TPC Express Benchmark™ HCI
Full Disclosure Report

AS-1114S-WN10RT

running

VMware vSphere 7.0 Update 2
First Edition - November 2021

Super Micro Computer, Inc. (Supermicro), the Sponsor of this benchmark test, believes that the information in this document is accurate as of the publication date. The information in this document is subject to change without notice. The Sponsor assumes no responsibility for any errors that may appear in this document.

The pricing information in this document is believed to accurately reflect the current prices as of the publication date. However, the Sponsor provides no warranty of the pricing information in this document.

Benchmark results are highly dependent upon workload, specific application requirements, and system design and implementation. Relative system performance will vary because of these and other factors. Therefore, the TPC Express Benchmark™ V should not be used as a substitute for a specific customer application benchmark when critical capacity planning and/or product evaluation decisions are contemplated.

All performance data contained in this report was obtained in a rigorously controlled environment. Results obtained in other operating environments may vary significantly. No warranty of system performance or price/performance is expressed or implied in this report.

Supermicro and the Supermicro Logo are trademarks of Super Micro Computer, Inc. and/or its affiliates in the U.S. and other countries. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Supermicro and any other company.

TPC Express Benchmark™ HCI, TPCx-HCI, and tpsHCI, are registered certification marks of the Transaction Processing Performance Council.

The Supermicro products, services or features identified in this document may not yet be available or may not be available in all areas and may be subject to change without notice. Consult your local Supermicro business contact for information on the products or services available in your area. You can find additional information via Supermicro’s web site at https://www.supermicro.com/en/. Actual performance and environmental costs of Supermicro products will vary depending on individual customer configurations and conditions.

Copyright© 2021 Super Micro Computer, Inc.

All rights reserved. Permission is hereby granted to reproduce this document in whole or in part provided the copyright notice printed above is set forth in full text or on the title page of each item reproduced.
Abstract

Supermicro conducted the TPC Express Benchmark™ HCI (TPCx-HCI) on the AS-1114S-WN10RT. The software used included:

- Red Hat Enterprise Linux for Virtual Datacenters
- VMware vSphere 7.0 Update 2, comprising:
 - VMware vSphere 7 Enterprise Plus
 - VMware vSAN 7 Standard
 - VMware vCenter Server 7 Standard for vSphere 7

This report provides full disclosure of the methodology and results. All testing was conducted in conformance with the requirements of the TPCx-HCI Standard Specification, Revision 1.1.8.

The benchmark results are summarized in the following table.

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Software</th>
<th>Total System Cost (USD)</th>
<th>tpsHCI</th>
<th>USD/tpsHCI</th>
<th>Availability Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-1114S-WN10RT</td>
<td>VMware vSphere 7.0 Update 2</td>
<td>$237,573</td>
<td>4,790.18</td>
<td>$49.60</td>
<td>Currently Available</td>
</tr>
</tbody>
</table>

Executive Summary

The Executive Summary follows on the next several pages.
AS-1114S-WN10RT

<table>
<thead>
<tr>
<th>Availability Date</th>
<th>TPCx-HCI Throughput</th>
<th>Price/Performance</th>
<th>Total System Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently Available</td>
<td>4,790.18 tpsHCI</td>
<td>$49.60 USD / tpsHCI</td>
<td>$237,573 USD</td>
</tr>
</tbody>
</table>

System Under Test Configuration Overview

<table>
<thead>
<tr>
<th>Virtualization Software</th>
<th>Guest VM OS</th>
<th>Processor Description</th>
<th>Memory Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware vSphere 7.0 Update 2</td>
<td>Red Hat Enterprise Linux 7.7</td>
<td>AMD EPYC 7713 2.0GHz, 256MB L3</td>
<td>4,096 GB</td>
</tr>
</tbody>
</table>

Data Accessibility Node Recovery Time: 2:05:38.00

4x AS-1114S-WN10RT each with:
- 1x AMD EPYC 7713 2.0 GHz (1 Proc/64 Cores/128 Threads)
- 8x 128 GB RDIMM 3200 MT/s Dual Rank
- 1x 960GB NVMe M.2
- 2x 3.84 TB CM6 NVMe
- 8x 3.84 TB CD6 NVMe
- 1x Mellanox Dual Port ConnectX-5 Ex 100 GbE
- 1x Broadcom P210tep NexXtreme-E Dual Port 10GBASE-T

1x Supermicro E1031 48-port 1/10 G Switch
1x Supermicro SSE-C3632SR 32-port 100 GbE Switch
EXECUTIVE SUMMARY

AS-1114S-WN10RT

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Key</th>
<th>Unit Price</th>
<th>Qty</th>
<th>Extended Price</th>
<th>3 yr. Maint. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARDWARE COMPONENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H225W-NTR, CS6-11GTS-R708WBP5-N2Q,RoHS</td>
<td>AS-1114S-WN10RT</td>
<td>1</td>
<td>$1,477.00</td>
<td>4</td>
<td>$6,399.00</td>
<td></td>
</tr>
<tr>
<td>128GB DDR4 3200 48x4 LP (16G) ECC RDIMM,RoHS</td>
<td>MM4241UL-HU01-EF</td>
<td>1</td>
<td>$924.00</td>
<td>32</td>
<td>$29,568.00</td>
<td></td>
</tr>
<tr>
<td>Kioxia CM6.3.8TB NVMe PCIe 4x4 2.5" 15mm SIE 12WP</td>
<td>HDS-TUN-KCM6XRU1</td>
<td>1</td>
<td>$875.00</td>
<td>8</td>
<td>$7,000.00</td>
<td></td>
</tr>
<tr>
<td>Kioxia CD6.3.8TB Nvme PCIe 4x4 2.5" 15mm SIE 12WP</td>
<td>HDS-TUN-KC6DXUL1</td>
<td>1</td>
<td>$616.00</td>
<td>32</td>
<td>$19,712.00</td>
<td></td>
</tr>
<tr>
<td>Mellanox ConnectX-5 EN network card 100Gbps dual-port</td>
<td>AOC-MCX560A-CDA7</td>
<td>1</td>
<td>$1,060.00</td>
<td>4</td>
<td>$4,240.00</td>
<td></td>
</tr>
<tr>
<td>Milan-7733 DF/UP 64G/128T 2.0G ZS6M225SW5F3</td>
<td>PSE-MXN7733-0344</td>
<td>1</td>
<td>$7,029.00</td>
<td>4</td>
<td>$28,116.00</td>
<td></td>
</tr>
<tr>
<td>960GB PCIe NVMe, M.2 22x80mm, 3D TLC, 12WP</td>
<td>HDS-MMN-MTFQHBA</td>
<td>1</td>
<td>$182.00</td>
<td>4</td>
<td>$728.00</td>
<td></td>
</tr>
<tr>
<td>Broadcom P210 NxtXtreme-E Dual Port 10GBase-T</td>
<td>(included)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out of Band Firmware Management License-BIOS Flash/Setting</td>
<td>SFT-ODB-UC</td>
<td>1</td>
<td>$15.00</td>
<td>4</td>
<td>$60.00</td>
<td></td>
</tr>
<tr>
<td>ASSEMBLY FEE</td>
<td>MC0037</td>
<td>1</td>
<td>$25.00</td>
<td>4</td>
<td>$100.00</td>
<td></td>
</tr>
<tr>
<td>0% 3 YRS LABOR, 3 YRS PARTS, 3 YR CRS UNDER LIMITED WRTNY</td>
<td>OS4HR3</td>
<td>1</td>
<td>$516.28</td>
<td>4</td>
<td>$2,065.10</td>
<td></td>
</tr>
<tr>
<td>Network and Cables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1001 48-port 1/10G Ethernet ToR switch</td>
<td>SSE-G3648BR</td>
<td>1</td>
<td>$1,675.00</td>
<td>1</td>
<td>$1,675.00</td>
<td></td>
</tr>
<tr>
<td>Cumulus-Linux 5G 1G perpetual license with 3 yr Cumulus</td>
<td>SFT-CLSPL1G-3Y</td>
<td>1</td>
<td>$1,475.00</td>
<td>1</td>
<td>$1,475.00</td>
<td></td>
</tr>
<tr>
<td>On Site 4hrs 24x7x365 Support 3 Years with Extended Wrtnty</td>
<td>OS4HR3</td>
<td>1</td>
<td>$315.00</td>
<td>1</td>
<td>$315.00</td>
<td></td>
</tr>
<tr>
<td>32-port 100GBe Q2F/P2B, B2P, 2x800W ROB72-0004-01, HF</td>
<td>SFE-C3632SR</td>
<td>1</td>
<td>$7,375.00</td>
<td>1</td>
<td>$7,375.00</td>
<td></td>
</tr>
<tr>
<td>Cumulus-Linux Software 100Gperpetual license with 3 yr SnS</td>
<td>SFT-CLSNWPL-100G-3</td>
<td>1</td>
<td>$6,399.00</td>
<td>1</td>
<td>$6,399.00</td>
<td></td>
</tr>
<tr>
<td>On Site 4hrs 24x7x365 Support 3 Years with Extended Wnty</td>
<td>OS4HR3</td>
<td>1</td>
<td>$1,377.40</td>
<td>1</td>
<td>$1,377.40</td>
<td></td>
</tr>
<tr>
<td>ETHERNET, Q2F/P2B, 100GBe, PASSIVE, LSZH, 3m, Multi, RoHS</td>
<td>CBL-NTWK-0943-55Q2I</td>
<td>1</td>
<td>$165.60</td>
<td>10</td>
<td>$1,656.00</td>
<td></td>
</tr>
<tr>
<td>ETHERNET, CAT6, R45S, SNAGLESS, YELLOW, 15FT (4.6M), 28AWG, RoHS</td>
<td>CBL-CS-YL15SF-T</td>
<td>1</td>
<td>$12.80</td>
<td>5</td>
<td>$64.00</td>
<td></td>
</tr>
<tr>
<td>ETHERNET, CAT6, R45S, SNAGLESS, GREEN, UTP, 15FT (4.5M), 28AWG, RoHS</td>
<td>CBL-CS-GN15SF-T</td>
<td>1</td>
<td>$12.80</td>
<td>5</td>
<td>$64.00</td>
<td></td>
</tr>
<tr>
<td>Other Hardware Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42U Enclosure system</td>
<td>SRK-42SE-11</td>
<td>1</td>
<td>$1,516.30</td>
<td>1</td>
<td>$1,516.30</td>
<td></td>
</tr>
<tr>
<td>Rack PDU, Switched, 2U, 30A, 208V, (16)C13</td>
<td>AP971B</td>
<td>2</td>
<td>$1,075.00</td>
<td>2</td>
<td>$2,150.00</td>
<td></td>
</tr>
<tr>
<td>PWCD, US, IEC60364 14 TO C13,4FT, 16AWG, RoHS/REACH</td>
<td>CBL-PWCD-0373-IS</td>
<td>1</td>
<td>$7.70</td>
<td>12</td>
<td>$92.40</td>
<td></td>
</tr>
<tr>
<td>12 inches monitor with 4 year Equipment protection plan (incl. 2 spares)</td>
<td>LONCEVON-12</td>
<td>3</td>
<td>$95.99</td>
<td>3</td>
<td>$287.97</td>
<td></td>
</tr>
<tr>
<td>Logitech MK200 Media Keyboard and Mouse Combo (incl. 2 spares)</td>
<td>920-002714</td>
<td>3</td>
<td>$28.12</td>
<td>3</td>
<td>$84.36</td>
<td></td>
</tr>
<tr>
<td>SOFTWARE COMPONENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Hat Enterprise Linux for Virtual Datacenters, 3 Year Premium (2 sockets)</td>
<td>SFT-RH-RH0000013F</td>
<td>1</td>
<td>$8,830.00</td>
<td>4</td>
<td>$35,320.00</td>
<td></td>
</tr>
<tr>
<td>VMware vSAN 7 Standard per CPU Socket (3 year Production Support 24X7 included)</td>
<td>SFT-VM-VSAN7STDC3Y</td>
<td>1</td>
<td>$3,521.00</td>
<td>8</td>
<td>$28,168.00</td>
<td></td>
</tr>
<tr>
<td>VMware vSphere 7 Enterprise Plus per CPU Socket (3 year Production Support 24X7 included)</td>
<td>SFT-VM-VSP7ELP3C3Y</td>
<td>1</td>
<td>$4,947.00</td>
<td>8</td>
<td>$39,576.00</td>
<td></td>
</tr>
<tr>
<td>VMware vCenter Server 7 Standard for vSphere 7 – Per Instance (3 year Production Support 24X7 included)</td>
<td>SFT-VM-VC7STDC3Y</td>
<td>1</td>
<td>$8,480.00</td>
<td>1</td>
<td>$8,480.00</td>
<td></td>
</tr>
<tr>
<td>SUPPLIES COMPONENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pricing: 1 = Supermicro; 2 = APC.com; 3 = Amazon.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audited by Doug Johnson, InfoSizing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPC Pricing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPCx-HCI</td>
<td>1.1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPCx-HCI Throughput</td>
<td>4,790.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$ USD/tphHCI</td>
<td>$49.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXECUTIVE SUMMARY

AS-1114S-WN10RT

| TPCx-HCI | 1.1.8 |
| Report Date | Nov. 30, 2021 |

TPC Pricing

- **TPCx-HCI**
 - **Throughput:** 4,790.18
 - **3 yr. Maint. Price:** $237,573
 - **$ USD/tphHCI:** $49.60

Prices used in TPC benchmarks reflect the actual prices a customer would pay for a one-time purchase of the stated Line Items. Individually negotiated discounts are not permitted. Special prices based on assumptions about past or future purchases are not permitted. All discounts reflect standard pricing policies for the listed Line Items. For complete details, see the pricing section of the TPC Benchmark Standard. If you find that the stated prices are not available according to these terms, please inform the TPC at pricing@tpc.org. Thank you.

EXECUTIVE SUMMARY

AS-1114S-WN10RT

| TPCx-HCI | 1.1.8 |
| Report Date | Nov. 30, 2021 |

TPC Pricing

- **TPCx-HCI**
 - **Throughput:** 4,790.18
 - **3 yr. Maint. Price:** $237,573
 - **$ USD/tphHCI:** $49.60

Prices used in TPC benchmarks reflect the actual prices a customer would pay for a one-time purchase of the stated Line Items. Individually negotiated discounts are not permitted. Special prices based on assumptions about past or future purchases are not permitted. All discounts reflect standard pricing policies for the listed Line Items. For complete details, see the pricing section of the TPC Benchmark Standard. If you find that the stated prices are not available according to these terms, please inform the TPC at pricing@tpc.org. Thank you.

Guest VM Details

<table>
<thead>
<tr>
<th>Database Manager</th>
<th>VM Memory (Total)</th>
<th>vCPUs (Total)</th>
<th>DB Initial Size</th>
<th>Configured Customers</th>
<th>Active Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PostgreSQL 10.6</td>
<td>2,561 GiB</td>
<td>540</td>
<td>30,963.3 GB</td>
<td>2,400,000</td>
<td>2,400,000</td>
</tr>
</tbody>
</table>

Transaction Response Times (in seconds)

<table>
<thead>
<tr>
<th>Transaction Type</th>
<th>Min</th>
<th>Avg</th>
<th>90th%</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broker-Volume</td>
<td>0.001</td>
<td>0.005</td>
<td>0.009</td>
<td>2.198</td>
</tr>
<tr>
<td>Customer-Position</td>
<td>0.001</td>
<td>0.012</td>
<td>0.022</td>
<td>6.802</td>
</tr>
<tr>
<td>Market-Watch</td>
<td>0.000</td>
<td>0.006</td>
<td>0.011</td>
<td>4.025</td>
</tr>
<tr>
<td>Security-Detail</td>
<td>0.002</td>
<td>0.016</td>
<td>0.028</td>
<td>1.972</td>
</tr>
<tr>
<td>Trade-Lookup</td>
<td>0.000</td>
<td>0.035</td>
<td>0.059</td>
<td>2.627</td>
</tr>
<tr>
<td>Trade-Order</td>
<td>0.001</td>
<td>0.016</td>
<td>0.027</td>
<td>6.898</td>
</tr>
<tr>
<td>Trade-Result</td>
<td>0.002</td>
<td>0.021</td>
<td>0.035</td>
<td>6.859</td>
</tr>
<tr>
<td>Trade-Status</td>
<td>0.001</td>
<td>0.006</td>
<td>0.010</td>
<td>5.252</td>
</tr>
<tr>
<td>Trade-Update</td>
<td>0.005</td>
<td>0.061</td>
<td>0.085</td>
<td>2.597</td>
</tr>
<tr>
<td>Data-Maintenance</td>
<td>0.002</td>
<td>0.008</td>
<td>0.014</td>
<td>0.247</td>
</tr>
<tr>
<td>Market-Feed</td>
<td>0.001</td>
<td>0.005</td>
<td>0.009</td>
<td>0.576</td>
</tr>
</tbody>
</table>

Transaction Mix

<table>
<thead>
<tr>
<th>Transaction Type</th>
<th>Transaction Count</th>
<th>Mix Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broker-Volume</td>
<td>13,449,322</td>
<td>3.900%</td>
</tr>
<tr>
<td>Customer-Position</td>
<td>51,727,995</td>
<td>15.000%</td>
</tr>
<tr>
<td>Market-Watch</td>
<td>58,624,997</td>
<td>17.000%</td>
</tr>
<tr>
<td>Security-Detail</td>
<td>55,176,788</td>
<td>16.000%</td>
</tr>
<tr>
<td>Trade-Lookup</td>
<td>31,036,456</td>
<td>9.000%</td>
</tr>
<tr>
<td>Trade-Order</td>
<td>34,829,922</td>
<td>10.100%</td>
</tr>
<tr>
<td>Trade-Result</td>
<td>34,489,302</td>
<td>10.001%</td>
</tr>
<tr>
<td>Trade-Status</td>
<td>62,073,582</td>
<td>18.000%</td>
</tr>
<tr>
<td>Trade-Update</td>
<td>3,448,571</td>
<td>1.000%</td>
</tr>
<tr>
<td>Data-Maintenance</td>
<td>4,800</td>
<td>N/A</td>
</tr>
<tr>
<td>Market-Feed</td>
<td>287,996</td>
<td>N/A</td>
</tr>
<tr>
<td>Transaction Total</td>
<td>344,856,935</td>
<td></td>
</tr>
<tr>
<td>Measurement Interval</td>
<td>02:00:00</td>
<td></td>
</tr>
<tr>
<td>Business Recovery Time</td>
<td>00:14:40</td>
<td></td>
</tr>
<tr>
<td>Redundancy Level Details</td>
<td>Redundancy Level 3</td>
<td></td>
</tr>
<tr>
<td>Auditor</td>
<td>Doug Johnson, InfoSizing</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Abstract ... 3
Executive Summary .. 3
Table of Contents .. 7
Clause 0 – Preamble .. 9
 0.1 TPC Express Benchmark™ HCI Overview .. 9
Clause 1 – General Items ... 10
 1.1 Test Sponsor ... 10
 1.2 Configuration Diagrams ... 10
 1.2.1 Measured Configuration Diagram .. 10
 1.2.2 Differences Between the Priced and the Measured Configurations 10
 1.3 Hardware Setup Steps .. 10
 1.4 Software Setup Steps ... 10
Clause 2 – Database Design, Scaling, & Population .. 11
 2.1 Database Creation Steps .. 11
 2.2 Database Load Methodology ... 11
Clause 3 – Transactions ... 12
Clause 4 – SUT, Driver, & Network ... 13
 4.1 Network Configuration Description ... 13
Clause 5 – Benchmark Kit ... 14
 5.1 Version .. 14
 5.2 Modifications ... 14
Clause 6 – Performance Metrics & Response Times ... 15
 6.1 VGenDriver Configuration ... 15
 6.1.1 Customer Emulator (CE) .. 15
 6.1.2 Market Exchange Emulator (MEE) ... 15
 6.2 Overall Throughput .. 15
 6.3 Measured Throughput by Group ... 16
 6.4 Test Run Graph .. 17
 6.5 Transaction Input Parameter Mix Percentages .. 18
Clause 7 – Transaction & System Properties ... 19
 7.1 Atomicity .. 19
 7.2 Consistency .. 19
 7.3 Isolation ... 19
7.4 Data Accessibility

- **7.4.1 Redundancy Level** .. 19
- **7.4.2 Test Description** .. 20
- **7.4.3 Data Accessibility Graph** .. 21

7.5 Business Recovery

- **7.5.1 Test Description** .. 21
- **7.5.2 Business Recovery Times** ... 22
- **7.5.3 Business Recovery Time Graph** 23

Clause 8 – Pricing

- **8.1 Business Day Space Calculations** 24
- **8.2 Pricing Related Metrics** .. 24
- **8.3 Additional Pricing Details** ... 24

Letter of Attestation

- **Supporting Files Index** ... 27

Third-Party Price Quotes

- **APC.com** .. 28
- **Amazon.com** ... 29
- **vcfg.properties** ... 31
Clause 0 – Preamble

0.1 TPC Express Benchmark™ HCI Overview

The TPC Express Benchmark™ HCI (TPCx-HCI) measures the performance of a virtualized server platform under a demanding database workload. It stresses CPU and memory hardware, storage, networking, hypervisor, and the guest operating system. TPCx-HCI workload is database-centric and models many properties of cloud services, such as multiple VMs running at different load demand levels, and large fluctuations in the load level of each VM. Another unique characteristic of TPCx-HCI is an elastic workload that varies the load delivered to each of the VMs by as much as 16x, while maintaining a constant load at the host level.

The TPCx-HCI kit is available from the TPC (See www.tpc.org/TPCx-HCI for more information). Users must sign-up and agree to the TPCx-HCI User Licensing Agreement (ULA) to download the kit. Re-distribution of the kit is prohibited. All related work (such as collaterals, papers, derivatives) must acknowledge the TPC and include TPCx-HCI copyright. The TPCx-HCI Kit includes: TPCx-HCI Specification document, TPCx-HCI Users Guide documentation, and all software necessary to set up the benchmark environment and execute the benchmark load.

The purpose of TPC benchmarks is to provide relevant, objective performance data to industry users. To achieve that purpose, TPC benchmark specifications require that benchmark tests be implemented with systems, products, technologies, and pricing that:

- Are generally available to users.
- Are relevant to the market segment that the individual TPC benchmark models or represents (e.g., TPCx-HCI models and represents multiple concurrent operating and application environments running on a platform).
- Would plausibly be implemented by a significant number of users in the market segment the benchmark models or represents.

The use of new systems, products, technologies (hardware or software) and pricing is encouraged so long as they meet the requirements above. Specifically prohibited are benchmark systems, products, technologies, or pricing (hereafter referred to as "implementations") whose primary purpose is performance optimization of TPC benchmark results without any corresponding applicability to real-world applications and environments. In other words, all "benchmark special" implementations that improve benchmark results but not real-world performance or pricing, are prohibited.

The rules for pricing are included in the TPC Pricing Specification.

Further information is available at www.tpc.org.
Clause 1 – General Items

1.1 Test Sponsor
This benchmark was sponsored by Super Micro Computer, Inc..

1.2 Configuration Diagrams
The priced configuration diagram is shown above in the Executive Summary. The measured configuration diagram is shown below in Figure 1-1. In addition, any differences between the priced and the measured configurations are described.

1.2.1 Measured Configuration Diagram

![Measured Configuration Diagram]

vSAN TPCx-HCI Benchmarking Connectivity

Figure 1-1 Measured Configuration

1.2.2 Differences Between the Priced and the Measured Configurations
The measured configuration included one additional AS-1114S-WN10RT server (used to load-drive the workload) which is not part of the SUT and therefore not priced.

1.3 Hardware Setup Steps
Detailed instructions for installing and configuring the hardware used in the System Under Test (SUT) are included in the Supporting Files. Please see the Supporting Files Index for a summary of the files available.

1.4 Software Setup Steps
Detailed instructions for installing and configuring the software used in the SUT are included in the Supporting Files. Please see the Supporting Files Index for a summary of the files available.
Clause 2 – Database Design, Scaling, & Population

This section provides details of the process used to create the database environment.

2.1 Database Creation Steps

Detailed instructions for creating the database environment used in the SUT are included in the Supporting Files. Also included is the output captured from running setup.sh. Please see the Supporting Files Index for a summary of the files available.

Table 2-1 provides details on the distribution of tables, partitions, and logs across all media.

<table>
<thead>
<tr>
<th>Disk Type</th>
<th>Usage</th>
<th>Count</th>
<th>Host File System</th>
<th>Guest File System</th>
<th>Guest Use</th>
<th>Overall Size (60 VMs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>960 GB, PCIe NVMe, M.2</td>
<td>Host root</td>
<td>4: 1 in each of 4 servers</td>
<td>/ and auxiliary datastore</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Kioxia CD6 3.84 TB NVMe</td>
<td>vSAN Capacity layer</td>
<td>32: 8 in each of 4 servers</td>
<td>vSAN file system “vsanDatastore”</td>
<td>/</td>
<td>Root</td>
<td>360 GB</td>
</tr>
<tr>
<td>Kioxia CM6 3.84 TB NVMe</td>
<td>vSAN Cache layer</td>
<td>8: 2 in each of 4 servers</td>
<td>/dbstore</td>
<td>Database data</td>
<td>35,974 GB</td>
<td>1,944 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/pg_wal</td>
<td>Database redo log</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2-1 Distribution of Tables, Partitions, and Logs Across Media

2.2 Database Load Methodology

Supermicro used the setup.sh script provided with the TPCx-HCI benchmark kit to load the databases. The necessary data is generated with the required properties and loaded it into the databases. The output from the script is available in the Supporting Files. Please see the Supporting Files Index for a summary of the files available.
Clause 3 – Transactions

All transaction implementation details are handled by the TPC’s TPCx-HCI benchmark kit. Therefore, the TPCx-HCI Standard Specification, Revision 1.1.8 does not have any disclosure requirements for this clause.
Clause 4 – SUT, Driver, & Network

4.1 Network Configuration Description
The priced and measured configurations had identical networking, consisting of the following on each of the 4 nodes:

- A 1GbE connection for IPMI.
- A dual-port Broadcom BCM57416 NetXtreme-E 10GBASE-T RDMA Ethernet Controller. One port was unused. The other port was used for “Management Network”. The vCenter Server Appliance accessed the hosts on this network.
- A dual-port Mellanox ConnectX-5 EN 100GbE card. Both ports were connected to the 100GbE Switch. One port carried the vSAN traffic and the transactions coming from the driver. The other port carried the vMotion traffic.
Clause 5 – Benchmark Kit

5.1 Version
Supermicro used the required TPC-provided benchmark kit for this benchmark. Table 5-1 shows the version of the kit Supermicro used.

<table>
<thead>
<tr>
<th>TPCx-HCI Benchmark Kit Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.8</td>
</tr>
</tbody>
</table>

Table 5-1 Benchmark Kit Version

5.2 Modifications
The only modifications made to the TPC-provided kit were for environment settings.
Clause 6 – Performance Metrics & Response Times

6.1 VGenDriver Configuration

6.1.1 Customer Emulator (CE)

A TPCx-HCI Customer Emulator (VCE) process is created by invoking vce.jar. The number of VCE processes is controlled by the configuration parameter NUM_DRIVER_HOSTS in the vcfg.properties file. The number of CE threads used to present the CE load to the SUT is controlled by the configuration parameter NUM_CE_DRIVERS.

Table 6-1 summarizes the configuration of VGenDriverCE used for this benchmark. Additional configuration details can be found in vcfg.properties.

<table>
<thead>
<tr>
<th>VCE Processes</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CE Threads</td>
<td>650</td>
</tr>
</tbody>
</table>

Table 6-1 VGenDriverCE Configuration

6.1.2 Market Exchange Emulator (MEE)

A TPCx-HCI Market Exchange Emulator (VMEE) process is created by invoking vmee.jar. The number of VMEE processes is controlled by the configuration parameter NUM_VMEE_PROCESSES in the vcfg.properties file.

Each MEE has one thread pool for handling Trade-Result transactions and another thread pool for handling Market-Feed Transactions. The size of these thread pools is controlled by the configuration parameters MEE_TR_POOL and MEE_MF_POOL, respectively.

Table 6-2 summarizes the configuration of VGenDriverMEE used for this benchmark. Additional configuration details can be found in vcfg.properties.

<table>
<thead>
<tr>
<th>VMEE Processes</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEs</td>
<td>200</td>
</tr>
<tr>
<td>Total Trade-Result Threads</td>
<td>1,000</td>
</tr>
<tr>
<td>Total Market-Feed Threads</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 6-2 VGenDriverMEE Configuration

6.2 Overall Throughput

The TPCx-HCI Standard Specification:

- Defines Nominal Throughput as 2.00 tpsHCI per 1,000 Active Customers
- Requires Measured Throughput to be between 80% and 102% of Nominal Throughput
- Sets Reported Throughput to:
 - Measured Throughput when it is less than Nominal Throughput
 - Nominal Throughput when Measured Throughput is between Nominal Throughput and 102% of Nominal Throughput
Table 6-3 summarizes the overall throughput results for this benchmark.

<table>
<thead>
<tr>
<th>Measured Throughput</th>
<th>4,790.18 tpsHCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Customers</td>
<td>2,400,000</td>
</tr>
<tr>
<td>80% Nominal</td>
<td>3,840.00 tpsHCI</td>
</tr>
<tr>
<td>Nominal Throughput</td>
<td>4,800.00 tpsHCI</td>
</tr>
<tr>
<td>102% Nominal</td>
<td>4,896.00 tpsHCI</td>
</tr>
</tbody>
</table>

Table 6-3 Overall Throughput Results & Nominal Throughput Summary

6.3 Measured Throughput by Group
Table 6-4 shows the measured throughput for each Group over the Measurement Interval. The TPCx-HCI Standard Specification requires each Group’s measured throughput to be within 2% of its expected value.

<table>
<thead>
<tr>
<th>Tile</th>
<th>Group</th>
<th>Expected</th>
<th>tpsHCI</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>95.80</td>
<td>95.73</td>
<td>-0.07%</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>191.60</td>
<td>193.10</td>
<td>0.78%</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>287.41</td>
<td>286.69</td>
<td>-0.25%</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>383.21</td>
<td>382.55</td>
<td>-0.17%</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>95.80</td>
<td>95.69</td>
<td>-0.11%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>191.60</td>
<td>193.11</td>
<td>0.79%</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>287.41</td>
<td>286.65</td>
<td>-0.26%</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>383.21</td>
<td>382.53</td>
<td>-0.18%</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>95.80</td>
<td>95.71</td>
<td>-0.09%</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>191.60</td>
<td>193.09</td>
<td>0.78%</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>287.41</td>
<td>286.70</td>
<td>-0.25%</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>383.21</td>
<td>382.51</td>
<td>-0.18%</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>95.80</td>
<td>95.69</td>
<td>-0.11%</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>191.60</td>
<td>193.14</td>
<td>0.80%</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>287.41</td>
<td>286.69</td>
<td>-0.25%</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>383.21</td>
<td>382.53</td>
<td>-0.18%</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>95.80</td>
<td>95.67</td>
<td>-0.14%</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>191.60</td>
<td>193.14</td>
<td>0.80%</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>287.41</td>
<td>286.66</td>
<td>-0.26%</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>383.21</td>
<td>382.52</td>
<td>-0.18%</td>
</tr>
</tbody>
</table>

Table 6-4 Measured Throughput by Group
6.4 Test Run Graph

Figure 6-1 shows the throughput versus elapsed wall clock time for the Trade-Result transaction.

![Measured Throughput vs. Elapsed Time](image)

Figure 6-1 Test Run Graph
6.5 Transaction Input Parameter Mix Percentages

Table 6-5 shows the mix percentages over the Measurement Interval for key transaction input parameters.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Mix</th>
<th>Required Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Customer-Position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Tax ID</td>
<td>True</td>
<td>50.00%</td>
</tr>
<tr>
<td>Get History</td>
<td>True</td>
<td>50.00%</td>
</tr>
<tr>
<td>Market-Watch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security Chosen By</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watch List</td>
<td></td>
<td>59.99%</td>
</tr>
<tr>
<td>Account ID</td>
<td></td>
<td>35.01%</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td>5.00%</td>
</tr>
<tr>
<td>Security Detail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access LOB</td>
<td>True</td>
<td>1.00%</td>
</tr>
<tr>
<td>Trade-Lookup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame to Execute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>40.00%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>30.00%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>20.00%</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>10.00%</td>
</tr>
<tr>
<td>Trade-Order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By Third Party</td>
<td>True</td>
<td>10.01%</td>
</tr>
<tr>
<td>By Company Name</td>
<td>True</td>
<td>39.99%</td>
</tr>
<tr>
<td>Buy On Margin</td>
<td>True</td>
<td>8.01%</td>
</tr>
<tr>
<td>Rollback</td>
<td>True</td>
<td>0.99%</td>
</tr>
<tr>
<td>LIFO</td>
<td>True</td>
<td>35.00%</td>
</tr>
<tr>
<td>Trade Quantity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>25.01%</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>25.00%</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>24.99%</td>
</tr>
<tr>
<td>800</td>
<td></td>
<td>25.00%</td>
</tr>
<tr>
<td>Trade Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit Buy</td>
<td></td>
<td>20.01%</td>
</tr>
<tr>
<td>Limit Sell</td>
<td></td>
<td>10.00%</td>
</tr>
<tr>
<td>Market Buy</td>
<td></td>
<td>30.00%</td>
</tr>
<tr>
<td>Market Sell</td>
<td></td>
<td>29.99%</td>
</tr>
<tr>
<td>Stop Loss</td>
<td></td>
<td>10.00%</td>
</tr>
<tr>
<td>Trade-Update</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame to Execute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>45.00%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>33.05%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>21.96%</td>
</tr>
</tbody>
</table>

Table 6-5 Transaction Input Parameter Mix Percentages
Clause 7 – Transaction & System Properties

7.1 Atomicity

The following atomicity tests were conducted on all Tier-B VMs using the xVAudit.Atomicity application provided with the TPCx-HCI benchmark kit.

- Commit Test
- Rollback Test

The results of these tests are available in the Supporting Files. Please see the Supporting Files Index for a summary of the files available.

7.2 Consistency

The following consistency conditions were tested on the initial population of all Tier-B VM databases using the xVAudit.Consistency application provided with the TPCx-HCI benchmark kit. NOTE: these conditions are all also re-evaluated at the conclusion of the Business Recovery test.

- Consistency Condition 1
- Consistency Condition 2
- Consistency Condition 3

The results of these tests are available in the Supporting Files. Please see the Supporting Files Index for a summary of the files available.

7.3 Isolation

The following isolation tests were conducted on all Tier-B VMs using the xVAudit.Isolation applications provided with the TPCx-HCI benchmark kit.

- P1 Test in Read-Only
- P1 Test in Read-Write
- P2 Test in Read-Write

The results of these tests are available in the Supporting Files. Please see the Supporting Files Index for a summary of the files available.

7.4 Data Accessibility

Data Accessibility tests the SUT’s ability to maintain database operations with full data access after the permanent irrecoverable failure of any single Durable Medium containing database tables, recovery log data, or database metadata.

7.4.1 Redundancy Level

Table 7-1 shows the redundancy level, as defined in the TPCx-HCI Standard Specification, provided by the SUT.
7.4.2 Test Description
Validation of Redundancy Level 1 was accomplished by performing the following steps.

1) The current number of completed trades, \(\text{count1} \), was determined.
2) A test run was started using the same configuration as was used in the measured run except for the driver load and the distribution of VMs (as allowed by the specification).
3) The Data Accessibility Throughput Requirements were met for at least 20 minutes.
4) An instantaneous and complete loss of power was induced on the chosen node.
5) After at least 20 minutes had passed, the node was powered on and the necessary recovery process was started.
6) The test run continued for at least 20 minutes.
7) The test run terminated gracefully.
8) The new number of completed trades, \(\text{count2} \), was determined.
9) The number of Trade-Results successfully completed \((\text{count2} - \text{count1})\) was verified to be equal to the number of successful Trade-Result transaction reported by the driver.
10) Successful completion of the recovery process was confirmed.
7.4.3 Data Accessibility Graph
Figure 7-1 shows the measured throughput versus elapsed time for the Data Accessibility test.

![Data Accessibility Test Run Graph](image)

7.5 Business Recovery
Business Recovery tests the SUTs ability to recover from a Loss of Processing failure as defined in the TPCx-HCI Standard Specification and restore certain operational criteria.

7.5.1 Test Description
Business Recovery was evaluated by performing the following steps.

1) The current number of completed trades, $count1$, was determined.
2) A test run was started using the same configuration as was used in the measured run.
3) The Durability Throughput Requirements were met for at least 20 minutes.
4) The failure was induced by instantaneously powering off Tile 1 Group 4 VM 3.
5) The test run was terminated.
6) Tile 1 Group 4 VM 3 was powered back on; Postgres was started and began automatic database recovery. The timestamp in the Postgres log for when the service started is considered the start of Database Recovery. The timestamp in the Postgres log for when the database was ready to accept connections is considered the end of Database Recovery.
7) A test run was started using the same configuration as was used in the measured run. The time when the driver started submitting transactions is considered the start of Application Recovery.

8) The run proceeded until a 20-minute window existed such that the first minute of the window and the entire window both had a tpsHCI that was at least 95% of the Reported Throughput. The time of the beginning of the window is considered the end of Application Recovery.

9) The test run terminated gracefully, and it was verified that the driver did not report any errors.

10) The new number of completed trades, \(\textit{count2} \), was determined.

11) The number of Trade-Results successfully completed (\(\textit{count2} - \textit{count1} \)) was verified to be equal to or greater than the number of successful Trade-Result transaction reported by the driver. In the case of an inequality, it was verified that the difference was less than or equal to the maximum number of Trade-Result transactions that could be simultaneously in-flight from the SUT to the driver.

12) Consistency of all databases was verified.

7.5.2 Business Recovery Times

Table 7-2 summarizes the key times associated with the Business Recovery test.

<table>
<thead>
<tr>
<th>Event</th>
<th>Elapsed Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Recovery</td>
<td>00:00:40</td>
</tr>
<tr>
<td>Application Recovery</td>
<td>00:14:00</td>
</tr>
<tr>
<td>Business Recovery</td>
<td>00:14:40</td>
</tr>
</tbody>
</table>

Table 7-2 Business Recovery Test Times
7.5.3 Business Recovery Time Graph

Figure 7-2 shows the measured throughput versus elapsed time for the Business Recovery test.

![Business Recovery Time Graph](image)

Figure 7-2 Business Recovery Time Graph
Clause 8 – Pricing

8.1 Business Day Space Calculations
To satisfy the requirements in Clauses 5.6.6.4 and 5.6.6.5 of the Standard Specification, it was verified that the file systems containing the database data and database log had at least 10% free space before and after the performance test. Details are available in the Supporting Files. Please see the Supporting Files Index for a summary of the files available.

8.2 Pricing Related Metrics
Table 8-1 contains all pricing related metrics. The total solution, as priced, will be generally available on the Availability Date.

<table>
<thead>
<tr>
<th>Pricing Related Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Price</td>
</tr>
<tr>
<td>Performance Metric</td>
</tr>
<tr>
<td>Price/Performance Metric</td>
</tr>
<tr>
<td>Availability Date</td>
</tr>
</tbody>
</table>

Table 8-1 Pricing Related Metrics

8.3 Additional Pricing Details
All additional pricing disclosure items, such as line item details and pricing calculations, are included in the Executive Summary.
Letter of Attestation

I verified the TPC Express Benchmark™ HCI v1.1.8 performance of the following configuration:

Platform: Supermicro AS-1114S-WN10RT
Virtualization Software: VMware vSphere 7.0 Update 2
Guest VM OS: Red Hat Enterprise Linux 7.7

The results were:

Performance Metric 4,790.18 tpsHCI
- Configured Customers: 2,400,000
- Active Customers: 2,400,000
- Tile Count: 5

Server 4x AS-1114S-WN10RT, each with:
- CPUs: 1 x AMD EPYC 7713 2.0 GHz, 256 MB L3
- Memory: 1,024 GB
- Storage:
 - Qty: 1
 - Size: 960 GB
 - Type: M.2 NVMe
 - Qty: 2
 - Size: 3.84 TB
 - Type: CM6 NVMe
 - Qty: 8
 - Size: 3.84 TB
 - Type: CD6 NVMe

In my opinion, these performance results were produced in compliance with the TPC requirements for the benchmark.

The following verification items were given special attention:

- All TPC-provided components were verified to be version 1.1.8
- No modifications were made to the TPC-provided kit
- All databases were properly scaled and populated
- Each Group contributed the appropriate overall load to the SUT
- The mandatory network between the driver and the SUT was configured
- The ACID properties were met
- Input data was generated according to the specified percentages
• All 90% response times were under the specified maximums
• The measurement interval was 120 minutes
• The implementation used Redundancy Level 3
• The Business Recovery Time of 00:14:40 was correctly measured
• The system pricing was verified for major components and maintenance
• The major pages from the FDR were verified for accuracy

Additional Audit Notes:

None.

Respectfully Yours,

[Signature]

Doug Johnson, Certified TPC Auditor
Supporting Files Index

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description</th>
<th>Pathname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Database tunable parameters</td>
<td>Introduction/vm#DBtune.txt</td>
</tr>
<tr>
<td></td>
<td>OS tunable parameters</td>
<td>Introduction/vm#OSTune.txt</td>
</tr>
<tr>
<td></td>
<td>VM tunable parameters</td>
<td>Introduction/vm#VMtune.txt</td>
</tr>
<tr>
<td>Clause 2</td>
<td>Log of database creation</td>
<td>Clause2/vm#setup.out</td>
</tr>
<tr>
<td>Clause 4</td>
<td>Kit modifications</td>
<td>Clause4/*</td>
</tr>
<tr>
<td>Clause 5</td>
<td>Database growth</td>
<td>Clause5/vm#DatabaseGrowth</td>
</tr>
<tr>
<td>Clause 6</td>
<td>ACID test output</td>
<td>Clause6/ACID output/*</td>
</tr>
<tr>
<td>Clause 10</td>
<td>Driver configuration</td>
<td>Clause10/vcfg.properties</td>
</tr>
<tr>
<td></td>
<td>VGenLoader parameters</td>
<td>Clause10/create_TPCx-V_flat_files.sh</td>
</tr>
<tr>
<td></td>
<td>CE VGenLogger output</td>
<td>Clause10/VGenLogger/CElogger-#.log</td>
</tr>
<tr>
<td></td>
<td>DM VGenLogger output</td>
<td>Clause10/ VGenLogger/DM_Msg-tile-group-vconn.log</td>
</tr>
<tr>
<td></td>
<td>MEE VGenLogger output</td>
<td>Clause10/ VGenLogger/MEE_Msg-tile-group-vconn.log</td>
</tr>
</tbody>
</table>
Third-Party Price Quotes

APC.com

Rack PDU, Switched, 2U, 30A, 208V, (16)C13

AP7911B

$1,075.00

Add To Cart

Write a review

With industry leading reliability, manageability, and security, APC Switched Rack PDUs provide advanced load management plus on/off outlet level power cycling and...

Includes: Documentation CD, Installation guide, Rack mounting brackets

View Product Overview

Get Support

View User Manual
Update Software/Firmware
View Product FAQs
Register Your Product
Logitech Media
Combo MK200 Full-Size Keyboard and High-Definition Optical Mouse
Visit the Logitech Store
4.5 stars · 1,550 ratings
53 answered questions
Amazon's Choice in Computer Keyboards

List Price: $29.12 Details
Price: $21.31 Get Fast, Free Shipping with Amazon Prime & FREE Returns

$21.31
Get Fast, Free Shipping with Amazon Prime & FREE Returns

FREE delivery Friday, November 5 if you spend $25 on items shipped by Amazon
Or fastest delivery Monday, November 1. Order within 13 hrs 37 mins

Select delivery location
In Stock.
vcfg.properties

This file (included here for easy reference) is also included in the Supporting Files. Please see the Supporting Files Index for a summary of the files available.

```
/*
 * Legal Notice
 * 
 * This document and associated source code (the "Work") is a part of a
 * benchmark specification maintained by the TPC.
 *
 * The TPC reserves all right, title, and interest to the Work as provided
 * under U.S. and international laws, including without limitation all patent
 * and trademark rights therein.
 *
 * No Warranty
 *
 * 1.1 TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE INFORMATION
 * CONTAINED HEREIN IS PROVIDED "AS IS" AND WITH ALL FAULTS, AND THE
 * AUTHORS AND DEVELOPERS OF THE WORK HEREBY DISCLAIM ALL OTHER
 * WARRANTIES AND CONDITIONS, EITHER EXPRESS, IMPLIED OR STATUTORY,
 * INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES,
 * DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR
 * PURPOSE, OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF
 * WORKMANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE.
 * ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT,
 * QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT
 * WITH REGARD TO THE WORK.
 * 1.2 IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THE WORK BE LIABLE TO
 * ANY OTHER PARTY FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO THE
 * COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS
 * OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT,
 * INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY,
 * OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT
 * RELATING TO THE WORK, WHETHER OR NOT SUCH AUTHOR OR DEVELOPER HAD
 * ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
 */
```

```bash
# VM Configuration
#
# The specification defines 1 to 6 Tiles. Each Tile contains 4 Groups.
# Each Group contains 3 VMs
#
VM_GROUPS = "4"
VM_TILES   = "5"
```

```
# Runtime Configuration
#
```
RUN_ITERATION_SEC: the combined runtime for all load phases. This value is
divided by the number of phases to determine the run duration for each phase.
For a valid run, RAMUP_SEC has to be >= 720 seconds. Included in Ramp-up is
DRIVER_SCALEUP_SEC, which is the time to gradually log in CE threads and
start submitting transactions. We are at full load after DRIVER_SCALEUP_SEC.
A 30-60 second DRIVER_SCALEUP_SEC is usually adequate. After transactions
start executing at full load, it takes 6 minutes for limit-order Trade-Results
transactions to reach their steady-state throughput. So you want the
difference between RAMPUP_SEC and DRIVER_SCALEUP_SEC to be at least 6 minutes
DRIVER_RAMPDN_SEC: the number of seconds to ramp down the load at the end
of the final measurement phase before terminating the run.
RUN_ITERATION_SEC = "7200"
DRIVER_SCALEUP_SEC = "60"
RAMPUP_SEC = "1440"
DRIVER_RAMPDN_SEC = "60"

VCE_POLL_PER_PHASE = "11"

NUM_RUN_ITERATIONS: the number of times to run a full set of all load phases
NUM_RUN_PHASES: the number of load phases in a single run iteration
NUM_RUN_ITERATIONS = "1"
NUM_RUN_PHASES = "10"

LOAD_BAL_SCRIPT = "/opt/VDriver/scripts/rhel6/activate_load_balancing.sh -t 3 -o drsAdvOptions.json"
VDriver Configuration
VDriver (prime) hostname and RMI listening port
VDRIVER_RMI_HOST = "driver"
VDRIVER_RMI_PORT = "30000"
#
VCe Configuration
NUM_DRIVER_HOSTS: the number of CE *processes* (i.e. how many invocations of
vce.jar) that you want to drive load against the SUT. A value of 1 usually
suffices, unless you need to drive the load from multiple driver systems
NUM_DRIVER_HOSTS = "10"

Default and index-specific VCe driver hostnames and ports for RMI
communication between processes (These let the VDriver process know where to
contact the VCE processes to send benchmark control commands). There must be
one host/port pair combination for each NUM_DRIVER_HOSTS (additional entries
are ignored).
VCE_RMI_HOST[] = "driver"
VCE_RMI_PORT[] = "30100"

Indexes for VCE start from 1
VCE_RMI_PORT[1] = "30101"
VCFG.PROPERTIES

VCE_RMI_PORT[2] = "30102"
VCE_RMI_PORT[3] = "30103"
VCE_RMI_PORT[4] = "30104"
VCE_RMI_PORT[5] = "30105"
VCE_RMI_PORT[6] = "30106"
VCE_RMI_PORT[7] = "30107"
VCE_RMI_PORT[8] = "30108"
VCE_RMI_PORT[9] = "30109"
VCE_RMI_PORT[10] = "30110"

NUM_CE_DRIVERS: the total number of CE threads that you want to drive load
against the SUT VMs. If you are using multiple DRIVER_HOSTS, you can specify
the number of CEs to start on each host by using the indexed version of this
key. Otherwise, the CEs per host are distributed evenly between hosts.
NUM_CE_DRIVERS[] = "650"

Indexed version. Index values start from 1
#NUM_CE_DRIVERS[1] = "2"

VMEE Configuration

The number of VMEE processes the VDriver should talk to. Each VMEE spawns
a number of "mee" threads, each of which is dedicated to a single
Tile/Group/vconnector process
Typically, a single VMEE process on a single system is enough, but you can
run multiple processes, and run them from different systems
NUM_VMEE_PROCESSES = "1"

These settings specify the host name and port number a given VMEE is
listening on. vDriver will use these to connect to the VMEE processes. If
starting the VMEE processes manually (i.e. not using the provided script),
the values specified here must match those used on the VMEE command line
(-rh and -rp) when starting a given VMEE process.
#
Unindexed value - used as a default if a given indexed value is not specified.
VMEE_RMI_HOST[] = "driver"
VMEE_RMI_PORT[] = "30200"

Indexed values (1 to (NUM_VMEE_PROCESSES) will be used if they exist).
#VMEE_RMI_HOST[1] = "driver"
VMEE_RMI_PORT[1] = "30201"
VMEE_RMI_PORT[2] = "30202"
VMEE_RMI_PORT[3] = "30203"
VMEE_RMI_PORT[4] = "30204"
VMEE_RMI_PORT[5] = "30205"

These settings specify individual MEE configuration options. The MEE
threads are divided between the VMEE processes. There is a 1-1
mapping between vconnector processes on Tier A VMs and MEEs. The
VMEE process will have one MEE for each vconnector process
#
MEE_TXN_HOST - host name the MEE will listen on (for connections from SUT
SendToMarket in a vconnector process)
MEE_TXN_PORT - port number the MEE will listen on (for connections from SUT
SendToMarket in a vconnector process)
MEE_MF_POOL - Size of the Market-Feed thread pool (should be 1 for TPCx-V)
MEE_TR_POOL - Size of the Trade-Result thread pool (adjust this based on load)
The indexes used for these parameters are [tile][group][vconn], indicating
the vconnector (index) in a given group on a given tile that the MEE is
connected to.
Unindexed value - used as a default if a given indexed value is not specified.
MEE_TXN_HOST[] = "driver"
MEE_TXN_PORT[] = "30300"
MEE_MF_POOL[] = "1"
MEE_TR_POOL[] = "5"
#
(Indexed values will be used if they exist. Add more entries for additional
tiles.)
#
Tile 1 Group 1
MEE_TXN_HOST[1][1] = "driver"
MEE_TXN_PORT[1][1][1] = "31101"
Tile 1 Group 2
MEE_TXN_HOST[1][2] = "driver"
MEE_TXN_PORT[1][2][1] = "31201"
Tile 1 Group 3
MEE_TXN_HOST[1][3] = "driver"
MEE_TXN_PORT[1][3][1] = "31301"
Tile 1 Group 4
MEE_TXN_HOST[1][4] = "driver"
MEE_TXN_PORT[1][4][1] = "31401"

VConnector Configuration
VConnector is the process on the Tier A VM1 that receives transactions from
the CE and MEE drivers, and submits them to the VM2 and VM3 databases
#
Number of times to retry a failed DB transaction before reporting failure
NUM_TXN_RETRIES = "25"
#
The "vconnector" is the process on the Tier A VM (VM1) that receives
transactions from the driver and submits them to the database. There can be
be one or more vconnector processes on each Tier A. NUM_VCONN_PER_GROUP
is the number of VConnector processes running on each Tier A VM (The
requests will be distributed across all of these processes). Each process
is multi-threaded, and one process may be enough. But if you see odbc
contention issues on the Tier A VM1, increase this value
NUM_VCONN_PER_GROUP = "10"
#
Default VConnector hostnames and ports
VCONN_RMI_HOST[] = "vm1"
VCONN_RMI_PORT[] = "30400"
VCONN_TXN_HOST[] = "vm1"
VCONN_TXN_PORT[] = "31000"
The common case is to set an unindexed CONN_DSN_LABELS[] = "PSQL2,PSQL3
and VCONN_NUM_DBS[] = "2" to cover the whole SUT
VCONN_DSN_LABELS[] = "PSQL2,PSQL3"
VCONN_NUM_DBS[] = "2"

Index-specific hostnames and ports. Add more entries for additional tiles.
All host/port entries are of the form VCONN_RMI_HOST[.tile][.group][.index]
The harness will automatically increment "index" if there are multiple
VConnector processes per group (i.e. NUM_VCONN_PER_GROUP > 1) unless values
for every tile/group/index are specified here. So the options for specifying
these values are:
#
To automatically increment port numbers for multiple VConnector processes:
#
VCONN_RMI_HOST[1][1] = "vm1"
VCONN_RMI_PORT[1][1][1] = "42000" (VCONN_RMI_PORT[1][1][1] = "42000",
VCONN_RMI_PORT[1][1][2] = "42001", ...)
VCONN_TXN_HOST[1][1] = "vm1"
VCONN_TXN_PORT[1][1][1] = "44000" (VCONN_TXN_PORT[1][1][1] = "44000",
VCONN_TXN_PORT[1][1][2] = "44001", ...)
Or, in the case of 3 VConnector processes per group, to specifically assign
values for each port (in this example, for Tile 1 Group 1):
#
VCONN_RMI_HOST[1][1] = "vm1"
VCONN_RMI_PORT[1][1][1] = "51100"
VCONN_RMI_PORT[1][1][2] = "32109"
VCONN_RMI_PORT[1][1][3] = "25432"
VCONN_TXN_HOST[1][1] = "vm1"
VCONN_TXN_PORT[1][1][1] = "41100"
VCONN_TXN_PORT[1][1][2] = "11243"
VCONN_TXN_PORT[1][1][3] = "27211"
VCONN_RMI_HOST[4][2] = "vm40"
VCONN_TXN_HOST[4][2] = "vm40"
VCONN_RMI_HOST[4][3] = "vm43"
VCONN_TXN_HOST[4][3] = "vm43"
VCONN_RMI_HOST[4][4] = "vm46"
VCONN_TXN_HOST[4][4] = "vm46"
VCONN_RMI_HOST[5][1] = "vm49"
VCONN_TXN_HOST[5][1] = "vm49"
VCONN_RMI_HOST[5][2] = "vm52"
VCONN_TXN_HOST[5][2] = "vm52"
VCONN_RMI_HOST[5][3] = "vm55"
VCONN_TXN_HOST[5][3] = "vm55"
VCONN_RMI_HOST[5][4] = "vm58"
VCONN_TXN_HOST[5][4] = "vm58"

#
###
VDm Configuration
#
VDm hostname and RMI listening port
VDM_RMI_HOST = "driver"
VDM_RMI_PORT = "30001"
The Data-Maintenance transaction is supposed to run once every 60 seconds
VDM_REQ_INTERVAL_SEC = "60"
#
###
Group-specific Load Configuration
#
Set CUST_CONFIGURED and CUST_ACTIVE for each Tile/Group with the index
parameters below. SCALE_FACTOR, LOAD_RATE, and INIT_TRADE_DAYS are not
typically changed from their defaults; the unindexed parameters should suffice
CUST_CONFIGURED[] = "5000"
CUST_ACTIVE[] = "5000"
SCALE_FACTOR[] = "500"
LOAD_RATE[] = "2000"
INIT_TRADE_DAYS[] = "125"

Group-specific values
CUST_CONFIGURED[1] = "48000"
CUST_ACTIVE[1] = "48000"
#
CUST_CONFIGURED[2] = "96000"
CUST_ACTIVE[2] = "96000"
#
CUST_CONFIGURED[3] = "144000"
CUST_ACTIVE[3] = "144000"
#
CUST_CONFIGURED[4] = "192000"
CUST_ACTIVE[4] = "192000"
#
GROUP_PCT_DIST_PHASE[1] = "1.0"
GROUP_PCT_DIST_PHASE[2] = "0.10,0.20,0.30,0.40"
GROUP_PCT_DIST_PHASE[3] = "0.05,0.10,0.25,0.60"
GROUP_PCT_DIST_PHASE[4] = "0.10,0.05,0.20,0.65"
GROUP_PCT_DIST_PHASE[5] = "0.05,0.10,0.05,0.80"
GROUP_PCT_DIST_PHASE[6] = "0.10,0.05,0.30,0.55"
GROUP_PCT_DIST_PHASE[7] = "0.05,0.35,0.20,0.40"
GROUP_PCT_DIST_PHASE[8] = "0.35,0.25,0.15,0.25"
GROUP_PCT_DIST_PHASE[9] = "0.10,0.65,0.20,0.10"
GROUP_PCT_DIST_PHASE[10] = "0.10,0.15,0.70,0.05"
GROUP_PCT_DIST_PHASE[11] = "0.05,0.10,0.65,0.20"

Use DB_CONN_BUFFER_PCT_GROUP to modify the initial number of connections
opened by the CEs to each Tier A VM for each group (the index value indicates
the group number). Use values greater than 1.0 to increase the number of
connections (up to the theoretical maximum) and values less than 1.0 to
decrease the number of initial connections.
DB_CONN_BUFFER_PCT_GROUP[1] = "1.2"
DB_CONN_BUFFER_PCT_GROUP[2] = "1.2"
DB_CONN_BUFFER_PCT_GROUP[3] = "1.2"
DB_CONN_BUFFER_PCT_GROUP[4] = "1.2"
DB_CONN_BUFFER_PCT_GROUP[5] = "1.2"
DB_CONN_BUFFER_PCT_GROUP[6] = "1.2"
DB_CONN_BUFFER_PCT_GROUP[7] = "1.2"
DB_CONN_BUFFER_PCT_GROUP[8] = "1.2"
DB_CONN_BUFFER_PCT_GROUP[9] = "1.2"
DB_CONN_BUFFER_PCT_GROUP[10] = "1.2"

Misc Configuration Parameters
These values are unlikely to need to be modified
Log names:
CE log file names
CE_MIX_LOG = "CE_Mix.log"
CE_ERR_LOG = "CE_Error.log"

MEE base file names for logging purposes.
MEE_LOG = "MEE_Msg"
MEE_MIX_LOG = "MEE_Mix"
MEE_ERR_LOG = "MEE_Err"

VDm log file names
VDM_TRANSACTION_LOG = "DM_Txn"
VDM_MESSAGING_LOG = "DM_Msg"

RESULT_DIR = "results"
LOG_DIR = "."
SORT_MIX_LOGS = "0"
SORTED_LOG_NAME_APPEND = "sorted"
LOG_SAMPLE_SEC = "60"
VGEN_INPUT_FILE_DIR = ""
DEBUG_LEVEL = "0"
SUPPRESS_WARNINGS = "1"
CHECK_TIME_SYNC = "1"
COLLECT_CLIENT_LOGS = "0"
TIME_SYNC_TOLERANCE_MSEC = "1000"
CE_EXIT_DELAY_SEC is the number of seconds the user wants to wait to allow
"cleanup" before final exit. This is mostly in case there are "retries" going
on that need to have time to time out before a final exit.
CE_EXIT_DELAY_SEC = "10"

NUM_TXN_METRICS is the number of metrics created for report purposes
NUM_TXN_METRICS = "5"
NUM_TXN_TYPES = "12"

CE_MIX_PARAM_INDEX = "1,2"
BrokerVolumeMixLevel, CustomerPositionMixLevel,
MarketWatchMixLevel, SecurityDetailMixLevel,
TradeLookupMixLevel, TradeOrderMixLevel,
TradeStatusMixLevel, TradeUpdateMixLevel
CE_MIX_PARAM_1 = "0,0,0,0,0,1000,0,0"
CE_MIX_PARAM_1 = "39,150,170,160,90,101,180,10"
CE_MIX_PARAM_2 = "59,130,180,140,80,101,190,20"
TXN_TYPE
",1" = EGEN-GENERATED MIX
",0" = SECURITY_DETAIL
",1" = BROKER_VOLUME
",2" = CUSTOMER_POSITION
",3" = MARKET_WATCH
",4" = TRADE_STATUS
",5" = TRADE_LOOKUP
",6" = TRADE_ORDER
",7" = TRADE_UPDATE