLoader is architected honoring this separation as follows. VGenSourceFiles contain class
definitions that provide abstractions of the TPCx-V tables. These table classes are known collectively as
VGenTables and they encapsulate the functionality needed to generate the data for each of the TPCx-V tables.
Many of the classes in VGenTables are dependent on VGenInputFiles for “raw material” used in data record
generation. VGenLoader therefore makes VGenInputFiles available to VGenTables, and uses VGenTables to
generate TPCx-V compliant data records.

In order to support the DBMS-specific nature of loading the generated data, VGenLoader makes use of a virtual
base class CBaseLoader to “load” the data. This provides a controlled interface from the DBMS-neutral data

generation portion of VGenLoader to the DBMS-specific data loading portion of VGenLoader. DBMS-specific
code is encapsulated in subclasses that inherit from and provide an implementation of the virtual CBaseLoader
class. (Note: CBaseLoader is actually a template, where the one template parameter is the row type corresponding

to the particular TPCx-V table being loaded.) VGenLoader provides two alternative implementations of
CBaseLoader.

The loader functionality provided by VGenLoader doesn’t actually load a database directly, but rather produces

output flat files. One text file is produced for each TPCx-V table. These files contain rows of data values, where
the data values are separated by “|”. To use this functionality, define the compile-time variable

COMPILE_FLAT_FILE_LOAD when building VGenLoader and use the “-1 FLAT” switch when running
VGenLoader.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 261 of 271

This mode of loader functionality is designed to work with bulk-loader tools which populate a database
with the contents of a set of flat files. Due to variations in the expected format of certain data types, it is

possible to configure VGenLoader via compile-time variables to change the format of certain data types
in the output flat files. The data types, compile-time variables and possible values are listed in the

following table:
Compile-Time q
Data Type #define Possible Values
DATETIME DATETIME_FORMAT (See CDateTime:ToStr() in src/DateTime.cpp
DATE DATE_FORMAT See CDateTime::ToStr() in src/DateTime.cpp
TIME TIME_FORMAT See CDateTime::ToStr() in src/DateTime.cpp

Any string constant representing a TRUE Boolean value. String

BOOLEAN BOOLEAN_TRUE
constants must be quoted.

Any string constant representing a FALSE Boolean value. String

BOOLEAN BOOLEAN_FALSE
constants must be quoted.

A full listing of VGenLoader switches can be seen by building VGenLoader using VGenProjectFiles and then
running VGenLoader with the “-?” switch.

10.7.9.7 VGenDriver

A TPCx-V Test Sponsor is responsible for implementing a compliant TPCx-V Driver (Clause 4). The TPC provides
VGenDriver to facilitate implementation of a compliant Driver and to standardize certain key platform-independent parts
of the Driver.

VGenDriver comprises the following three parts.

e VGenDriverCE is any and/or all instantiations of the CCE class (see VGenSourceFiles CE.h and
CE.cpp).VGenDriverMEE is any and/or all instantiations of the CMEE class (see VGenSourceFiles
MEE.h and MEE.cpp).

e VGenDriverDM is the single instantiation of the CDM class (see VGenSourceFiles DM.h and
DM.cpp).

VGenDriver, like VGenLoader, makes use of VGenInputFiles and VGenTables in data generation. This
provides data generation coherency between database population time and Test Run time.

The Sponsor is responsible for providing a suitable implementation of the Trade-Cleanup Transaction (see
Clause 10.6.12). Trade-Cleanup may be implemented as a separate, standalone procedure or as part of
VGenDriverDM.

10.7.9.8 VGenLogger

VGenLogger is used by VGenDriver and VGenLoader to log their configuration and any re-configuration.
Although not strictly required, the Test Sponsor is expected to override/provide a SendToLoggerImpl
implementation for recording VGenLogger’s output. For details see VGen/inc/VGenLogger.h.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 262 of 271

10.7.9.9 Implementing a CE using VGenDriverCE

Sending data to and receiving data from the SUT is very platform-specific functionality. Its implementation
depends on the underlying communication protocol and hardware used. Likewise, measuring the Transaction’s

Response Time is also platform-specific — depending on what timing mechanisms are provided by the
underlying software and hardware.

However, the Transaction Mix (deciding which Transaction to perform next) and generating the
Transaction input data is very platform-neutral. Therefore, VGenDriverCE encapsulates this
functionality and provides a standardized implementation for it across all TPCx-V implementations.

10.7.9.10 Implementing a MEE using VGenDriverMEE

Sending data to and receiving data from the SUT is very platform-specific functionality. Its implementation
depends on the underlying communication protocol and hardware used. Likewise, measuring the Transaction’s

Response Time is also platform-specific — depending on what timing mechanisms are provided by the
underlying software and hardware.

However, emulating the internal stock exchange functionality, and generating the Transaction input data
for Trade-Result and Market-Feed is very platform-neutral. Therefore, VGenDriverMEE encapsulates
this functionality and provides a standardized implementation for it across all TPCx-V implementations.

Comment: A proper MEE implementation must to able to adjust to changing rates of trade requests and
be able to turn-around trade requests into new Trade-Result Transactions in a timely fashion. Similarly,
a proper MEE implementation must be able to adjust to changing rates of Trade-Results and must initiate
Market-Feed Transactions in a timely fashion.

10.7.9.11 Implementing a Data-Maintenance Generator using VGenDriverDM

Sending data to and receiving data from the SUT is very platform-specific functionality. Its implementation
depends on the underlying communication protocol and hardware used. Likewise, measuring the Data-

Maintenance Transaction’s Response Time is also platform-specific — depending on what timing mechanisms are
provided by the underlying software and hardware.

However, generating the Transaction input data for the Data-Maintenance Transaction is very platform-
neutral. Therefore, VGenDriverDM encapsulates this functionality and provides a standardized
implementation for it across all TPCx-V implementations.

10.7.9.12 VGenTxnHarness

VGenTxnHarness comprises any and/or all instantiations of:

e CBrokerVolume class excluding the Sponsor provided implementation of
CBrokerVolumeDBInterface (see VGenSourceFile TxnHarnessBrokerVolume.h)

e CCustomerPosition class excluding the Sponsor provided implementation of
CCustomerPositionDBInterface (see VGenSourceFile TxnHarnessCustomerPosition.h)

e (CDataMaintenance class excluding the Sponsor provided implementation of
CDataMaintenanceDBInterface (see VGenSourceFile TxnHarnessDataMaintenance.h)

e CMarketFeed class excluding the Sponsor provided implementation of CMarketFeedDBInterface
(see VGenSourceFile TxnHarnessMarketFeed.h)

e CMarketWatch class excluding the Sponsor provided implementation of CMarketWatchDBInterface
(see VGenSourceFile TxnHarnessMarketWatch.h)

e CSecurityDetail ~ class excluding the Sponsor provided implementation of
CSecurityDetailDBInterface (see VGenSourceFile TxnHarnessSecurityDetail.h)

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 263 of 271

10.7.9.13

e CTradeCleanup class excluding the Sponsor provided implementation of
CTradeCleanupDBInterface (see VGenSourceFile TxnHarnessTradeCleanup.h)

e CTradeLookup class excluding the Sponsor provided implementation of CTradeLookupDBInterface
(see VGenSourceFile TxnHarnessTradeLookup.h)

e CTradeOrder class excluding the Sponsor provided implementation of CTradeOrderDBInterface
(see VGenSourceFile TxnHarnessTradeOrder.h)

e CTradeResult class excluding the Sponsor provided implementation of CTradeResultDBInterface
(see VGenSourceFile TxnHarnessTradeResult.h)

e CTradeStatus class excluding the Sponsor provided implementation of CTradeStatusDBInterface
(see VGenSourceFile TxnHarnessTradeStatus.h)

e CTradeUpdate class excluding the Sponsor provided implementation of CTradeUpdateDBInterface
(see VGenSourceFile TxnHarnessTradeUpdate.h)

Functional Implementation

The following diagram gives a high level overview of a sample implementation of the TPCx-V
environment. A number of details have been omitted for clarity.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 264 of 271

loweid

JIEN

TSIU[gaWN|OAIBN 0Ig D)

RO |
)

(Juxiroaq

f‘ BWNjop49X0igD

()owreluioI{19)IENO L PUSS

()SsauleHWwo.i-439)Iep0 | pusS

ﬁmomt&:szms\o 1 PUSSD ‘

1ns

goo\mmsumtmms\y

ST ‘ ade 1 1ox911 JIND
psa el

pl1eogedlid33N0

0
Y
s,

sajIfindur)

A

TOJENWIEDUEGOXIOEN

{)srepdnaperL
(JsnieISsperl
BSpIOSPeIL

{JdnjooTepeiL
[ZEIPIBES

T MIBIEN

1\

ﬁmomt mhctbmmoo.o.; mm:EmmcmeEEm& .\.g m&.Eﬂ:QEO

OEINEIE OS]

JaAluQ

SJaquIB|\ 81eAlld

To:_oo._n_ _u_ohwEEoo_

popInoIg Josuods

sJaquia|\ 011gnd

[papiroidods |
puaban

aWeN 198[qo / sselo

Figure A.b - High Level Overview of a Sample Implementation

In the diagram above,

dotted “lines” with arrows between TPC Provided objects represent input parameters

dotted “lines” without arrows between TPC Provided objects represent input files from

VGenlnputFiles

Solid “lines” with arrows are calls

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 265 of 271

e The Test Sponsor is responsible for implementing a Customer Emulator per Clauses 10.7.7.5 and
10.7.9.8.

a. ClInputFiles is a class provided as part of VGen used for loading into memory the VGenInputFiles
used by other classes in VGen. The Test Sponsor is responsible for instantiating a CInputFile object
correctly and passing a pointer to it into the CCE constructor. See
VGen/inc/InputFlatFilesStructure.h.

b. TParameterSettings is a TPC provided structure that can be used to alter the behavior of
VGenDriver. Use of this structure for a compliant run is not required; it is provided to facilitate
prototyping and engineering work. See VGen/inc/DriverParamSettings.h.

c. CCESUTInterface is a TPC provided pure virtual class that defines an interface used by the CCE
class. It is the Sponsor’s responsibility to subclass CCESUTInterface and provide the necessary
implementation. This implementation is responsible for sending a Transaction request to the SUT,
measuring the Transaction’s Response Time and logging all necessary data, including the Tile
and the Group of the transaction. A pointer to the Sponsor’s implementation of the
CCESUTInterface must be passed into the CCE constructor. See VGen/inc/CESUTInterface.h.

d. CCEisaTPC provided class that must be used when implementing a Customer Emulator. It is the

Sponsor’s responsibility to provide pointers to a CInputFile object and CCESUTInterface object
when constructing the CCE object. The process of running a test is effectively looping around a call

to CCE::DoTxn(). When DoTxn() is called, the CCE object will determine which Transaction to

perform, generate the necessary input data for the Transaction and pass that data to the Sponsor’s
implementation of CCESUTInterface for execution. See VGen/inc/CE.h.

13. The Test Sponsor is responsible for implementing a Market Exchange Emulator per Clauses 10.7.7.6
and 10.7.9.10.

a. CSecurityFile is a class provided as part of VGen used for loading VGen/flat_in/SecurityFile.txt
into memory. The Test Sponsor is responsible for instantiating a CSecurityFile object and passing
a pointer to it into the CMEE constructor. See VGen/inc/SecurityFile.h.

b. CMEESUTInterface is a TPC provided pure virtual class that defines an interface used by the CMEE
class. It is the Sponsor’s responsibility to subclass CMEESUTInterface and provide the necessary
implementation. This implementation is responsible for sending a Transaction request to the SUT,
measuring the Transaction’s Response Time and logging all necessary data, including the Tile

and the Group of the transaction. A pointer to the Sponsor’s implementation of the
CMEESUTInterface must be passed into the CMEE constructor. See
VGen/inc/MEESUTInterface.h.

Cc. CMEE is a TPC provided class that must be used when implementing a Market Exchange
Emulator. It is the Sponsor’s responsibility to provide pointers to a CSecurityFile object and
CMEESUTInterface object when constructing the CMEE object. During a Test Run, the Sponsor’s
Market Exchange Emulator is responsible for accepting requests from the Sponsor’s
SendToMarket implementation running on the SUT and passing these requests to the CMEE object
via SubmitTradeRequest(). In addition, the Sponsor’s Market Exchange Emulator is responsible
for keeping a timer and calling CMEE::GenerateTradeResult() as necessary. See VGen/inc/MEE.h.

14. The Test Sponsor is responsible for implementing functionality on the SUT to accept Transaction
request over a network connection from the Sponsor’'s CCESUTInterface and CMEESUTInterface
implementations. Note that the diagram depicts individual network connections for each Transaction
type but the Sponsor is free to implement a single connection capable of handling any/all types of
Transactions. Upon receiving a Transaction request from the Driver, the Sponsor’s code is
responsible for calling DoTxn() on the appropriate VGenTxnHarness object (3a). After returning
from the call to DoTxn() the Sponsor’s code is responsible for sending the Transaction’s output back
to the Driver. See VGen/inc/ TxnHarnessBrokerVolume.h — TanarnessTradeUpdate.h.

The Sponsor is responsible for providing implementations for the following classes used by
VGenTxnHarness.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 266 of 271

e CBrokerVolumeDBInterface

e CCustomerPositionDBInterface
o (CMarketFeedDBInterface

e (CMarketWatchDBInterface

e CSecurityDetailDBInterface

e CTradeLookupDBInterface

e CTradeOrderDBInterface

e CTradeResultDBInterface

e CTradeStatusDBInterface

e (CTradeUpdateDBInterface

e These classes are responsible for implementing the Frames invoked by VGenTxnHarness.

15. CSendToMarketInterface is a TPC provided class that includes a pure virtual member function

SendToMarket(). The Sponsor is responsible for subclassing CSendToMarketInterface and providing
an implementation for SendToMarket(). This implementation is responsible for sending trade

requests to the Sponsor’s MEE implementation running on the Driver. A pointer to the Sponsor’s
implementation of CSendToMarketInterface must be passed into the constructor for the

VGenTxnHarness objects CTradeOrder and CMarketFeed.

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 267 of 271

10.7.9.14 TPC Defined Interfaces

Connector

Attachment Point

Interface (Class::Method)

VGenDriver

Driving and Reporting

CCE:DoTxn()
CMEE::SubmitTradeRequest()
CDM:DoTxn()
CDM:DoCleanupTxn()

VGenDriver

VGenDriver Connector

CCESUTInterface::BrokerVolume()
CCESUTInterface::CustomerPosition()
CMEESUTInterface::MarketFeed()
CCESUTInterface::MarketeWatch()
CCESUTInterface::SecurityDetail()
CCESUTInterface::TradeLookup()
CCESUTInterface::TradeOrder()
CMEESUTInterface:: TradeResult()
CCESUTInterface:: TradeStatus()
CCESUTInterface::TradeUpdate()
CDMSUTInterface::DataMaintenance()
CDMSUTInterface: TradeCleanup()

VGenTxnHarness

VGenTxnHarness
Connector

CBrokerVolume:DoTxn()
CCustomerPosition::DoTxn()
CMarketFeed::DoTxn()
CMarketWatch::DoTxn()
CSecurityDetail::DoTxn()
CTradeLookup::DoTxn()
CTradeOrder::DoTxn()
CTradeResult::DoTxn()
CTradeStatus::DoTxn()
CTradeUpdate::DoTxn()
CDataMaintenance::DoTxn()
CTradeCleanup::DoTxn()

VGenTxnHarness

Frame Implementation

CBrokerVolumeDBInterface::DoBrokerVolumeFramel()
CCustomerPositionDBInterface:DoCustomerPositionFramel/2/3()
CMarketFeedDBInterface ::DoMarketFeedFrame1()
CMarketWatchDBInterface::DoMarketWatchFramel/2/3()
CSecurityDetailDBInterface::DoSecurityDetailFrame1()
CTradeLookupDBInterface::DoTradeLookupFramel/2/3/4()
CTradeOrderDBInterface:DoTradeOrderFramel/2/3/4/5/6()
CTradeResultDBInterface::DoTradeResultFramel/2/3/4/5/6()
CTradeStatusDBInterface::DoTradeStatusFramel
CTradeUpdateDBInterface:DoTradeUpdateFramel/2/3/4()
CTradeResultDBInterface::DoTradeResultFramel/2/3/4/5/6()
CDataMaintenanceDBInterface::DoDataMaintenanceFrame1()
CTradeCleanupDBInterface::DoTradeCleanupFramel()

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 268 of 271

Appendix A. EXECUTIVE SUMMARY STATEMENT

Al Sample Executive Summary Statement
TPCx-V 1.0
TPC Pricing 0.0.0
ABC Hyperia XP100
Virtuosa Nirvana 10.1 Report Date:
Nov 29,2017
Availability Date] TPCx-V Throughput Price/Performance |Total System Cost
Dec 32, 2099 219.27 tpsV 0 USD/tpsV $0 USD

System Under Test Configuration Overview

Virtualization Software Guest VM OS Processor Description Memory Size
XYZ HyperFast 2121
Virtuosa Nirvana 10.1 Nirvana OS-V 1.0 3.99GHz, 64MB L3 512 GB
2/64/64 (proc/core/thr)
Server Clients
Model: ABC Hyperia XP100
e 4x ABC WSI123 Workstation
® 2x XYZ HyperFast 2121 Processor 3.99GHz (2/64/64) e 2x XYZ KindaFast 1010 Processor 1.99GHz (2/16/16)
. 16x 32GB DDR3 1866 MHz DIMMs e 2x 8GB PC3-8500 DIMMs
® 4x ABC Storage Array P123/4GB, one per DB VM e 2x 128GB SFF SAS 15K HDD
® 2x 128GB SFF SAS 15K dual-port HDD (boot) e 2x 1Gb Ethernet (onboard)
® 2x 10Gb Ethernet (onboard)
Storage: Network:
e 4x ABC D9000 Disk Enclosure (one per DB VM) e ABC LinkUp E9000 24-port 1/10 Network Switch
e 32x ABC 512GB SFF SLC SATA 2.5-inch SSD, 8 per e 8x 1Gb ports used, 2x 10Gb ports used
enclosure
® Priced: 24x 512GB 15K SFF HDD
TPCx-V 1.0
TPC-Pricing 0.0.0
. Report Date Nov 29, 2017
ABC Hyperia XP100 P

Virtuosa Nirvana 10.1
Availability Date Dec 32, 2099

Extended 3-Yr Maint

Description Part Number | Vend | Unit Price | Qty. Price Price

Server Hardware

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 269 of 271

Subtotal

Server Software

Subtotal

Storage

Subtotal

Client Hardware

Subtotal

Client Software

Subtotal

Infrastructure

Subtotal

Discounts |
Subtotal

Total Price | $0 $0
Total Discounts $0 $0
Vendor Legend: Grand Total $0 $0
N Priees and descriptions included couldn't be more random 3-yr Total Cost of Ownership 50
tpsV 219.27
$ USD/tpsV $0

TPCx-V 1.0

TPC Pricing 0.0.0
ABC Hyperia XP100
Virtuosa Nirvana 10.1 Report Date:
Nov 29, 2017
Guest VM Details
Database Manager Men};’;& l()GB) (VTCOIEJS DB Initial Size (C::Ifgg:::(si Cl::g:;::rs
DEF MoreSQL 1.0 128 GB 12 555,345,678,901 125,000 125,000
Transaction Response Times (in seconds)

Transaction Type Min Avg 90th % Max
Trade-Order 0.002 0.005 0.006 0.100
Trade-Result 0.003 0.008 0.011 0.101
Trade-Lookup 0.002 0.032 0.048 0.155
Trade-Update 0.007 0.040 0.054 0.151
Trade-Status 0.001 0.003 0.003 0.100
Customer-Position 0.001 0.004 0.005 0.091
Broker-Volume 0.001 0.003 0.003 0.089
Security-Detail 0.002 0.005 0.006 0.110
Market-Feed 0.001 0.003 0.004 0.049
Market-Watch 0.000 0.004 0.008 0.073
Data-Maintenance 0.002 0.009 0.018 0.037

Transaction Mix
Transaction Type Transaction Count Mix Percentage

Trade-Order 135,839 10.002

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 270 of 271

Trade-Result 131,563 9.687
Trade-Lookup 122,310 9.006
Trade-Update 13,590 1.001
Trade-Status 244,663 18.015
Customer-Position 203,849 15.010
Broker-Volume 52,981 3.901
Security-Detail 217,466 16.013
Market-Feed 4,825 0.355
Market-Watch 231,007 17.010
Data-Maintenance 80 N/A
Total Transactions 1,358,093
Measurement Interval 00:10:00
Business Recovery Time 12:34:56

Redundancy Level Details

All storage was configured with redundancy level 1

Auditor

TPC Express Benchmark™ V (TPCx-V) Specification, Revision 2.1.8 - Page 271 of 271

