
TPC Benchmark H
Full Disclosure Report

Sun Microsystems Sun Fire™ X4270
Using Sybase IQ 15.1 ESD#1 Single Application Server

 Submitted for Review
 Report Date: Dec 4, 2009

TPC Benchmark H Full Disclosure Report

First Printing

 2009 Sybase Inc.

1 Sybase Drive , Dublin, CA 94568 U.S.A

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses restricting its
use, copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by
any means without prior written authorization of Sybase and its licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions set
forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19, Rights in Technical Data and Computer Software (October 1988).

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Sun Fire V440 Server, SMCC, the SMCC logo, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. All other product names
mentioned herein are the trademarks of their respective owners.

TPC-H Benchmark is a trademark of the Transaction Processing Performance Council.

Sybase is a registered trademark of Sybase Inc.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. AND SYBASE INC. MAY MAKE IMPROVEMENTS
AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Sybase Inc., believes that the information in this document is accurate as of its publication date. The information in this document is
subject to change without notice. Sybase Inc., assumes no responsibility for any errors that may appear in this document.

The pricing information in this document is believed to accurately reflect prices in effect on Report Date: Dec 4, 2009. However, Sun
Microsystems and Sybase Inc. provide no warranty on the pricing information in this document.

The performance information in this document is for guidance only. System performance is highly dependent on many factors
including system hardware, system and user software, and user application characteristics. Customer applications must be carefully
evaluated before estimating performance. Sybase Inc. and Sun Microsystems Inc. does not warrant or represent that a user can or will
achieve a similar performance. No warranty on system performance or price/performance is expressed or implied in this document.

 6.7 = power geometric mean

 33.5 = throughput arithmetic mean

 System Configuration:
 SunFire X4270 with

2 Intel Xeon 5570 2.93 GHz Quad Core processors
120 GB memory
1x 146GB SAS internal disk (10K RPM)
8 x 32GB internal SSDs

 Total Storage: 374.4 GB

 1 GB = 1024*1024*1024 bytes

TPC-H Rev. 2.8.0
Sun Fire™ X4270

with Sybase IQ 15.1 ESD#1
Single Application Server

Price/PerformanceComposite Query per Hour Metric

Report Date: Dec 4, 2009

$61,217.99

Sybase IQ 15.1
ESD#1 Single

Application Server

Solaris Volume
Manager

100GB

Database Size Database Manager Operating System Other Software

Dec 4, 2009

Availability Date

$1.14
 per QphH@100GB

Solaris 10

53,501.6
QphH@100GB

Load Includes Backup: NDatabase Load Time = 25 min 2 secs Total Storage/Database Size= 3.74

RAID (Base tables and auxiliary data structures): RAID 1 RAID (All): NRAID (Base tables): RAID 1

Total System Cost

RF2
RF1
Q22
Q21
Q20
Q19
Q18
Q17
Q16
Q15
Q14
Q13
Q12
Q11
Q10

Q9
Q8
Q7
Q6
Q5
Q4
Q3
Q2
Q1

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

Pow er
Throughput Arithmetic
Mean

query times in seconds

Report Date: Dec 4, 2009

TPC-H Rev. 2.8.0Sun Fire™ X4270
with Sybase IQ 15.1 ESD#1
Single Application Server

Audited by: Brad Askins, InfoSizing, Inc. (www.sizing.com)

Prices used in TPC benchmarks reflect the actual prices a customer would pay for a one-time purchase of the standard components. Individually
negotiated discounts are not permitted. Special prices based on assumptions about past or future purchase are not permitted. All discounts reflect
standard pricing policies for the listed components. For complete details, see the pricing sections of the TPC benchmark specifications. If you find
that the stated prices are not available according to these terms, please inform the TPC at pricing@tpc.org. Thank you.

De scription S ource Unit Price Qty Ex t. Price

Se rve r Ha rdw a re
79601 73 1 33 ,03 8 .00 1 33 ,038 .00

3 Y ear Gold W arranty Upgrade – X4270Serv er X4 270-S1-AA 1 84 4 .2 1 8 44.20
Sun Serv er Dis c ount -5 ,946 .8 4

TR -06U -30 3 349 .00 1 3 49.00
A SUS V W 193TR 19” LCD monitor N82E16824236069 4 119 .99 1 1 19.99
I y ear s upport f or mon itor N82E16824236069 4 16 .99 3 50.97
LITE-ON SK-1688U USB key board (1 + 2 s pares) N82E16823107128 4 6.99 3 20.97
Serv er Hardw are Sub total 27 ,581 .12 8 95.17

Ex ternal S torage
None

Se rve r Softw a re
1219 3 2 2,59 5.00 8 20 ,760 .00
9847 7 2 1,713 8 13 ,704 .0 0

1 ,038.00 6 85.00
Serv er Sof tware Subtotal 19 ,722 .00 13 ,018 .8 0

Total 47 ,303 .12 13 ,913 .9 7
3 Yr. Cost 61 ,217 .09

5 3,501 .6
1 .14

Serv ic e f or Sun produc ts is f rom Sun Mic ros y s tems , Inc .

No te s (So u r ce) :
1. Sun Mic ros y s tems Inc .

P art Num 3 Yr. m a int.

SunFire X4270 , 2x 2.93GHz x eon 5570 CPUs , 120 GB mem,
8 x 32 GB SSDs , 1 x 146 GB SA S dis k

Tec hRac k 6U rac k

Sybas e IQ 15 .1 S in g le App Svr – pe r cpu co re
Sy base IQ 3 Y ears Ex tended Support 24 x 7

Sy base dis count

QphH@ 100 GB
$/QphH@ 100GB

Serv ic e f or Sy bas e p roduc ts is f r om Sy bas e Inc .

2. Sy bas e Inc .
3. h ttp ://w w w .tec hrac k.c om/c ata log/Des ktop_Enc los ure.html.
4. h ttp :/ /www.newegg.co m
Pr ic eQuotes prov ided in A ppendix G

Sun Fire™ X4270
with Sybase IQ 15.1 ESD#1
Single Application Server

TPC-H Rev. 2.8.0

Report Date: Dec 4, 2009

Numerical Quantities
Measurement Results:

Database Scale Factor = 100GB
Total Data Storage / Database Size = 3.74
Start of database load time = 2009-11-04 15:43:40
End of database load time = 2009-11-04 16:08:42
Database Load Time = 25mins:2secs
Query Streams for Throughput Test = 5
TPC-H Power = 53,923.4
TPC-H Throughput = 53,083.1
TPC-H Composite Query-per-Hour Rating (QphH@100GB) = 53,501.6
Total System Price Over 3 Years ($US) = 61,217.99
TPC-H Price/Performance Metric ($/QphH@100GB) = 1.14

Measurement Intervals:
Measurement Interval in Throughput Test (Ts) = 746 seconds

Duration of Stream Execution:

Stream ID Seed Start Date Start Tim e End Date End Tim e Duration
Stream 00 1104160842 4-Nov-09 16:08:45 4-Nov-09 16:12:52 0:04:07
Stream 01 1104160843 4-Nov-09 16:12:52 4-Nov-09 16:25:05 0:12:12
Stream 02 1104160844 4-Nov-09 16:12:52 4-Nov-09 16:24:59 0:12:07
Stream 03 1104160845 4-Nov-09 16:12:52 4-Nov-09 16:25:05 0:12:12
Stream 04 1104160846 4-Nov-09 16:12:52 4-Nov-09 16:25:17 0:12:25
Stream 05 1104160847 4-Nov-09 16:12:52 4-Nov-09 16:25:18 0:12:26

Sun Fire™ X4270
 with Sybase IQ 15.1 ESD#1

Single Application Server

TPC-H Rev. 2.8.0

Report Date: Dec 4, 2009

TPC-H Timing Intervals (in seconds)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Stream0 35.2 1.1 7.2 10.8 8.0 1.2 5.8 6.7 13.8 13.9 1.6 5.3
Stream1 155.5 3.0 26.0 22.3 22.2 6.8 20.1 17.3 37.1 32.6 5.9 13.1
Stream2 165.1 1.9 14.6 19.4 26.8 14.9 18.2 24.3 60.2 37.3 3.5 14.9
Stream3 167.6 2.8 15.7 26.6 33.4 2.2 23.2 48.4 41.9 34.9 5.2 14.2
Stream4 186.0 3.4 10.9 25.6 49.0 3.6 19.2 24.9 47.0 40.0 4.8 12.6
Stream5 175.4 1.5 20.3 27.7 15.7 3.7 17.1 13.9 35.0 31.8 6.7 15.9

min 155.5 1.5 10.9 19.4 15.7 2.2 17.1 13.9 35.0 31.8 3.5 12.6
avg 169.9 2.5 17.5 24.3 29.4 6.2 19.6 25.8 44.2 35.3 5.2 14.1
max 186.0 3.4 26.0 27.7 49.0 14.9 23.2 48.4 60.2 40.0 6.7 15.9

Sun Fire™ X4270
 with Sybase IQ 15.1 ESD#1

Single Application Server

TPC-H Rev. 2.8.0

Report Date: Dec 4, 2009

Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 RF1 RF2
Stream0 23.3 3.1 5.2 6.7 1.2 6.6 3.5 3.8 24.9 8.6 24.9 23.8
Stream1 74.6 8.1 29.7 24.0 3.4 37.5 26.4 10.8 129.3 26.6 31.1 22.9
Stream2 111.8 7.5 19.1 37.7 17.5 23.5 13.9 3.7 72.6 18.1 30.1 23.0
Stream3 106.4 10.1 16.6 21.3 2.3 37.2 16.8 5.3 80.7 19.5 31.2 23.0
Stream4 110.0 8.7 21.5 24.8 2.2 16.7 16.2 2.8 98.3 16.4 33.5 22.8
Stream5 76.3 14.4 33.3 26.6 3.8 24.7 24.9 9.8 126.2 40.9 25.5 22.4

min 74.6 7.5 16.6 21.3 2.2 16.7 13.9 2.8 72.6 16.4 25.5 22.4
avg 95.8 9.8 24.0 26.9 5.8 27.9 19.6 6.5 101.4 24.3 30.3 22.8
max 111.8 14.4 33.3 37.7 17.5 37.5 26.4 10.8 129.3 40.9 33.5 23.0

Table of Contents
1. General Items..12

1.1 Benchmark Sponsor...12
1.2 Parameter Settings..12
1.3 Configuration Diagram..13

2. Clause 1 Logical Database Design..14
2.1 Database Definition Statements...14
2.2 Physical Organization...14
2.3 Horizontal Partitioning...14
2.4 Replication...14

3. Clause 2 Queries and Refresh Functions..15
3.1 Query Language...15
3.2 Verifying Method for Random Number Generation..15
3.3 Generating Values for Substitution Parameters...15
3.4 Query Text and Output Data from Qualification Database..15
3.5 Query Substitution Parameters and Seeds Used...15
3.6 Query Isolation Level...16
3.7 Source Code of Refresh Functions...16

4. Clause 3 Database System Properties...17
4.1 ACID Properties...17
4.2 Atomicity..17

4.2.1 Completed Transaction...17
4.2.2 Aborted Transaction...17

4.3 Consistency..17
4.3.1 Consistency Test...18

4.4 Isolation..18
4.4.1 Read-Write Conflict with Commit...18
4.4.2 Read-Write Conflict with Rollback..18
4.4.3 Write-Write Conflict with Commit..18
4.4.4 Write-Write Conflict with Rollback...19
4.4.5 Concurrent Progress of Read and Write Transactions..19
4.4.6 Read-Only Query Conflict with Update Transaction...19

4.5 Durability...19
4.5.1 Failure of a Durable Medium...20
4.5.2 System Crash..20

4.5.3 Memory Failure..20
5. Clause 4 Scaling and Database Population...21

5.1 Ending Cardinality of Tables...21
5.2 Distribution of Tables and Logs Across Media..21
5.3 Database partition/replication mapping...21
5.4 RAID Feature...22
5.5 Modifications to the DBGEN...22
5.6 Database Load Time...22
5.7 Data Storage Ratio...22
5.8 Database Load Mechanism Details and Illustration...23
5.9 Qualification Database Configuration..24

6. Clause 5 Performance Metrics and Execution Rules..25
6.1 System Activity Between Load and Performance Tests...25
6.2 Steps in the Power Test..25
6.3 Timing Intervals for Each Query and Refresh Functions...25
6.4 Number of Streams for the Throughput Test...25
6.5 Start and End Date/Times for Each Query Stream...25
6.6 Total Elapsed Time of the Measurement Interval..25
6.7 Refresh Function Start Date/Time and Finish Date/Time..26
6.8 Timing Intervals for Each Query and Each Refresh Function for Each Stream............................27
6.9 Performance Metrics..27
6.10 The Performance Metric and Numerical Quantities from Both Runs..27
6.11 System Activity Between Performance Tests..27

7. Clause 6 SUT and Driver Implementation..28
7.1 Driver...28
7.2 Implementation-Specific Layer..28
7.3 Profile-Directed Optimization..28

8. Clause 7 Pricing..29
8.1 Hardware and Software Used...29
8.2 Total Three Year Price...29
8.3 Availability Date..29

9. Auditor's Information and Attestation Letter..30
 Appendix A. Solaris 10 and Sybase IQ 15.1 ESD#1 Parameters...31
 Appendix C. Query Text and Query Output..56
 Appendix D. Query Parameters...64
 Appendix E. Implementation-Specific Layer/Driver Code..66
 Appendix F. Misc database scripts..67
 Appendix G. Pricing information..69

Benchmark Sponsors: Peter Thawley
Senior Director
Sybase, Inc.
1 Sybase Drive
Dublin, CA 94568

Dec 3, 2009

I verified the TPC Benchmark™ H performance of the following configuration:

Platform: Sun Fire X4275 Server
Database Manager: Sybase IQ 15. ESD#1 Single Application Server

Operating System: Solaris 10

The results were:

CPU
(Speed) Memory Disks QphH@100GB

 1 (one) Sun Fire X4275 with:

2 x Xeon 5570
(2.93 GHz)

120 GB Main 8 x 32 GB (int.)
1 x 146 GB (int) 53501.6

In my opinion, this performance result was produced in compliance with the TPC’s
requirements for the benchmark. The following verification items were given special
attention:

• The database records were defined with the proper layout and size

• The database population was generated using DBGEN

• The database was properly scaled to 100GB and populated accordingly

• The compliance of the database auxiliary data structures was verified

• The database load time was correctly measured and reported

• The required ACID properties were verified and met

• The query input variables were generated by QGEN

• The query text was produced using minor modifications

• The execution of the queries against the SF1 database produced compliant answers

• A compliant implementation specific layer was used to drive the tests

• The throughput tests involved 5 query streams

• The ratio between the longest and the shortest query was such that no query timing was adjusted

• The execution times for queries and refresh functions were correctly measured and reported

• The repeatability of the measured results was verified

• The required amount of database log was configured

• The system pricing was verified for major components and maintenance

• The major pages from the FDR were verified for accuracy

Respectfully Yours,

 Francois Raab, President Bradley J. Askins, Auditor

1. General Items

1.1 Benchmark Sponsor

A statement identifying the benchmark sponsor(s) and other participating companies must be provided.

Sybase Inc. is the sponsor of this TPC-H benchmark.

1.2 Parameter Settings

Settings must be provided for all customer-tunable parameters and options that have been changed from
the defaults found in actual products, including but not limited to:
• Database Tuning Options

• Optimizer/Query execution options

• Query processing tool/language configuration parameters

• Recovery/commit options

• Consistency/locking options

• Operating system and configuration parameters

• Configuration parameters and options for any other software component incorporated into the pricing
structure

• Compiler optimization options

Appendix A contains the Solaris and Sybase IQ parameters used in this benchmark.

TPC Benchmark H Full Disclosure Report Page 12

1.3 Configuration Diagram

Provide diagrams of both the measured and priced configurations, accompanied by a description of the
differences.

 Configuration (Priced and Measured are identical):

 SUN Fire X4270 Server with
 2 X 2.93GHz Intel Xeon 5570 processors

 120 GB Memory

 8 x 32 GB internal SSDs

 1 x 146 GB 10K SAS internal disk

 No External Storage

TPC Benchmark H Full Disclosure Report Page 13

2. Clause 1 Logical Database Design

2.1 Database Definition Statements

Listings must be provided for all table definition statements and all other statements used to set up the test
and qualification databases.

Appendix B contains the programs and scripts that create and analyze the tables and indexes for the TPC-H
database.

2.2 Physical Organization

The physical organization of tables and indices within the test and qualification databases must be
disclosed. If the column ordering of any table is different from that specified in Clause 1.4, it must be
noted.

No record clustering or index clustering was used. Column ordering was changed for some tables. Refer to
the table create statements in Appendix B for further details.

2.3 Horizontal Partitioning

Horizontal partitioning of tables and rows in the test and qualification databases (see Clause 1.5.4) must
be disclosed.

Horizontal partitioning was not used for any of the tables.

2.4 Replication

Any replication of physical objects must be disclosed and must conform to the requirements of Clause
1.5.6.

No replication was used.

TPC Benchmark H Full Disclosure Report Page 14

3. Clause 2 Queries and Refresh Functions

3.1 Query Language

The query language used to implement the queries must be identified.

SQL was the query language used to implement all queries.

3.2 Verifying Method for Random Number Generation

The method of verification for the random number generation must be described unless the supplied
DBGEN and QGEN were used.

TPC supplied versions 2.8 of DBGEN and QGEN were used for this TPC-H benchmark.

3.3 Generating Values for Substitution Parameters

The method used to generate values for substitution parameters must be disclosed. If QGEN is not used for
this purpose, then the source code of any non-commercial tool used must be disclosed. If QGEN is used,
the version number, release number, modification number, and patch level of QGEN must be disclosed.

The supplied QGEN version 2.8 was used to generate the substitution parameters.

3.4 Query Text and Output Data from Qualification Database

The executable query text used for query validation must be disclosed along with the corresponding output
data generated during the execution of the query text against the qualification database. If minor
modifications (see Clause 2.2.3) have been applied to any functional query definitions or approved
variants in order to obtain executable query text, these modifications must be disclosed and justified. The
justification for a particular minor query modification can apply collectively to all queries for which it has
been used. The output data for the power and throughput tests must be made available electronically upon
request.

Appendix C contains the query text and query output. The standard queries were used throughout with the
following modifications:

• In Q1, Q4, Q5, Q6, Q10, Q12, Q14, Q15 and Q20, the "dateadd" function is used to perform date
arithmetic.

• In Q7, Q8 and Q9, the "datepart" function is used to extract part of a date (e.g., "year").

• In Q2, Q3, Q10, Q18 and Q21, the "top" function is used to restrict the number of output rows.

• The semicolon (;) is used as a command delimiter.

3.5 Query Substitution Parameters and Seeds Used

The query substitution parameters used for all performance tests must be disclosed in tabular format,
along with the seeds used to generate these parameters.

TPC Benchmark H Full Disclosure Report Page 15

Appendix D contains the seed and query substitution parameters.

3.6 Query Isolation Level

The isolation level used to run the queries must be disclosed. If the isolation level does not map closely to
the levels defined in Clause 3.4, additional descriptive detail must be provided.

The queries and transactions were run with isolation level 2 (repeatable read).

3.7 Source Code of Refresh Functions

The details of how the refresh functions were implemented must be disclosed (including source code of any
non-commercial program used).

Appendix B contains the source code for the refresh functions.

TPC Benchmark H Full Disclosure Report Page 16

4. Clause 3 Database System Properties

4.1 ACID Properties

The ACID (Atomicity, Consistency, Isolation and Durability) properties of transaction processing systems
must be supported by the system under test during the timed portion of this benchmark. Since TPC-H is not
a transaction processing benchmark, the ACID properties must be evaluated outside the timed portion of
the test.

Source code for the ACID test is included in Appendix B.

4.2 Atomicity

The system under test must guarantee that transactions are atomic; the system will either perform all
individual operations on the data, or will assure that no partially-completed operations leave any effects
on the data.

4.2.1 Completed Transaction

Perform the ACID Transaction for a randomly selected set of input data and verify that the appropriate
rows have been changed in the ORDERS, LINEITEM, and HISTORY tables

1. The total price from the ORDERS table and the extended price from the LINEITEM table were
retrieved for a randomly selected order key.

2. The ACID Transaction was performed using the order key from step 1.

3. The ACID Transaction committed.

4. The total price from the ORDERS table and the extended price from the LINEITEM table were
retrieved for the same order key. It was verified that the appropriate rows had been changed.

4.2.2 Aborted Transaction

Perform the ACID Transaction for a randomly selected set of input data, substituting a ROLLBACK of the
transaction for the COMMIT of the transaction. Verify that the appropriate rows have not been changed in
the ORDERS, LINEITEM, and HISTORY tables.

1. The total price from the ORDERS table and the extended price from the LINEITEM table were
retrieved for a randomly selected order key.

2. The ACID Transaction was performed using the order key from step 1. The transaction was stopped
prior to the commit.

3. The ACID Transaction was ROLLED BACK.

4. The total price from the ORDERS table and the extended price from the LINEITEM table were
retrieved for the same order key. It was verified that the appropriate rows had not been changed.

4.3 Consistency

Consistency is the property of the application that requires any execution of transactions to take the
database from one consistent state to another.

TPC Benchmark H Full Disclosure Report Page 17

4.3.1 Consistency Test

Verify that ORDERS and LINEITEM tables are initially consistent, submit the prescribed number of ACID
Transactions with randomly selected input parameters, and re-verify the consistency of the ORDERS and
LINEITEM.

1. The consistency of the ORDERS and LINEITEM tables was verified based on a sample of order
keys.

2. 100 ACID Transactions were submitted by each of seven execution streams.

3. The consistency of the ORDERS and LINEITEM tables was re-verified.

4.4 Isolation

Operations of concurrent transactions must yield results which are indistinguishable from the results
which would be obtained by forcing each transaction to be serially executed to completion in the proper
order.

4.4.1 Read-Write Conflict with Commit

Demonstrate isolation for the read-write conflict of a read-write transaction and a read-only transaction
when the read-write transaction is committed.

1. An ACID Transaction was started for a randomly selected O_KEY, L_KEY, and DELTA. The
ACID Transaction was suspended prior to COMMIT.

2. An ACID Query was run for the same O_KEY used in step 1 and returned the values associated
with O_KEY just before the ACID transaction began..

3. The ACID Transaction was resumed and COMMITTED.

4.4.2 Read-Write Conflict with Rollback

Demonstrate isolation for the read-write conflict of a read-write transaction and a read-only transaction
when the read-write transaction is rolled back.

1. An ACID Transaction was started for a randomly selected O_KEY, L_KEY, and DELTA. The
ACID Transaction was suspended prior to ROLLBACK.

2. An ACID Query was run on the same O_KEY used in step 1. The ACID Query did not see the
uncommitted changes made by the ACID Transaction.

3. The ACID Transaction was ROLLED BACK.

4.4.3 Write-Write Conflict with Commit

Demonstrate isolation for the write-write conflict of two update transactions when the first transaction is
committed.

1. An ACID Transaction, T1, was started for a randomly selected O_KEY, L_KEY, and DELTA. T1
was suspended prior to COMMIT.

2. Another ACID Transaction, T2, was started using the same O_KEY and L_KEY and a randomly
selected DELTA.

3. T2 waited.

4. T1 was allowed to COMMIT and T2 completed.

TPC Benchmark H Full Disclosure Report Page 18

5. It was verified that T2.L_EXTENDEDPRICE = T1.L_EXTENDEDPRICE +
(DELTA1*(T1.L_EXTENDEDPRICE/T1.L_QUANTITY))

4.4.4 Write-Write Conflict with Rollback

Demonstrate isolation for the write-write conflict of two update transactions when the first transaction is
rolled back.

1. An ACID Transaction, T1, was started for a randomly selected O_KEY, L_KEY, and DELTA. T1
was suspended prior to ROLLBACK.

2. Another ACID Transaction, T2, was started using the same O_KEY and L_KEY and a randomly
selected DELTA.

3. T2 waited.

4. T1 was allowed to ROLLBACK and T2 completed.

5. It was verified that T2.L_EXTENDEDPRICE = T1.L_EXTENDEDPRICE.

4.4.5 Concurrent Progress of Read and Write Transactions

Demonstrate the ability of read and write transactions affecting different database tables to make progress
concurrently.

1. An ACID Transaction, T1, was started for a randomly selected O_KEY, L_KEY, and DELTA. T1
was suspended prior to COMMIT..

2. Another Transaction, T2, was started which did the following:

For random values of PS_PARTKEY and PS_SUPPKEY, all columns of the PARTSUPP table for
which PS_PARTKEY and PS_SUPPKEY are equal, are returned.

3. T2 completed.

4. T1 was allowed to COMMIT.

5. It was verified that appropriate rows in ORDERS, LINEITEM and HISTORY tables were changed.

4.4.6 Read-Only Query Conflict with Update Transaction

Demonstrate that the continuous submission of arbitrary (read-only) queries against one or more tables of
the database does not indefinitely delay update transactions affecting those tables from making progress.

1. A Transaction, T1, executing Q1 against the qualification database, was started using a randomly
selected DELTA.

2. An ACID Transaction T2, was started for a randomly selected O_KEY, L_KEY and DELTA.

3. T2 completed and appropriate rows in the ORDERS, LINEITEM and HISTORY tables had been
changed.

4. Transaction T1 completed executing Q1.

4.5 Durability

The SUT must guarantee durability: the ability to preserve the effects of committed transactions and insure
database consistency after recovery from any one of the failures listed in Clause 3.5.3.

TPC Benchmark H Full Disclosure Report Page 19

4.5.1 Failure of a Durable Medium

Guarantee the database and committed updates are preserved across a permanent irrecoverable failure of
any single durable medium containing TPC-H database tables or recovery log tables.

All disks containing TPC-H tables, indexes and the catalog file are on RAID1 volumes. When one of these
disks was removed from the server during the durability test, Sybase IQ continued to run as if nothing
happened until the (non-mirrored) IQ temp segment on that disk was referenced. At that time IQ crashed, as
expected. The IQ was then restarted and the durability success file and the HISTORY table were
successfully compared.

4.5.2 System Crash

Guarantee the database and committed updates are preserved across an instantaneous interruption
(system crash/system hang) in processing which requires the system to reboot to recover.

The system crash and memory failure tests were combined by cutting off power to the X4270 server during
the durability test. When power was restored, the system rebooted and the database was restarted. The
durability success file and the HISTORY table were compared successfully.

4.5.3 Memory Failure

Guarantee the database and committed updates are preserved across failure of all or part of memory (loss
of contents).

See section 4.5.2.

TPC Benchmark H Full Disclosure Report Page 20

5. Clause 4 Scaling and Database Population

5.1 Ending Cardinality of Tables

The cardinality (i.e., the number of rows) of each table of the test database, as it existed at the completion
of the database load (see clause 4.2.5) must be disclosed.

Table Rows

Lineitem 600037902
orders 150000000
partsupp 80000000
Part 20000000
Customer 15000000
Supplier 1000000
Nation 25
Region 5

5.2 Distribution of Tables and Logs Across Media

The distribution of tables and logs across all media must be explicitly described.
• All tables and indexes were stored on 4 RAID 1 volumes. Each volume was constructed from raw

partitions on each of two internal SSDs using the Solaris Volume Manager.

• The Temp database for Sybase IQ was configured using 8 raw partitions, one on each of the internal
SSDs disks. The Temp database was not mirrored.

All the details for configuring the storage used for the tables, logs, temp database, swap space, etc. are
provided in appendix B.

5.3 Database partition/replication mapping

The mapping of database partitions/replications must be explicitly described.

Database partitioning/replication was not used.

TPC Benchmark H Full Disclosure Report Page 21

5.4 RAID Feature

Implementations may use some form of RAID to ensure high availability. If used for data, auxiliary storage
(e.g. indexes) or temporary space, the level of RAID must be disclosed for each device.

RAID 1 was used for all base tables and auxiliary data structures. In addition, the Sybase IQ utility db file
and tpch log file also resided on a RAID 1 device.

5.5 Modifications to the DBGEN

Any modifications to the DBGEN (see Clause 4.2.1) source code must be disclosed. In the event that a
program other than DBGEN was used to populate the database, it must be disclosed in its entirety.

The supplied DBGEN version 2.8 was used to generate the database population for this benchmark.

5.6 Database Load Time

The database load time for the test database (see clause 4.3) must be disclosed.

The database load time was =25 min 2 secs

5.7 Data Storage Ratio

The data storage ratio must be disclosed. It is computed as the ratio between the total amount of priced
disk space, and the chosen test database size as defined in Clause 4.1.3.

The data storage ratio is computed from the following information:

Disk Type # Of Disks Space Per Disk* Sub-Total Disk Space**

internal 1 146 GB 135.97 GB

internal 8 32 GB 238.24 GB

Total Space 374.21 GB

Data Storage Ratio 3.74

* Disk manufacturer definition of one GB is 10^9 bytes
**In this calculation one GB is defined as 2^30 bytes

TPC Benchmark H Full Disclosure Report Page 22

5.8 Database Load Mechanism Details and Illustration
The details of the database load must be described, including a block diagram illustrating the overall
process.

TPC Benchmark H Full Disclosure Report Page 23

The test database was loaded using flat files. All load scripts are included in Appendix B.

5.9 Qualification Database Configuration

Any differences between the configuration of the qualification database and the test database must be
disclosed.

The qualification database used identical scripts to create and load the data with adjustments for size
differences.

TPC Benchmark H Full Disclosure Report Page 24

Create
Database
and
dbspaces

Create empty
Tables and
Indexes

Load tables
from flat files
created by
DBGEN

Ready to run

 Database
Load Timing

Period

6. Clause 5 Performance Metrics and Execution Rules

6.1 System Activity Between Load and Performance Tests

Any system activity on the SUT that takes place between the conclusion of the load test and the beginning
of the performance test must be fully disclosed.

1. Auditor requested queries were run against the database to verify the correctness of the load

All scripts and queries used are included in Appendix F

6.2 Steps in the Power Test

The details of the steps followed to implement the power test (.e.g., system boot, database restart, etc.) must
be disclosed.

The following steps were used to implement the power test:
1. RF1 Refresh Transaction

2. Stream 00 Execution

3. RF2 Refresh Transaction

6.3 Timing Intervals for Each Query and Refresh Functions

The timing intervals for each query and for both refresh functions must be reported for the power test.

The timing intervals for each query and both update functions are reported on the page titled “Numerical
Quantities”, contained in the beginning of this document and replicated in the Executive Summary
document.

6.4 Number of Streams for the Throughput Test

The number of execution streams used for the throughput test must be disclosed.

5 streams were used for the throughput test.

6.5 Start and End Date/Times for Each Query Stream

The start time and finish time for each query stream must be reported for the throughput test.

The start times and finish times for each query stream in the throughput test are reported on the page titled
“Numerical Quantities”, contained in the beginning of this document and replicated in the Executive
Summary document.

6.6 Total Elapsed Time of the Measurement Interval

The total elapsed time of the measurement interval must be reported for the throughput test.

The total elapsed time of the throughput test is reported on the page titled “Numerical Quantities”,
contained in the beginning of this document and replicated in the Executive Summary document.

TPC Benchmark H Full Disclosure Report Page 25

6.7 Refresh Function Start Date/Time and Finish Date/Time

Start and finish time for each refresh function in the refresh stream must be reported for the throughput
test.

The start and finish times for each refresh function:

TPC Benchmark H Full Disclosure Report Page 26

Start Date Start Time End Date End Time
RF1 4-Nov-09 16:12:53 4-Nov-09 16:13:24
RF2 4-Nov-09 16:13:24 4-Nov-09 16:13:47
RF1 4-Nov-09 16:13:47 4-Nov-09 16:14:17
RF2 4-Nov-09 16:14:47 4-Nov-09 16:15:10
RF1 4-Nov-09 16:15:10 4-Nov-09 16:15:42
RF2 4-Nov-09 16:15:42 4-Nov-09 16:16:05
RF1 4-Nov-09 16:16:35 4-Nov-09 16:17:08
RF2 4-Nov-09 16:17:38 4-Nov-09 16:18:01
RF1 4-Nov-09 16:18:01 4-Nov-09 16:18:27
RF2 4-Nov-09 16:18:57 4-Nov-09 16:19:19

Refresh
Function

6.8 Timing Intervals for Each Query and Each Refresh Function for Each Stream

The timing intervals for each query of each stream and each refresh function must be reported for the
throughput test.

The timing intervals for each query and each refresh function for the throughput test are reported on the
page titled “Numerical Quantities”, contained in the beginning of this document and replicated in the
Executive Summary document.

6.9 Performance Metrics

The computed performance metric, related numerical quantities and price performance metric must be
reported.

The performance metrics, and the numbers on which they are based, are reported on the page titled
“Numerical Quantities”, contained in the beginning of this document and replicated in the Executive
Summary document.

6.10 The Performance Metric and Numerical Quantities from Both Runs

The performance metric and numerical quantities from both runs must be disclosed.

Performance results from the first two executions of the TPC-H benchmark indicated the following percent
difference for the three metrics:

6.11 System Activity Between Performance Tests

Any activity on the SUT that takes place between the conclusion of Run1 and the beginning of Run2 must
be disclosed.

The database was not restarted after it was loaded or between the two runs.

TPC Benchmark H Full Disclosure Report Page 27

Run ID

Run 1 53,923.4 53,083.1 53,501.6

Run 2 56,009.2 51,968.5 53,951.0

% Difference 3.72% -2.14% -0.40%

QppH@ 100GB Qpth@ 100GB QphH@ 100GB

7. Clause 6 SUT and Driver Implementation

7.1 Driver

A detailed description of how the driver performs its functions must be supplied, including any related
source code or scripts. This description should allow an independent reconstruction of the driver.

The entire test is run by executing the ntest15 shellscript as follows

ntest15 all 100 5 8 0 0 1

The text of ntest15 is provided in Appendix E and the texts of all the scripts invoked by ntest15 are
provided in Appendix B.

The query streams within the power and throughput tests are generated by a script called
gen_streams_new.ksh which uses qgen to generate the query stream files.

7.2 Implementation-Specific Layer

If an implementation-specific layer is used, then a detailed description of how it performs its functions
must be supplied, including any related source code or scripts. This description should allow an
independent reconstruction of the implementation-specific layer.

 All database configuration was done through scripts disclosed in Appendix B.

The performance tests are performed using dbisqlc. dbisqlc is a Sybase-provided utility that allows SQL
statements to be executed against a Sybase IQ database. The dbisqlc utility is invoked from the command-
line on the SUT. It reads input from files containing SQL statements and sends results to stdout. dbisqlc
uses information in the .odbc.ini file to connect to the database. The performance test scripts utilizing
dbisqlc can be found in Appendix E.

The ACID tests are performed using dbtest. dbtest is a Sybase-provided utility, similar to dbisqlc, but
providing additional scripting capabilities. It is invoked from the command-line on the SUT and uses
information in the .odbc.ini file to connect to the database. ACID test scripts utilizing dbtest can be found in
Appendix B.

7.3 Profile-Directed Optimization

If profile-directed optimization as described in Clause 5.2.9 is used, such use must be disclosed.

Profile-directed optimization was not used.

TPC Benchmark H Full Disclosure Report Page 28

8. Clause 7 Pricing

8.1 Hardware and Software Used

A detailed list of hardware and software used in the priced system must be reported. Each item must have
vendor part number, description, and release/revision level, and either general availability status or
committed delivery date. If package-pricing is used, contents of the package must be disclosed. Pricing
source(s) and effective date(s) of price(s) must also be reported.

Refer to the Executive Summary.

8.2 Total Three Year Price

The total 3-year price of the entire configuration must be reported, including hardware, software, and
maintenance charges. Separate component pricing is recommended. The basis of all discounts used must
be disclosed.

The total 3-year price of the configuration is $61,217.99. For details of pricing, see the second page of the
Executive Summary.

Discounts were taken from actual price quotes,available to any buyer with like conditions, provided by Sun
Microsystems Inc. and Sybase Inc. The respective price quotes are included in Appendix G of this
document.

8.3 Availability Date

The committed delivery date for general availability of products used in the price calculations must be
reported. When the priced system includes products with different availability dates, the reported
availability date for the priced system must be the date at which all components are committed to be
available.

All hardware and software components used in the measured configuration are available as of Dec 4,
2009.

TPC Benchmark H Full Disclosure Report Page 29

9. Auditor's Information and Attestation Letter

The auditor's agency name, address, phone number, and Attestation letter with a brief audit summary
report indicating compliance must be included in the full disclosure report. A statement should be included
specifying who to contact in order to obtain further information regarding the audit process.

The auditor's attestation letter follows the table of contents.

TPC Benchmark H Full Disclosure Report Page 30

Appendix A. Solaris 10 and Sybase IQ 15.1
ESD#1 Parameters

This Appendix contains Solaris kernel parameters and
environment variables and Sybase IQ system parameters.
===

Sybase IQ Server Configuration Parameters
===

utility.cfg
-n bur93-212
-x tcpip{port=2638}
-c 32m
-gd all
-gl all
-gm 15
-gp 4096
-ti 4400
-tl 300
-iqtc 128
-iqmc 128

tpch.cfg
-n bur93-212
-x tcpip{port=3002}
-c 12m
-gd all
-gl all
-gm 8
-gp 4096
-ti 4350
-tl 300
-iqtss 250
#-iqtss 500 default 220 too small for 100gb best 87000 + 31400 with 20
mb left over
-iqmc 86950
#-iqmc 20200
-iqtc 31450
-iqmt 500
-iqgovern 8
#-iqgovern 12 orig
-iqpartition 8
#-iqpartition 2 orig
#-iqnumbercpus 14
#-iqwmem 70000 should be sum of iqmc and iqtc

===

Sybase IQ Database Options
(altered from default)
===

options.sql
===

-------- configuration options --------------

SET OPTION PUBLIC.default_dbspace = 'user1';

SET OPTION PUBLIC.Allow_Nulls_By_Default='Off';
SET OPTION PUBLIC.Append_Load='On';
SET OPTION PUBLIC.Force_No_Scroll_Cursors='On';
SET OPTION PUBLIC.Load_Memory_Mb=0;
SET OPTION PUBLIC.Max_IQ_Threads_Per_Connection=100;
SET OPTION PUBLIC.Minimize_Storage='On';

SET OPTION PUBLIC.Notify_Modulus=10000000;
SET OPTION PUBLIC.Query_Temp_Space_Limit=0;
SET OPTION PUBLIC.Row_Counts='On';
SET OPTION PUBLIC.Hash_Thrashing_Percent=100;
SET OPTION PUBLIC.SignificantDigitsForDoubleEquality=15;
SET OPTION PUBLIC.Garray_Fill_Factor_Percent=1;

------- performance options ----------------

SET OPTION PUBLIC.Max_Hash_Rows = 9200000; -- for 100GB seems
91 is better than 10
SET OPTION PUBLIC.Default_Having_Selectivity_PPM = 10;
SET OPTION PUBLIC.index_preference=8;
SET OPTION PUBLIC.subquery_flattening_preference = 1; -- q22
SET OPTION PUBLIC.fp_prefetch_size = 100;
SET OPTION PUBLIC.row_prefetch_size = 40 ; -- for several queries
default = 40 -- go even higher
SET OPTION PUBLIC.Prefetch_Threads_Percent=; -- this is the default
SET OPTION PUBLIC.STRING_RTRUNCATION='Off';
------- statistics options --------`
SET OPTION PUBLIC.Query_Plan='on';
SET OPTION PUBLIC.Query_Plan_As_Html='on';
SET OPTION PUBLIC.Query_Detail='on';
SET OPTION PUBLIC.Query_Timing='on';
SET OPTION PUBLIC.Query_Plan_After_Run='on';

===

===

Sybase IQ Environment Variables
===
SYBASE_JRE6_64=/export/home/sybase/shared/JRE-6_0_7
OS_CFG=SunAMD64
HZ=100
SHELL=/usr/bin/bash
TERM=ansi
OLDPWD=/export/home/sybase
LD_LIBRARY_PATH=/export/home/sybase/IQ-15_1/lib64:
SYBROOT=/export/home/sybase
SYBASE=/export/home/sybase
MAIL=/var/mail/sybase
PATH=/export/home/sybase/IQ-
15_1/bin64:/usr/bin::.:/bin:/usr/bin:/usr/sbin:/export
/home/sybase/run/scripts:/usr/sfw/bin
PWD=/export/home/sybase/run/scripts
TZ=US/Eastern
IQDIR15=/export/home/sybase/IQ-15_1
SHLVL=1
HOME=/export/home/sybase
LOGNAME=sybase
_=/usr/bin/env
===

.odbc.ini
[ODBC Data Sources]
tpch=ASIQ Driver
utility_db=ASIQ Driver

[tpch]
Driver=/export/home/sybase/IQ-15_1/lib64/dbodbc11_r.so
EngineName=bur93-212
CommLinks=tcpip{host=129.148.93.212;Port=3002}
DatabaseName=tpch
UserID=DBA
Password=sql
DBG=yes
LOG=/tmp/tpch_odbc.log

[utility_db]
EngineName=bur93-212

TPC Benchmark H Full Disclosure Report Page 31

CommLinks=tcpip{host=129.148.93.212;Port=2638}
DatabaseName=utility_db
UserID=DBA
Password=sql
DBG=yes
LOG=/tmp/utility_db_odbc.log

===

Solaris Parameters
(altered from default)
===

/etc/system
===

set tune_t_fsflushr=600
set autoup=36000000
set lotsfree = 4096
set bufhwm = 10000

TPC Benchmark H Full Disclosure Report Page 32

Appendix B. Programs and Scripts

===

create_database.sql
create database '/sybase2/tpch.db'
collation 'ISO_BINENG'
case respect
page size 4096
blank padding on
java off
iq path '/sybase2/firstmain' iq size 1000
temporary path '/sybase2/T01'
iq page size 524288;
===

add_main_files.sql
===
create dbspace user1 using
FILE main01 '/sybase2/M01',
FILE main02 '/sybase2/M02',
FILE main03 '/sybase2/M03',
FILE main04 '/sybase2/M04';
===

add_temp_files.sql

alter dbspace IQ_SYSTEM_TEMP ADD
FILE temp02 '/sybase2/T02',
FILE temp03 '/sybase2/T03',
FILE temp04 '/sybase2/T04',
FILE temp05 '/sybase2/T05',
FILE temp06 '/sybase2/T06',
FILE temp07 '/sybase2/T07',
FILE temp08 '/sybase2/T08';
===

create_tables_int.sql
===

CREATE TABLE region
 (
 r_regionkey unsigned int,
 r_name char(25),
 r_comment varchar(152)
);

CREATE TABLE nation
 (
 n_nationkey unsigned int,
 n_name char(25),
 n_regionkey unsigned int,
 n_comment varchar(152),
);

CREATE TABLE supplier
 (
 s_suppkey unsigned int,
 s_name char(25),
 s_address varchar(40),
 s_nationkey unsigned int,
 s_phone char(15),
 s_acctbal double precision,
 s_comment varchar(101),
 PRIMARY KEY (s_suppkey)
);
CREATE HG INDEX s_nationkey_hg ON supplier(s_nationkey) ;

CREATE TABLE part
 (
 p_partkey unsigned int,
 p_name varchar(55),
 p_mfgr char(25),
 p_brand char(10),
 p_type varchar(25),
 p_size int,
 p_container char(10),
 p_retailprice double precision,
 p_comment varchar(23),
 PRIMARY KEY(p_partkey)
);

CREATE TABLE partsupp
 (
 ps_partkey unsigned int,
 ps_suppkey unsigned int,
 ps_availqty integer,
 ps_supplycost double precision,
 ps_comment varchar(199),
 PRIMARY KEY (ps_partkey, ps_suppkey)
);
CREATE HG INDEX ps_partkey_hg ON partsupp(ps_partkey) ;
CREATE HG INDEX ps_suppkey_hg ON partsupp(ps_suppkey) ;

CREATE TABLE customer
 (
 c_custkey unsigned int,
 c_name varchar(25),
 c_address varchar(40),
 c_nationkey unsigned int,
 c_phone char(15),
 c_acctbal double precision,
 c_mktsegment char(10),
 c_comment varchar(117),
 PRIMARY KEY(c_custkey)
);
CREATE HG INDEX c_nationkey_hg ON customer(c_nationkey) ;

CREATE TABLE orders
 (
 o_orderkey unsigned int,
 o_custkey unsigned int,
 o_orderstatus char(1),
 o_totalprice double precision,
 o_orderdate date,
 o_orderpriority char(15),
 o_clerk char(15),
 o_shippriority int,
 o_comment varchar(79),
 PRIMARY KEY (o_orderkey)
);
CREATE HG INDEX o_custkey_hg ON orders(o_custkey) ;
CREATE DATE INDEX o_orderdate_date ON orders(o_orderdate) ;

CREATE TABLE lineitem
 (
 l_orderkey unsigned int, /* */
 l_partkey unsigned int,
 l_suppkey unsigned int,
 l_linenumber int,
 l_quantity double precision,
 l_extendedprice double precision,
 l_discount double precision,
 l_tax double precision,
 l_returnflag char(1),
 l_linestatus char(1),
 l_shipdate date,

TPC Benchmark H Full Disclosure Report Page 33

 l_commitdate date,
 l_receiptdate date,
 l_shipinstruct char(25),
 l_shipmode char(10),
 l_comment varchar(44)
);

CREATE HG INDEX l_orderkey_hg ON lineitem(l_orderkey) ;
CREATE HG INDEX l_partkey_hg ON lineitem(l_partkey) ;
CREATE HG INDEX l_suppkey_hg ON lineitem(l_suppkey) ;
CREATE DATE INDEX l_shipdate_date ON lineitem(l_shipdate) ;
CREATE DATE INDEX l_receiptdate_date ON lineitem(l_receiptdate);

===

tpch_rf_int.sql
===

create table refresh_control (rf1_data_set int not null, rf2_data_set int not null);
insert into refresh_control values (0,0);
commit;
CREATE PROCEDURE DBA.tpch_rf1 (IN c_directory varchar(128),
 IN c_stream varchar(3))
ON EXCEPTION RESUME
BEGIN
 DECLARE delim_asci integer;
 DECLARE c_data_set varchar(3);
 DECLARE i_data_set integer;
 DECLARE c_cmd long varchar;
 DECLARE s_cmd varchar(128);
 DECLARE outfilename varchar(128); -- Debug
 DECLARE outfilename2 varchar(128); -- Debug
 DECLARE c_lf varchar(2);
 DECLARE t_qstart timestamp;
 DECLARE t_qstop timestamp;
 DECLARE n_seconds numeric(16,5);
 DECLARE c_sqlstate CHAR(5);
 SET t_qstart = now(*);
 SET c_lf=char(10);
 SELECT rf1_data_set INTO i_data_set FROM refresh_control;
 SET c_data_set=CAST(i_data_set+1 AS varchar(3));
 SET c_cmd='load table orders ('+c_lf;
 SET c_cmd=c_cmd+' o_orderkey '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' o_custkey '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' o_orderstatus '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' o_totalprice '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' o_orderdate date('+char(39)+'YYYY-MM-
DD'+char(39)+'), filler(1), '+c_lf;
 SET c_cmd=c_cmd+' o_orderpriority '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' o_clerk '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' o_shippriority '+char(39)+'|'+char(39)+','+c_lf;
 SET c_cmd=c_cmd+' o_comment '+char(39)+'|'+char(39)+') '+c_lf;
 SET c_cmd=c_cmd+'from
'+char(39)+c_directory+'orders.tbl.u'+c_data_set+char(39)+c_lf;
 SET c_cmd=c_cmd+'row delimited by '+char(39)+'\\x0a'+char(39)+' quotes off
escapes off preview on;';
 EXECUTE IMMEDIATE c_cmd;
 SELECT SQLSTATE INTO c_sqlstate;
 IF c_sqlstate != '00000' THEN
 ROLLBACK;
 RAISERROR 23002 'RF1 failed at Step 1 with SQLSTATE: ', c_sqlstate;
 RETURN(1);
 END IF;
 SET c_cmd='load table lineitem ('+c_lf;
 SET c_cmd=c_cmd+' l_orderkey '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_partkey '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_suppkey '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_linenumber '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_quantity '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_extendedprice '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_discount '+char(39)+'|'+char(39)+', '+c_lf;

 SET c_cmd=c_cmd+' l_tax '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_returnflag '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_linestatus '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_shipdate date('+char(39)+'YYYY-MM-
DD'+char(39)+'), filler(1), '+c_lf;
 SET c_cmd=c_cmd+' l_commitdate date('+char(39)+'YYYY-MM-
DD'+char(39)+'), filler(1), '+c_lf;
 SET c_cmd=c_cmd+' l_receiptdate date('+char(39)+'YYYY-MM-
DD'+char(39)+'), filler(1), '+c_lf;
 SET c_cmd=c_cmd+' l_shipinstruct '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_shipmode '+char(39)+'|'+char(39)+', '+c_lf;
 SET c_cmd=c_cmd+' l_comment '+char(39)+'|'+char(39)+')'+c_lf;
 SET c_cmd=c_cmd+'from
'+char(39)+c_directory+'lineitem.tbl.u'+c_data_set+char(39)+c_lf;
 SET c_cmd=c_cmd+'row delimited by
'+char(39)+'\\x0a'+char(39)+c_lf+'quotes off escapes off preview on;';
 EXECUTE IMMEDIATE c_cmd;
 SELECT SQLSTATE INTO c_sqlstate;
 IF c_sqlstate != '00000' THEN
 rollback;
 RAISERROR 23002 'RF1 failed at Step 2 with SQLSTATE: ', c_sqlstate;
 RETURN(1);
 END IF;
 UPDATE refresh_control SET rf1_data_set=cast(c_data_set AS integer);
 COMMIT;
 SET t_qstop = now(*);
 SET n_seconds=cast(datediff(millisecond,t_qstart,t_qstop) AS
numeric(16,5))/1000;
 SET s_cmd='Stream updates Update update_'+c_stream+'_RF1 LENGTH --
'+cast(n_seconds AS varchar(20))+ ' seconds' ;
 SELECT s_cmd;
 RETURN(0);
END;
CREATE PROCEDURE DBA.tpch_rf2 (in c_directory varchar(128),
 in c_stream varchar(3))
ON exception resume
BEGIN
 DECLARE delim_asci integer;
 DECLARE c_data_set varchar(3);
 DECLARE i_data_set integer;
 DECLARE c_cmd long varchar;
 DECLARE s_cmd varchar(128);
 DECLARE outfilename varchar(128); -- Debug
 DECLARE c_lf varchar(2);
 DECLARE t_qstart timestamp;
 DECLARE t_qstop timestamp;
 DECLARE n_seconds numeric(16,5);
 DECLARE c_sqlstate CHAR(5);
 SET t_qstart = now(*);
 SET c_lf=char(10);
 SELECT rf2_data_set INTO i_data_set FROM refresh_control;
 SET c_data_set=CAST(i_data_set+1 AS varchar(3));
 CREATE TABLE #delete_table (d_orderkey UNSIGNED INT, PRIMARY
KEY (d_orderkey));
 SET c_cmd='load table #delete_table (d_orderkey
'+char(39)+'\\x0a'+char(39)+') '+c_lf;
 SET c_cmd=c_cmd+'from
'+char(39)+c_directory+'delete.'+c_data_set+char(39)+c_lf;
 SET c_cmd=c_cmd+'quotes off '+c_lf;
 SET c_cmd=c_cmd+'escapes off; '+c_lf;
 EXECUTE IMMEDIATE c_cmd;
 SELECT SQLSTATE INTO c_sqlstate;
 IF c_sqlstate != '00000' THEN
 ROLLBACK;
 SET c_cmd='RF2 failed at Step 1 with SQLSTATE: '+c_sqlstate;
 RAISERROR 23002 c_cmd;
 RETURN(1);
 END IF;
 DELETE lineitem FROM lineitem
 WHERE l_orderkey in (select d_orderkey from #delete_table);
 SELECT SQLSTATE INTO c_sqlstate;
 IF c_sqlstate != '00000' THEN
 ROLLBACK;

TPC Benchmark H Full Disclosure Report Page 34

 SET c_cmd='RF2 failed at Step 2 with SQLSTATE: '+c_sqlstate;
 RAISERROR 23002 c_cmd;
 RETURN(1);
 END IF;
 DELETE orders FROM orders
 WHERE o_orderkey in (select d_orderkey from #delete_table);
 SELECT SQLSTATE INTO c_sqlstate;
 IF c_sqlstate != '00000' THEN
 ROLLBACK;
 SET c_cmd='RF2 failed at Step 3 with SQLSTATE: '+c_sqlstate;
 RAISERROR 23002 c_cmd;
 RETURN(1);
 END IF;
 UPDATE refresh_control SET rf2_data_set=CAST(c_data_set AS integer);
 COMMIT;
 DROP TABLE #delete_table;
 SET t_qstop = now(*);
 SET n_seconds=cast(datediff(millisecond,t_qstart,t_qstop) as
numeric(16,5))/1000;
 SET s_cmd='Stream updates Update update_'+c_stream+'_RF2 LENGTH --
'+cast(n_seconds as varchar(20))+ ' seconds' ;
 SELECT s_cmd;
 RETURN(0);
END;
===

load_region.sql
===

LOAD TABLE REGION (
R_REGIONKEY '|',
R_NAME '|',
R_COMMENT '|'
)
FROM '/sybase_stage/region.tbl'
escapes off
quotes off
row delimited by '\x0a'
WITH CHECKPOINT ON;
commit;

===

load_nation.sql
===

LOAD TABLE NATION (
N_NATIONKEY '|',
N_NAME '|',
N_REGIONKEY '|',
N_COMMENT '|'
)
FROM '/sybase_stage/nation.tbl'
escapes off
quotes off
row delimited by '\x0a'
WITH CHECKPOINT ON;
commit;

===

load_customer.sql
===

LOAD TABLE CUSTOMER (
C_CUSTKEY '|',
C_NAME '|',
C_ADDRESS '|',
C_NATIONKEY '|',
C_PHONE '|',
C_ACCTBAL '|',
C_MKTSEGMENT '|',
C_COMMENT '|'
)
FROM '/sybase_stage/customer.tbl'
escapes off
quotes off

row delimited by '\x0a'
WITH CHECKPOINT ON;
commit;

===

load_part.sql
===

LOAD TABLE PART (
P_PARTKEY '|',
P_NAME '|',
P_MFGR '|',
P_BRAND '|',
P_TYPE '|',
P_SIZE '|',
P_CONTAINER '|',
P_RETAILPRICE '|',
P_COMMENT '|'
)
FROM '/sybase_stage/part.tbl'
escapes off
quotes off
row delimited by '\x0a'
WITH CHECKPOINT ON;
commit;

===

load_supplier.sql
===

LOAD TABLE SUPPLIER (
S_SUPPKEY '|',
S_NAME '|',
S_ADDRESS '|',
S_NATIONKEY '|',
S_PHONE '|',
S_ACCTBAL '|',
S_COMMENT '|'
)
FROM '/sybase_stage/supplier.tbl'
escapes off
quotes off
row delimited by '\x0a'
WITH CHECKPOINT ON;
commit;

===

load_partsupp.sql
===

LOAD TABLE PARTSUPP (
PS_PARTKEY '|',
PS_SUPPKEY '|',
PS_AVAILQTY '|',
PS_SUPPLYCOST '|',
PS_COMMENT '|'
)
FROM '/sybase_stage/partsupp.tbl'
escapes off
quotes off
row delimited by '\x0a'
WITH CHECKPOINT ON;
commit;

===

load_orders.sql
===
LOAD TABLE ORDERS (
O_ORDERKEY '|',
O_CUSTKEY '|',
O_ORDERSTATUS '|',
O_TOTALPRICE '|',
O_ORDERDATE '|',
O_ORDERPRIORITY '|',
O_CLERK '|',

TPC Benchmark H Full Disclosure Report Page 35

O_SHIPPRIORITY '|',
O_COMMENT '|'
)
FROM
 'dbgen_files/orders.tbl.1',
 'dbgen_files/orders.tbl.2',
 'dbgen_files/orders.tbl.3',
 'dbgen_files/orders.tbl.4',
 'dbgen_files/orders.tbl.5',
 'dbgen_files/orders.tbl.6',
 'dbgen_files/orders.tbl.7',
 'dbgen_files/orders.tbl.8'
escapes off
quotes off
row delimited by '\x0a'
WITH CHECKPOINT ON;
commit;

===

load_lineitem.sql
===
LOAD TABLE ORDERS (
O_ORDERKEY '|',
O_CUSTKEY '|',
O_ORDERSTATUS '|',
O_TOTALPRICE '|',
O_ORDERDATE '|',
O_ORDERPRIORITY '|',
O_CLERK '|',
O_SHIPPRIORITY '|',
O_COMMENT '|'
)
FROM
 'dbgen_files/orders.tbl.1',
 'dbgen_files/orders.tbl.2',
 'dbgen_files/orders.tbl.3',
 'dbgen_files/orders.tbl.4',
 'dbgen_files/orders.tbl.5',
 'dbgen_files/orders.tbl.6',
 'dbgen_files/orders.tbl.7',
 'dbgen_files/orders.tbl.8'
escapes off
quotes off
row delimited by '\x0a'
WITH CHECKPOINT ON;
commit;

===

update_power.sql
===

create variable qstart timestamp;
create variable qstop timestamp;
create variable c_sqlstate CHAR(5);
create variable c_path varchar(128);
set c_path='/sybase_stage/';
set qstart=now(*);
select 'Stream 0 RF1 START -- ', qstart ;
call tpch_rf1 (c_path,'0');
set qstop=now(*);
select 'Stream 0 Update RF1 LENGTH --
',cast(datediff(millisecond,qstart,qstop) as
numeric)/1000, ' seconds';
select 'Stream 0 RF1 FINISH -- ', qstop ;
-- Sleep Until the query stream completes
set qstart = now(*);
select 'Stream 0 RF WAITING -- ', qstart;
xp_cmdshell('/export/home/sybase/run/scripts/check_que
ry1.bash');
set qstart = now(*);
select 'Stream 0 RF CONTINUING -- ', qstart;
set qstart = now(*);

select 'Stream 0 RF2 START -- ', qstart ;
call tpch_rf2 (c_path,'0');
set qstop=now(*);
select 'Stream 0 Update RF2 LENGTH --
',cast(datediff(millisecond,qstart,qstop) as
numeric)/1000, ' seconds';
select 'Stream 0 RF2 FINISH -- ', qstop ;

===

update_throughput5.sql

create variable qstart timestamp;
create variable qstop timestamp;
create variable c_sqlstate CHAR(5);
create variable c_path varchar(128);

set qstart = now(*);
set c_path='dbgen_files/';
select 'Stream updates START -- ', qstart ;
select @@servername, db_name();

xp_cmdshell 'sleep 0';
call tpch_rf1 (c_path,'1');
commit;
tpch_wait;
call tpch_rf2 (c_path,'1');
commit;
tpch_wait;
call tpch_rf1 (c_path,'2');
commit;
tpch_wait;
call tpch_rf2 (c_path,'2');
commit;
tpch_wait;
call tpch_rf1 (c_path,'3');
commit;
tpch_wait;
call tpch_rf2 (c_path,'3');
commit;
tpch_wait;
call tpch_rf1 (c_path,'4');
commit;
tpch_wait;
call tpch_rf2 (c_path,'4');
commit;
tpch_wait;
call tpch_rf1 (c_path,'5');
commit;
tpch_wait;
call tpch_rf2 (c_path,'5');
commit;

set qstop = now(*);
select 'Stream updates STOP -- ', qstop ;
===

gen_streams_new.ksh
===
#!/bin/ksh

if (($# < 2))
then
 echo "usage: $0 seed scale_factor num_streams"
 exit
fi

PATH=/export/home/sybase/ASIQ-12_5/bin:/export/home/sybase/OCS-
12_5/bin:/usr/openwin/bin:/bin:.:/usr/dist/pkgs/forte_dev/SUNWspro/bin:/usr/cc
s/bin:/usr/dt/bin:/usr/dist/pkgs/devpro,v4.0/5.x-
sparc/bin:/usr/dist/local/exe:/usr/dist/exe:/usr/ucb:/usr/sbin:/net/josie/export/hom
e18/rgostan/bin:/export/home/sybase/run/scripts:/etc:.:/export/home/sybase/run/t
pch/appendix/dbgen

TPC Benchmark H Full Disclosure Report Page 36

export PATH
export DSS_PATH=/export/home/sybase/run/scripts;
export DSS_CONFIG=/export/home/sybase/run/tpch/appendix/dbgen;
export DSS_DIST=dists.dss;
export
DSS_QUERY=/export/home/sybase/run/tpch/appendix/templates/queries;
#export
DSS_QUERY=/export/home/sybase/run/tpch/appendix/templates/queries.debug;

seed=$1;
sf=$2;
ns=$3

i=0

while ((i<=ns))
do
 qgen -c -p $i -l qparm${i}.txt -i $DSS_QUERY/init.sql -t
$DSS_QUERY/complete.sql -r $seed -s $sf \
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > stream${i}.sql
 ((seed=seed+1))
 ((i=i+1))
done

((last_seed=seed-1))

===

ACID Test Execution Code

===

atomicity test
===
#!/bin/ksh

cd $ACID_ROOT/atomicity
dbtest $ACID_ROOT/atomicity/acid_atomic_main.tst >
$ACID_RESULTS/acid_atomic_main.out

roll_back=1

rm -f $ACID_RESULTS/atomc $ACID_RESULTS/atomr

while read line
do

if [roll_back -eq 1]
then

commit_started=`echo $line |grep "Starting atomicity test
with commit"`

if [! -z "$commit_started"]
then

roll_back=0
echo "$line" > $ACID_RESULTS/atomc

else
echo "$line" >> $ACID_RESULTS/atomr

fi
else

echo "$line" >> $ACID_RESULTS/atomc
fi

done < $ACID_RESULTS/acid_atomic_main.out
mv $ACID_RESULTS/atomr $ACID_RESULTS/atomr.`date '+%y%m%d_%H
%M%S'`
mv $ACID_RESULTS/atomc $ACID_RESULTS/atomc.`date '+%y%m%d_%H
%M%S'`

===

consistency test
===

#!/bin/ksh
cd $ACID_ROOT/consistency/
initial_size=`cat /sybase2/tpch.iqmsg|wc -l`

dbtest $ACID_ROOT/consistency/acid_consistency_main.tst >
$ACID_RESULTS/consbe.`date '+%y%m%d_%H%M%S'`

final_size=`cat /sybase2/tpch.iqmsg|wc -l`

lines_during_test=`expr $final_size - $initial_size`

tail -$lines_during_test /sybase2/tpch.iqmsg |grep -i chk>
$ACID_RESULTS/consckpt.`date '+%y%m%d_%H%M%S'`

===

isolation tests
===
#!/bin/ksh

export ACID_ROOT=$HOME//run/scripts/acid15/acid_scripts/acid_scripts
export
ACID_RESULTS=$HOME//run/scripts/acid15/acid_scripts/acid_scripts/isolatio
n

ps
echo
echo starting isolation_1
cd $ACID_ROOT/isolation/isolation_1
dbtest acid_isolation_main1.tst > $ACID_RESULTS/iso1.`date '+%y%m%d_
%H%M%S'`
echo finished isolation_1
sleep 20

ps
echo
echo starting isolation_2
cd $ACID_ROOT/isolation/isolation_2
dbtest acid_isolation_main2.tst > $ACID_RESULTS/iso2.`date '+%y%m%d_
%H%M%S'`
echo finished isolation_2
sleep 20

ps
echo
echo starting isolation_3
cd $ACID_ROOT/isolation/isolation_3
dbtest acid_isolation_main3.tst > $ACID_RESULTS/iso3.`date '+%y%m%d_
%H%M%S'`
echo finished isolation_3
sleep 40

ps
echo
echo starting isolation_4
cd $ACID_ROOT/isolation/isolation_4
dbtest acid_isolation_main4.tst > $ACID_RESULTS/iso4.`date '+%y%m%d_
%H%M%S'`
echo finished isolation_4
sleep 40

ps
echo
echo starting isolation_5
cd $ACID_ROOT/isolation/isolation_5
dbtest $ACID_ROOT/isolation/isolation_5/acid_isolation_main5.tst >
$ACID_RESULTS/iso5.`date '+%y%m%d_%H%M%S'`
echo finished isolation_5
sleep 20

TPC Benchmark H Full Disclosure Report Page 37

ps
echo
echo starting isolation_6
cd $ACID_ROOT/isolation/isolation_6
dbtest $ACID_ROOT/isolation/isolation_6/acid_isolation_main6.tst >
$ACID_RESULTS/iso6.`date '+%y%m%d_%H%M%S'`
echo finished isolation_6

===

durability test
===
#!/bin/ksh
if [-z "$1"]
then

echo "Usage:$0 <failure_type>"
exit 1

else
failure_type=$1

fi

STREAM_COUNT=7

cd $ACID_ROOT/durability
show_user_count $failure_type&
dbtest acid_durability_main.tst > $ACID_RESULTS/acid_durability_main.out

===

acid_atomic_main.tst
===

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
% Created by: Masood Dirin
% Create Date: April 21, 1999
%
% Purpose of this test is to run and verify the pass of the ACID Atomicity
% test.

%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%

Test "tpcd_acid_atomic_main.tst"
Description "To run the ACID atomicity test"

stringconnect "dsn=tpch;"

execute {select now(*)} into times
print 'Atomicity test start = ', times
print ' '

include 'acid_functions.tst'
commit

%
% Atomicity test with rollback
%
print ' '
print 'Starting atomicity test with rollback'
print ' '

%include 'acid_atomic_setup.tst'
run test 'acid_atomic_setup.tst'

stringconnect "dsn=tpch;"
let counter=0

LOOP {
open cur2 {select ordr, line, delta from aa_whattodo where seqnum=^}

substitute counter
print 'counter = ',counter
fetch cur2 into ordr, line, delta
if ROWSTATUS != FOUND then { BREAK LOOP } endif
print 'Acid transaction for: o_key-',ordr,' l_key-', line,' delta-',delta

print 'Initial values:'
execute {select o_totalprice, l_quantity, l_extendedprice

from orders, lineitem
where o_orderkey = l_orderkey and o_orderkey =^ and l_linenumber

= ^}
substitute ordr, line
into o_total, l_quan, l_price

print 'o_totalprice = ',o_total,' l_quantity = ',l_quan,
' l_extendedprice = ',l_price

execute {call acid_transaction(^, ^, ^, rprice, quantity,
tax, disc, extprice, ototal)

} substitute ordr, line, delta
close cur2

execute {select count(*)
 from history
 where h_o_key =^ and h_l_key =^}
 substitute ordr, line
 into total_history_count
execute {select o_totalprice, l_quantity, l_extendedprice
 from orders, lineitem
 where o_orderkey = l_orderkey and o_orderkey =^ and l_linenumber = ^}
 substitute ordr, line
 into o_total, l_quan, l_price
print 'Before Rolling back:'
print 'o_totalprice = ',o_total,' l_quantity = ',l_quan,
 ' l_extendedprice = ',l_price

print 'Before Rollback History table count=',total_history_count

let counter = counter+1

rollback
execute {select now(*)} into times
print 'rollback : ', times

execute {select o_totalprice, l_quantity, l_extendedprice
from orders, lineitem
where o_orderkey = l_orderkey and o_orderkey =^ and l_linenumber

= ^}
substitute ordr, line
into o_total, l_quan, l_price

print 'After Rollback:'
print 'o_totalprice = ',o_total,' l_quantity = ',l_quan,

' l_extendedprice = ',l_price
print ' '

execute {select count(*)
from history
where h_o_key =^ and h_l_key =^}
substitute ordr, line
into total_history_count

print 'After Rollback History table count=',total_history_count

} ENDLOOP

commit

%
% Atomicity test with commit
%
stringconnect "dsn=tpch;"

TPC Benchmark H Full Disclosure Report Page 38

print ' '
print 'Starting atomicity test with commit '
print ' '
%include 'acid_atomic_setup.tst'
run test 'acid_atomic_setup.tst'

stringconnect "dsn=tpch;"

open cur1 {select ordr, line, delta from aa_whattodo}
LOOP {
fetch cur1 into ordr, line, delta
if ROWSTATUS != FOUND then { BREAK LOOP } endif
print 'Acid transaction for: o_key-',ordr,' l_key-', line,' delta-',delta
execute {select o_totalprice, l_quantity, l_extendedprice

from orders, lineitem
where o_orderkey = l_orderkey and o_orderkey =^ and l_linenumber

= ^}
substitute ordr, line
into o_total, l_quan, l_price

print 'Initial values:'
print 'o_totalprice = ',o_total,' l_quantity = ',l_quan,

' l_extendedprice = ',l_price
print ''
print ''
print 'Before Commit:'
print ' l_extendedprice = ',l_price

execute {call acid_transaction(^, ^, ^, rprice, quantity,
tax, disc, extprice, ototal)

} substitute ordr, line, delta

execute {select o_totalprice, l_quantity, l_extendedprice
 from orders, lineitem
 where o_orderkey = l_orderkey and o_orderkey =^ and l_linenumber = ^}
 substitute ordr, line
 into o_total, l_quan, l_price

execute {select count(*)
 from history
 where h_o_key =^ and h_l_key =^}
 substitute ordr, line
 into total_history_count

print 'Before Commit:'
print 'o_totalprice = ',o_total,' l_quantity = ',l_quan,
 ' l_extendedprice = ',l_price

print 'Before Commit History table count=',total_history_count

commit
execute {select now(*)} into times
print 'commit : ', times

print ''
execute {select o_totalprice, l_quantity, l_extendedprice

from orders, lineitem
where o_orderkey = l_orderkey and o_orderkey =^ and l_linenumber

= ^}
substitute ordr, line
into o_total, l_quan, l_price

execute {select count(*)
 from history
 where h_o_key =^ and h_l_key =^}
 substitute ordr, line
 into total_history_count

print 'After Commit:'
print 'o_totalprice = ',o_total,' l_quantity = ',l_quan,

' l_extendedprice = ',l_price
print 'After Commit History table count=',total_history_count

print ' '

} ENDLOOP

close cur1
commit

execute {select now(*)} into times
print 'Atomicity test end = ', times

End Test

===

acid_atomic_setup.tst
===
Test "acid_setup.tst"
Description "Creates aa_whattodo table"

stringconnect "dsn=tpch;"

% Drop Table if found
print 'aa_whattodo!!'
allow error -141
execute { commit }
execute { drop table aa_whattodo }
allow no error

execute {
create table aa_whattodo (
 seqnum int not null,
 ordr int not null,
 line int null,
 delta int null)
}

print 'aa_whattodo CREATED!!'
execute {select now(*)} into times
print 'time = ', times

fetch {select count(*) from aa_whattodo } into ROWS
assert ROWS = 0

print 'Number of rows before load: ',ROWS

LOOP ({let counter = 0}; {counter < 5}; {let counter = counter + 1})
{

execute {call generate_acid_values()}
into orderkey, linenumber,delta

execute {insert into aa_whattodo values (^ , ^ , ^ , ^) }
substitute counter, orderkey, linenumber, delta

 print counter, ' ',orderkey, ' ',linenumber,' ', delta
}
ENDLOOP

commit

fetch {select count(*) from aa_whattodo } into ROWS
assert ROWS = 5

print 'Number of rows after load: ',ROWS

disconnect

End Test

===

TPC Benchmark H Full Disclosure Report Page 39

acid_consistency_main.tst
===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% acid_consistency_main.tst
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Test "tpch_acid_consistency_main.tst"
Description "To run the ACID consistency test"

stringconnect "dsn=tpch;"

execute {select now(*)} into times
print 'Consistency test start = ', times
print ' '

include 'acid_functions.tst'
include 'acid_consistency_setup.tst'

%run test 'acid_consistency_setup.tst'

execute {select now(*)} into times
print 'Consistency test time = ', times
print ' '

run test '-o' 'acid_consistency_q1.ot' 'acid_consistency_query.tst'
disconnect

let i = 1
LOOP {
 if i > 7 then { BREAK LOOP } endif

let ot_file = "acid_consist_user", i, ".ot"
let my_str = "stream=", i
print ot_file, my_str
start test '-o' ot_file my_str 'acid_consistency_txn.tst'
sleep 7000
let i = i + 1

} ENDLOOP

% synchronize 7

% let the log flush... 7*100*1000 = 700000
sleep 1000000
stringconnect "dsn=tpch;"
%include 'acid_consistency_query.tst'
run test '-o' 'acid_consistency_q2.ot' 'acid_consistency_query.tst'

execute {select now(*)} into times
print 'Consistency test end = ', times
print ' '

End Test

===

acid_consistency_query.tst
===
Test 'tpch_acid_query'
Description 'perform the acid query.'

stringconnect "dsn=tpch;"

open cur1 {select stream, seqnum, ordr, line, delta from acid_table
where seqnum > 10 order by seqnum}

print ' '

let n=1
LOOP {
 fetch cur1 into str, seq, ord, lin, delta

 fetch {select round(cast(o_totalprice as numeric(26,16)),2)
from orders where o_orderkey=^ }

substitute ord into o_price

 if ROWSTATUS != FOUND then { BREAK LOOP } endif
 if n > 25 then { BREAK LOOP } endif

 execute { call acid_single_query (^) } substitute ord into l_total

 fetch {select cast(^ as numeric(12,2)) } substitute o_price into o_price
 fetch {select cast(^ as numeric(12,2)) } substitute l_total into l_total

 print 'orderkey = ', ord, ' o_totalprice = ', o_price,
' acid query = ' , l_total

 ASSERT (o_price = l_total)
then { print 'Did not compare correctly' } ENDASSERT

 let n=n+1
 } ENDLOOP

disconnect

END Test

===

acid_consistency_setup.tst
===

Test "acid_consistency_setup.tst"
Description "Creates acid_table table"

stringconnect "dsn=tpch;"

execute { set option public.isolation_level=3 }
execute {set option public.query_plan='off'}
execute {set temporary option chained='on'}
execute {set option public.auto_commit=off}

% Drop Table if found
allow error -141
execute { drop table acid_table }
execute {drop table latest}
allow no error

execute {
create table acid_table (

stream int null,
 seqnum int null,
 ordr int null,
 line int null,
 delta int null)
on SYSTEM
}

fetch {select count(*) from acid_table } into ROWS
assert ROWS = 0
print 'Number of rows before load: ',ROWS
commit

print 'acid_table created'
execute {create table latest(stream int ,last int null) on SYSTEM }
LOOP ({let j = 1}; {j <= 7}; {let j = j + 1})
 {
 execute { insert into latest(stream,last) values (^,0) }

substitute j
 } endloop
commit

print 'latest created'

TPC Benchmark H Full Disclosure Report Page 40

LOOP ({let i = 1}; {i <= 7}; { let i = i + 1})
{
 lOOP ({let j = 1}; {j <= 100}; {let j = j + 1})
 {
 execute { call generate_acid_values()} into ordr, line, delta
 execute { insert into acid_table values (^,^,^,^,^) }

substitute i,j,ordr,line,delta
 } endloop
 print (j-1)*i
} endloop

commit

fetch {select count(*) from acid_table } into ROWS
assert ROWS = 700
print 'Number of rows after load: ',ROWS

End Test

===

acid_consistency_txn.tst
===

Test "tpch_transaction.tst"
Description "Run Acid Multiple Transactions"

stringconnect "dsn=tpch;"

execute {set temporary option chained='on'}

execute {select now(*)} into times
print 'Consistancy test start = ', times
print ' '
print 'Straem:',stream
commit
LOOP ({let i = 1}; {i <= 100}; { let i = i + 1})
{
 fetch {select ordr, line, delta from acid_table

where stream=^ and seqnum=^ }
substitute stream, i

 commit
 if ROWSTATUS != FOUND then { print 'not enough rows'

 BREAK LOOP }
 endif

 print 'User=',stream,' Acid Txn=',i,
' o_key=', ordr , ' l_key=', line , ' delta=' ,delta

 execute {call acid_transaction(^, ^, ^)
 } substitute ordr, line, delta into rprice,quantity,tax, disc, extprice,
ototal
print 'O_total = ',ototal,'quantity = ',quantity
 commit
print ''
execute {select o_totalprice, l_quantity, l_extendedprice
 from orders, lineitem
 where o_orderkey = l_orderkey and o_orderkey =^ and l_linenumber = ^}
 substitute ordr, line
 into o_total, l_quan, l_price

execute {select count(*)
 from history
 where h_o_key =^ and h_l_key =^}
 substitute ordr, line
 into total_history_count

print 'After Commit:'
print 'o_totalprice = ',o_total,' l_quantity = ',l_quan,
 ' l_extendedprice = ',l_price
print 'After Commit History table count=',total_history_count

print ' '
 execute { update latest set last=^ where stream=^ } substitute i,stream
 commit
 execute { set temporary option isolation_level=1 }
 execute { select max(last) from latest } into biggest
 execute { select min(last) from latest } into smallest
 commit
 execute { set temporary option isolation_level=3 }

 let num=1200*(i-smallest)
 if i+4>=biggest
 then {let num=num+7000}
 endif
--print 'user',stream,' = ',num
 sleep num
}
ENDLOOP
disconnect

End Test

===

acid_durability_main.tst
===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% acid_durability_main.tst
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Test "tpch_acid_durability_main.tst"
Description "To run the ACID durability test"

stringconnect "dsn=tpch;"

execute {select now(*)} into times
print 'Durability test start = ', times
print ' '

include 'acid_functions.tst'
run test 'acid_durability_setup.tst'

execute {select now(*)} into times
print 'Durability test time = ', times
print ' '

run test '-o' 'acid_durability_q1.ot' 'acid_durability_query.tst'

%start the fault to occur after 100 + transactions.
%start test '-o' 'kill.out' 'acid_durability_kill_and_continue.tst'

LOOP({ let i = 1 }; { i <= 10 }; { let i = i + 1 })
{

let ot_file = "acid_dura_user", i, ".ot"
let my_str = "stream=", i

start test '-o' ot_file my_str 'acid_durability_txn.tst'
sleep 950

}
ENDLOOP

print 'Out of loop. Parent waiting for synch'
synchronize 11

execute {select now(*)} into times
print 'Durability test time = ', times
print ' '

run test '-o' 'acid_durability_q2.ot' 'acid_durability_query.tst'

TPC Benchmark H Full Disclosure Report Page 41

execute {select now(*)} into times
print 'Durability test end = ', times
print ' '

End Test

===

acid_durability_query.tst
===
Test 'tpch_acid_query'
Description 'perform the acid query.'

stringconnect "dsn=tpch;"

open cur1 {select stream, seqnum, ordr, line, delta from acid_table
where seqnum > 5 order by seqnum}

print ' '

let n=1
LOOP {
 fetch cur1 into str, seq, ord, lin, delta

 fetch {select round(cast(o_totalprice as numeric(26,16)),2)
from orders where o_orderkey=^ }

substitute ord into o_price

 if ROWSTATUS != FOUND then { BREAK LOOP } endif
 if n > 50 then { BREAK LOOP } endif

 execute { call acid_single_query (^) } substitute ord into o_total

 fetch {select cast(^ as numeric(12,2)) } substitute o_price into o_price
 fetch {select cast(^ as numeric(12,2)) } substitute o_total into l_total

 print 'orderkey = ', ord, ' o_totalprice = ', o_price,
' acid query = ' , l_total

 ASSERT (o_price = l_total)
then { print 'Did not compare correctly' } ENDASSERT

 let n=n+1

 } ENDLOOP

disconnect

END Test

===

acid_durability_setup.tst
===
Test "acid_durability_setup.tst"
Description "Creates acid_table table"

stringconnect "dsn=tpch;"

execute {set option public.query_plan='off'}
execute {set temporary option chained='on'}
execute {set option public.auto_commit=off}
execute { set option public.isolation_level=3 }

% Drop Table if found
allow error -141
execute { drop table acid_table }
allow no error

execute {
create table acid_table (

stream int not null,
 seqnum int not null,
 ordr int null,

 line int null,
 delta int null)
on SYSTEM
}

fetch {select count(*) from acid_table } into ROWS
assert ROWS = 0
print 'Number of rows before load: ',ROWS
commit

print 'acid_table created'

allow error -141
execute { drop table latest }
allow no error

execute {create table latest(stream int ,last int null) on SYSTEM }
LOOP ({let j = 1}; {j <= 10}; {let j = j + 1})
 {
 execute { insert into latest(stream,last) values (^,0) }

substitute j
 } endloop
commit

print 'latest created'

LOOP ({let i = 1}; {i <= 10}; { let i = i + 1})
{
 LOOP ({let j = 1}; {j <= 200}; { let j = j + 1})
 {
 execute { call generate_acid_values()} into ordr, line, delta
 execute { insert into acid_table values (^,^,^,^,^) }

substitute i,j,ordr,line,delta
 } endloop
 print (j-1)*i
} endloop
commit

fetch {select count(*) from acid_table } into ROWS
print 'Number of rows after load: ',ROWS

End Test

===

acid_durability_txn.tst
===

Test "tpcd_transaction1.tst"
Description "Run Acid Multiple Transactions"

stringconnect "dsn=tpch;"
execute {select now(*)} into times
print 'Durability test start = ', times
print ' '
print 'stream trans. o_key l_key p_key s_key
delta date_t '
allow no error

let commit_delay=0
LOOP ({let i = 1}; {i <= 200}; { let i = i + 1})
{
 fetch {select ordr, line, delta from acid_table

where stream=^ and seqnum=^ }
substitute stream, i

 commit

 if ROWSTATUS != FOUND then { print 'not enough rows' BREAK LOOP }
 endif

 if i=101 then {
 let smallest=0

TPC Benchmark H Full Disclosure Report Page 42

 allow error -210
commit

 execute { set temporary option isolation_level=1 }
 execute { select min(last) from latest } into smallest
 execute { set temporary option isolation_level=3 }
 commit
 LOOP{
 if smallest >= 100 then {

 print 'Stream ', stream,
 ' Entering the Second phase with

delays'
 break loop}

 endif
 let sleep_time =10
 sleep sleep_time

 commit
 execute { set temporary option isolation_level=1 }

 execute { select min(last) from latest } into smallest
 execute { set temporary option isolation_level=3 }
 commit

 }
 ENDLOOP
 allow no error
 let commit_delay=5}
 endif

 %- Sometimes we have plans on, so just to make sure the message file
 %- does not get huge...
 execute {set temporary option query_plan='off'}

 execute {select l_partkey, l_suppkey from lineitem
where l_orderkey=^ and l_linenumber=^}

substitute ordr, line
into p_key, s_key

execute{SELECT @@spid}into spid
allow error
LOOP {
 execute{begin transaction}
 execute{select Txnid from sp_iqtransaction() WHERE ConnHandle=^ and
state='ACTIVE'}substitute spid
 into newTxnId
 print 'New transactionid=',newTxnId

 execute {call acid_transaction(^, ^, ^)
 } substitute ordr, line, delta
 into rprice, quantity, tax, disc, extprice,ototal,TxnId

 if SQLCODE=0 then
 { break loop}
 else
 {
 execute{rollback}
 let sleeping_time=rand(625,6653)
 sleep sleeping_time
 }
 endif
}
ENDLOOP
allow no error

 print 'transaction=',TxnId
 print 'before commiting ',

stream,' ',
'txn ',i, ' ',

 ordr, ' ',
 line, ' ',
 p_key, ' ',
 s_key, ' ',
 delta

 execute {call commit_acid_transaction(^)}substitute commit_delay
 execute {select now(*)} into times

 print 'after commit', stream,' ',
'txn ',i, ' ',

 ordr, ' ',
 line, ' ',
 p_key, ' ',
 s_key, ' ',
 delta, ' ',
 times, ' '
commit
 execute { update latest set last=^ where stream=^ } substitute i,stream
 commit
 execute { set temporary option isolation_level=1 }
 execute { select max(last) from latest } into biggest
 execute { select min(last) from latest } into smallest
 commit
 execute { set temporary option isolation_level=3 }

 let num=120*(i-smallest)
 if i+4>=biggest
 then {let num=num+800}
 endif
--print 'user',stream,' = ',num
 sleep num

}
ENDLOOP
print 'Out of loop. Child waiting for synch'
synchronize 11

End Test

===

acid_functions.tst
===

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Created By: David Walrath
% Create Date: 7/15/1999
%
% This script creates various functions used by the Acid tests.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

print 'Creating history table'

allow error -141
execute { drop table history }
allow no error

execute {
create table history (
 h_p_key unsigned INT NOT NULL ,
 h_s_key unsigned INT NOT NULL ,
 h_o_key unsigned INT NOT NULL ,
 h_l_key INT NOT NULL,
 h_delta INT NOT NULL,
 h_date_t TIMESTAMP NOT NULL)
--in SYSTEM
}

commit
execute {checkpoint}
print 'history table created'
print ' '

print 'creating the sleep procedure'

TPC Benchmark H Full Disclosure Report Page 43

allow error -265
execute { DROP PROCEDURE dbo.sleep}
allow no error

execute{ create procedure dbo.sleep(in sleep_time integer default null)
begin
 declare command varchar(255);
 select 'xp_cmdshell ''sleep '+str(sleep_time)+'''' into command;
 execute immediate command
end;
}

print 'creating the Acid Transaction'

allow error -265
execute { DROP PROCEDURE acid_transaction }
allow no error

execute{ CREATE PROCEDURE acid_transaction(
 IN o_key INT,
 IN l_key INT,
 IN delta INT,
 OUT rprice Numeric(18,8),
 OUT quantity INT,
 OUT tax Numeric(18,8),
 OUT disc Numeric(18,8),
 OUT extprice Numeric(18,8),
 OUT ototal Numeric(18,8)
)
ON EXCEPTION RESUME
BEGIN
 DECLARE pkey INT ;
 DECLARE skey INT ;
 DECLARE cost NUMERIC(18,8) ;
 DECLARE new_extprice NUMERIC(18,8) ;
 DECLARE new_ototal NUMERIC(18,8) ;
 DECLARE new_quantity INT ;
 DECLARE c_sqlstate char(5);
 DECLARE num INT ;

 LOOP1: LOOP

 COMMIT;

 acid1:
 BEGIN ATOMIC

 SELECT o_totalprice
 INTO ototal
 FROM orders
 WHERE o_orderkey = o_key ;
 SELECT l_quantity,
 l_extendedprice,
 l_partkey,
 l_suppkey,
 l_tax,
 l_discount
 INTO quantity,
 extprice,
 pkey,
 skey,
 tax,
 disc
 FROM lineitem
 WHERE l_orderkey = o_key
 AND l_linenumber = l_key;
 -- CLEAN UP IMPRECICE NUMBERS
 SET ototal = ototal - "TRUNCATE"("truncate"(extprice*(1-
disc),2)*(1+tax),2);
 SET rprice = "TRUNCATE"((extprice / quantity),2);
 SET cost = "TRUNCATE"((rprice * delta),2);
 SET new_extprice = extprice + cost;

 SET new_ototal = "TRUNCATE"(new_extprice * (1.0 - disc),2);
 SET new_ototal = "TRUNCATE"(new_ototal * (1.0 + tax),2);
 SET new_ototal = ototal + new_ototal ;
 SET new_quantity = quantity + delta ;

 --
 -- Update LineItem
 --
 UPDATE lineitem
 SET l_quantity = new_quantity,
 l_extendedprice = new_extprice
 WHERE l_orderkey=o_key
 AND l_linenumber=l_key;
 SELECT SQLSTATE INTO c_sqlstate;
 IF c_sqlstate = '00000' THEN
 --
 -- Update Orders
 --
 UPDATE orders
 SET o_totalprice = new_ototal
 WHERE o_orderkey = o_key;
 SELECT SQLSTATE INTO c_sqlstate;
 IF c_sqlstate = '00000' THEN
 INSERT INTO history VALUES (pkey, skey, o_key, l_key, delta,
now(*)) ;
 SELECT SQLSTATE INTO c_sqlstate;
 IF c_sqlstate = '00000'
 then message 'Completed ',o_key,'';

 END IF;
END IF;

 END IF;

 END acid1;

-- if c_sqlstate = '00000'
-- then commit;
-- else rollback;
-- end if;

 if c_sqlstate = '00000'
 then LEAVE LOOP1;
 end if;

 select cast(rand()*4.5 as int) into num;
 message 'rollback sleep=', num,' sqlstate=',c_sqlstate;
 call dbo.sleep(num);

END LOOP LOOP1;

-- commit ;
 RETURN(0);
END;
}

print 'Acid transaction created'
print ' '

print 'Creating Acid query'

allow error -265
execute { DROP PROCEDURE acid_single_query }
allow no error

execute{
CREATE PROCEDURE acid_single_query(
IN o_key INT,
OUT o_total NUMERIC(26,16))
BEGIN
 SELECT

sum ("truncate" ("truncate"(
 round(cast(l_extendedprice as

numeric(26,16)),2) *
 (1 - round(cast(l_discount as

TPC Benchmark H Full Disclosure Report Page 44

numeric(26,16)),2)),2)
 * (1 + round(cast(l_tax as numeric(26,16)),2)) , 2)) into

o_total
 FROM lineitem WHERE l_orderkey = o_key;
 END
}

print 'Acid query created'
print ' '

print 'Creating Generate_acid_values function'

allow error -265
execute { DROP PROCEDURE generate_acid_values }
allow no error

execute{
create procedure generate_acid_values(
out orderkey int,
out linenumber int,
out delta int)

BEGIN

 declare seed bigint;
 declare rand_dbl double precision;
 declare rand_int int;
 declare out_key int;

 declare times cursor for select datediff(millisecond,convert(char(10),getdate(),
116),now(*));
 declare random1 cursor for select rand(seed);
 declare random cursor for select rand();
 declare get_order cursor for

select o_orderkey from orders where o_orderkey = rand_int;
 declare get_linenumber cursor for

select max(l_linenumber) from lineitem
where l_orderkey = orderkey;

 open times;
 fetch next times into seed;
 open random1;
 fetch next random1 into rand_dbl;

 set out_key = 0;
 loop1:
 while out_key = 0 LOOP
 open random;
 open get_order;

fetch next random into rand_dbl;
set rand_int = rand_dbl * 6001215 +1;
fetch next get_order into out_key;

close random;
close get_order;

 end loop loop1;

 set orderkey = out_key;

 open get_linenumber;
 fetch next get_linenumber into linenumber;
 close get_linenumber;

 open random;
 fetch next random into rand_dbl;
 set delta = rand_dbl * 100 + 1;
 close random;

END
}
commit

print 'Generate_acid_values function created'
print ' '

print 'Creating Generate_Ps_Values function'

allow error -265
execute { DROP PROCEDURE generate_ps_values }
allow no error

execute{
create procedure generate_ps_values(
out partkey int,
out suppkey int)

BEGIN

 declare seed bigint;
 declare rand_dbl double precision;
 declare rand_int int;
 declare out_key int;
 declare counter int;

 declare times cursor for select datediff(millisecond,convert(char(10),getdate(),
116),now(*));
 declare random1 cursor for select rand(seed);
 declare random cursor for select rand();
 declare get_supp cursor for

select ps_suppkey from partsupp
where ps_suppkey = rand_int;

 declare get_part cursor for
select ps_partkey from partsupp
where ps_suppkey = suppkey;

 open times;
 fetch next times into seed;
 open random1;
 fetch next random1 into rand_dbl;
 close random1;

 set out_key = 0;
 while out_key = 0 LOOP
 open random;
 open get_supp ;

fetch next random into rand_dbl;
set rand_int = rand_dbl * 10000 +1;
fetch next get_supp into out_key;

 close random;
 close get_supp ;
 end loop;
 set suppkey = out_key;

 set out_key = 0;
 set counter = 0;
 open random;
 open get_part;
 fetch next random into rand_dbl;
 set rand_int = rand_dbl * 10 +1;

 loop1:
 while counter < rand_int LOOP

set counter = counter+1;
fetch next get_part into out_key;

 end loop loop1;

 set partkey = out_key;
 close random;
 close get_part;

END
}
commit

TPC Benchmark H Full Disclosure Report Page 45

print 'Generate_Ps_Values function created'
print ' '

print 'Creating Generate_acid_values2 function'

allow error -265
execute { DROP PROCEDURE generate_acid_values2 }
allow no error

execute{
create procedure generate_acid_values2(
in streams int,
in txns int
)

BEGIN

 declare seed int;
 declare rand_dbl double precision;
 declare rand_int int;
 declare i int;
 declare j int;

 declare times cursor for
select datediff(millisecond,convert(char(10),getdate(), 116),now(*));

 declare random1 cursor for select rand(seed);
 declare random cursor for select rand();

 open times;
 fetch next times into seed;
 close times;

 open random1;
 fetch next random1 into rand_dbl;

 set i=1;
 set j=1;
 loop1:
 while i < streams LOOP
 loop2:
 while j < txns LOOP

insert into acid_table (stream,seqnum) values (i,j);

 end loop loop2;
 end loop loop1;
 commit;

 update acid_table
set line=cast(rand(rowid(acid_table)+seed)*1500000+1 as int);

 commit;
 update acid_table

set okey=o_orderkey
from orders where o_orderkey=line;

 update acid_table
set delta=cast(rand(line)*100+1 as int);

 update acid_table
set line=max(l_linenumber)
from lineitem where l_orderkey=ordr;

 commit;

END
}
commit

print 'Generate_acid_values function2 created'
print ' '

===

acid_isolation_main1.tst
===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Created by: Masood Dirin
% Created Date: 5/24/1999
% Script name: tpcd_acid_isolation_main1.tst
% --
%
% Purpose of this test:
% This test will run the first isolation test, which demonstrate
% isolation for the read-write conflict of a read-write transaction
% and a read-only transaction when the read-write transaction is commited.
% Run the test as follow:
%
% dbtest tpcd_acid_isolation_main1.tst > tpcd_acid_isolation_main1.ot
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Test "tpch_acid_isolation_main1.tst"
Description "To run the ACID isolation test1"

stringconnect "dsn=tpch;"

execute {select now(*)} into times
print ' '
print ' '
print 'Isolation test 1'
print 'start = ', times
print ' '

include 'acid_functions.tst'
include 'acid_isolation_setup.tst'

start test 'acid_isolation_test1.tst'
start test 'acid_isolation_test1_query.tst'

End Test

===

acid_isolation_main2.tst
===

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Created by: Masood Dirin

% Created Date: 5/24/1999

% Script name: tpcd_acid_isolation_main2.tst
% ---
% Purpose of this test:
% This test will run the second isolation test, which demonstrate
% isolation for the read-write conflict of a read-write transaction
% and a read-only transaction when the read-write transaction is
% rolled back. %
% Run the test as follow:

%
% dbtest tpcd_acid_isolation_main2.tst > tpcd_acid_isolation_main2.ot
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Test "tpcd_acid_isolation_main2.tst"
Description "To run the ACID isolation test2"

stringconnect "dsn=tpch;"

TPC Benchmark H Full Disclosure Report Page 46

execute {select now(*)} into times
print ' '
print ' '
print 'Isolation test 2'
print 'start = ', times
print ' '

include 'acid_functions.tst'
include 'acid_isolation_setup.tst'

start test 'acid_isolation_test2.tst'
start test 'acid_isolation_test2_query.tst'

End Test

===

acid_isolation_main3.tst
===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Created by: Masood Dirin
% Created Date: 5/24/1999
% Script name: tpcd_acid_isolation_main3.tst
% ---
% Purpose of this test:
% This test will run the third Acid isolation test, which
% demonstrate isolation for the write-write conflict of two
% update transactions when the first transaction is commited.
%
% Run the test as follow:
%
% dbtest tpcd_acid_isolation_main3.tst > tpcd_acid_isolation_main3.ot
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Test "tpcd_acid_isolation_main3.tst"
Description "To run the ACID isolation test3"

stringconnect "dsn=tpch;"

execute {select now(*)} into times
print ' '
print ' '
print 'Isolation test 3'
print 'start = ', times
print ' '
print 'Isolation test start = ', times

include "acid_functions.tst"
include 'acid_isolation_setup.tst'

start test 'acid_isolation_test3_transaction1.tst'
start test 'acid_isolation_test3_transaction2.tst'

End Test
===

acid_isolation_main4.tst
===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Created by: Masood Dirin
% Created Date: 5/24/1999
% Script name: tpcd_acid_isolation_main4.tst
% --
% Purpose of this test:
% This test will run the fourth Acid isolation test, which
% demonstrate isolation for the write-write conflict of two
% update transactions when the first transaction is rolled back.
%

% Run the test as follow:
%
% dbtest tpcd_acid_isolation_main4.tst > tpcd_acid_isolation_main4.ot
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Test "tpcd_acid_isolation_main4.tst"
Description "To run the ACID isolation test4"

stringconnect "dsn=tpch;"

execute {select now(*)} into times
print ' '
print ' '
print 'Isolation test 4'
print 'start = ', times
print ' '
print 'Isolation test start = ', times

include 'acid_functions.tst'
include 'acid_isolation_setup.tst'

start test 'acid_isolation_test4_transaction1.tst'
start test 'acid_isolation_test4_transaction2.tst'

End Test

===

acid_isolation_main5.tst
===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Created by: Masood Dirin
% Created Date: 5/27/1999
% Script name: tpcd_acid_isolation_main5.tst
% --
% Purpose of this test:
% This test will run isolation test 5 and will demonstrate
% the ability of read and write transactions affecting different
% database tables to make progress concurrently.
%
% Run the test as follow:
%
% dbtest tpcd_acid_isolation_main5.tst > tpcd_acid_isolation_main5.ot
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Test "tpcd_acid_isolation_main5.tst"
Description "To run the ACID isolation test5."

stringconnect "dsn=tpch;"

execute {select now(*)} into times
print ' '
print ' '
print 'Isolation test 5'
print 'start = ', times
print ' '

include 'acid_functions.tst'
include 'acid_isolation_setup.tst'

start test 'acid_isolation_test5_transaction1.tst'
start test 'acid_isolation_test5_query.tst'

End Test

===

TPC Benchmark H Full Disclosure Report Page 47

acid_isolation_main6.tst
===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Created by: Masood Dirin
% Created Date: 5/27/1999
% Script name: tpcd_acid_isolation_main6.tst
% --
% Run the test as follow:
%
% dbtest -u tpcd_acid_isolation_main6.tst > tpcd_acid_isolation_main6.ot
%
% Note: -u switch will be used to archive the User1 query result
% in a file named queryresult.cfr. This switch needs to be used each time
% the test being run, since the query results will be different as the
% results of the updates on the lineitem tables.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Test "tpcd_acid_isolation_main6.tst"
Description "To run the ACID isolation test6."

stringconnect "dsn=tpch;"

execute {select now(*)} into times
print ' '
print ' '
print 'Isolation test 6'
print 'start = ', times
print ' '

include 'acid_functions.tst'
include 'acid_isolation_setup.tst'

start test '-u' 'acid_isolation_test6_query.tst'
start test 'acid_isolation_test6_transaction1.tst'

End Test

===

acid_isolation_setup.tst
===

Test "acid_isolation_setup.tst"
Description "Creates acid_isolation_table table"

stringconnect "dsn=tpch;"

% Drop Table if found

allow error -141
execute { commit }
execute { drop table acid_isolation_table }
allow no error

execute {
create table acid_isolation_table (
 ordr int not null,
 line int null,
 delta int null)
}

execute {checkpoint}

print 'acid_isolation_table CREATED!!'
execute {select now(*)} into times
print 'time = ', times

fetch {select count(*) from acid_isolation_table } into ROWS
assert ROWS = 0

print 'Number of rows before load: ',ROWS

execute {call generate_acid_values()} into orderkey, linenumber,delta
execute {insert into acid_isolation_table values (^ , ^ , ^) }

substitute orderkey, linenumber, delta
print orderkey, ' ',linenumber,' ', delta

commit

fetch {select count(*) from acid_isolation_table } into ROWS
assert ROWS = 1

print 'Number of rows after load: ',ROWS

disconnect

End Test

===

acid_isolation_test1.tst
===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Created by: Masood Dirin
% Created Date: 5/24/1999
% Script name: tpcd_acid_isolation_test1.tst

%
% Part of tpcd_acid_isolation_main1.tst
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Test "tpch_aci_isolation_test1.tst"
Description "Run Acid isolation test 1"

stringconnect "dsn=tpch;"

TPC Benchmark H Full Disclosure Report Page 48

TPC Benchmark H Full Disclosure Report Page 49

execute {select ordr, line, delta from acid_isolation_table}
 into ordr, line, delta

execute { select round(cast(o_totalprice as numeric(18,2)),2)
 from orders where o_orderkey = ^}
 substitute ordr into o_total
print 'User 1 old values: '
print 'user 1 ordr= ', ordr
print 'user 1 o_total= ', o_total
print ' '
 print 'The following are the data input values for the ACID Transaction.'
 print '(user 1) o_key-',ordr, ' l_key-', line, ' delta-',delta

 execute {call acid_transaction(^, ^, ^)
} substitute ordr, line, delta into rprice, quantity, tax, disc, extprice,

ototal

execute {select now(*)} into times
print 'User 1 waiting to commit = ', times
print ' '

sleep 10000
execute {select now(*)} into times
print 'User 1 about to commit = ', times
commit

execute { select round(cast(o_totalprice as numeric(18,2)),2)
from orders where o_orderkey = ^}
substitute ordr into o_total

print 'User 1 new values: '
print 'user 1 ordr= ', ordr
print 'user 1 o_total= ', o_total
print ' '

End Test

===

acid_isolation_test1_query.tst
===
%%
% Created by: Masood Dirin
% Created Date: 5/24/1999
% Script name: tpcd_acid_query_isolation_test1.tst
% ---
%
%%

Test 'tpch_acid_query_isolation_test1'
Description 'perform the acid query for user2.'

stringconnect "dsn=tpch;"

 synchronize 2
 print ' '
 execute {select now(*)} into times
 print 'User 2 start query = ', times

 execute {select ordr from acid_isolation_table}
 into ordr

 print 'user 2 ordr = ', ordr
 execute { call acid_single_query (^) } substitute ordr into o_total
 print 'user 2 o_total=' , o_total
 print ' '

execute {select now(*)} into times
print 'User 2 completed query = ', times

disconnect

END Test
===

acid_isolation_test2.tst
===

%%%
% Created by: Masood Dirin
% Created Date: 5/24/1999
% Script name: tpcd_acid_isolation_test1.tst
%
% Part of tpcd_acid_isolation_main1.tst
%
%%%
%%%

Test "tpcd_acid_isolation_test1.tst"
Description "Run Acid isolation test 1"

TPC Benchmark H Full Disclosure Report Page 51

stringconnect "dsn=tpch;"

execute {select ordr, line, delta from acid_isolation_table}
 into ordr, line, delta
 print ''
 print 'The following are the data input values for the ACID Transaction.'
 print '(user 1) o_key-',ordr, ' l_key-', line, ' delta-',delta

 execute { select o_totalprice from orders where o_orderkey = ^}
 substitute ordr into o_total
 print 'Before user1 acid transaction o_total=',o_total
 print ''
 execute {call acid_transaction(^, ^, ^,

rprice, quantity, tax, disc, extprice, ototal)
} substitute ordr, line, delta

execute {select now(*)} into times
print 'User 1 waiting to roll back = ', times
print ' '
synchronize 2
sleep 10000
execute {select now(*)} into times
print 'User 1 about to roll back = ', times
rollback

execute { select round(cast(o_totalprice as numeric(18,2)),2)
from orders where o_orderkey = ^}
substitute ordr into o_total

print 'User 1 new values: '
print 'user 1 ordr= ', ordr
print 'user 1 o_total= ', o_total
print ' '

End Test

===

acid_isolation_test2_query.tst
===
%%
% Created by: Masood Dirin
% Created Date: 5/24/1999
% Script name: tpcd_acid_query_isolation_test1.tst
% ---
%
%%

Test 'tpcd_acid_query_isolation_test1'
Description 'perform the acid query for user2.'

stringconnect "dsn=tpch;"

 synchronize 2
 print ' '
 execute {select now(*)} into times
 print 'User 2 start query = ', times

 execute {select ordr from acid_isolation_table}
 into ordr

 print 'user 2 ordr = ', ordr
 execute { call acid_single_query (^) } substitute ordr into o_total
 print 'user 2 o_total=' , o_total
 print ' '

execute {select now(*)} into times

TPC Benchmark H Full Disclosure Report Page 52

print 'User 2 completed query = ', times

disconnect

END Test
===

acid_isolation_test3_transaction1.tst
===

%%%
%%%%%%
% Created by: Masood Dirin %
% Created Date: 5/25/1999 %
% Script name: tpcd_acid_isolation_test3_transaction1.tst %
% --- %
% %
% This test could be run by itself, but it is recommended to run it as %
% part of tpcd_acid_isolation_main3.tst file. %
% %
%%%
%%%%%%

Test "acid_isolation_test3_transaction1.tst"
Description "Run Acid Transaction 1 for isolation test 3"

stringconnect "dsn=tpch;"

execute {select now(*)} into times
print 'Isolation test 3 test start = ', times
print ' '

 execute {select ordr, line, delta from acid_isolation_table}
 into ordr, line, delta

 print 'User 1 -- The input data values for User 1 Acid Transaction.'
 print 'User 1 -- o_key = ',ordr
 print 'User 1 -- l_key = ',line
 print 'User 1 -- delta1 = ',delta

 print ' '
 execute {select now(*)} into times
 print 'User 1 -- Starting the Acid Transaction: ', times

 execute {call acid_transaction(^, ^, ^)}
substitute ordr, line, delta
into rprice, quantity, tax, disc, extprice, ototal

 print ' '
 execute {select now(*)} into times
 print 'User 1 -- Acid Transaction complete: ', times
 print '30 second timer started'
SYNCHRONIZE 2
 sleep 30000

 print ' '
 execute {select now(*)} into times
 print 'User 1 -- starting commit: ', times

 commit
 print ' '
 execute {select now(*)} into times
 print 'User 1 -- transaction commit complete: ', times

 print ' '
 print 'USER 1 -- original extendedprice = ', extprice
 print 'USER 1 -- original quantity = ', quantity

TPC Benchmark H Full Disclosure Report Page 53

 fetch { select cast(^ as numeric(18,6))
+ (cast(^ as numeric(18,6))*(cast (^ as numeric(18,6))
/cast (^ as numeric(18,6)))) }

substitute extprice, delta, extprice, quantity
into result1

 % make it format nicely...
 execute { select cast(^ as numeric(18,2)) } substitute result1 into result2

 print ' '
 print 'User 1 -- result1 = '
 print ' txn1_extendedprice + (delta1 * (txn1_extendedprice/txn1_quantity))'
 print 'User 1 -- result1= ', result2
 print ' '

 disconnect
 End Test

===

acid_isolation_test3_transaction2.tst
===

%%%
%%%%%
% Created by: Masood Dirin %
% Created Date: 5/25/1999 %
% Script name: tpcd_acid_isolation_test3_transaction2.tst %
% -- %
% %
% This test could be run by itself, but it is recommended to run it as %
% part of tpcd_acid_isolation_main3.tst file. %
% %
%%%
%%%%%

Test "acid_isolation_test3_transaction2.tst"
Description "Run Acid Transaction 2 for isolation test 3"
stringconnect "dsn=tpch;"

execute {select ordr, line, delta from acid_isolation_table}
 into ordr, line, delta
% generate a new set of values; we only use delta2
execute { call generate_acid_values()} into ordr2, line2, delta2

 print ' '
 print 'User 2 - The input data values for the Acid Transaction.'
 print 'User 2 -- o_key = ',ordr
 print 'User 2 -- l_key= ',line
 print 'User 2 -- delta2 = ',delta2

SYNCHRONIZE 2

 print ' '
 execute {select now(*)} into times
 print 'User 2 -- Starting the Acid Transaction: ', times

execute {call acid_transaction(^, ^, ^) }
substitute ordr, line, delta2
into rprice, quantity, tax, disc, extprice, ototal

execute {select round(cast(^ as numeric(20,6)),2) }
substitute extprice into extprice2

print ' '
execute {select now(*)} into times
print 'User 2 -- About to commit: ', times

TPC Benchmark H Full Disclosure Report Page 54

commit

execute {select now(*)} into times
print 'User 2 -- transaction commit complete: ', times

print ' '

print 'USER 2 -- original extendedprice = ', extprice2
print 'USER 2 -- original quantity = ', quantity
print ' '

 fetch { select cast(^ as numeric(18,6))
 + (cast(^ as numeric(18,6))*(cast (^ as numeric(18,6))
 /cast (^ as numeric(18,6)))) }
 substitute extprice, delta, extprice, quantity
 into result1
 % make it format nicely...
 execute { select cast(^ as numeric(18,2)) } substitute result1 into result2

 print ' '
 print 'User 2 -- result1 = '
 print ' txn2_extendedprice + (delta2 * (txn2_extendedprice/txn2_quantity))'
 print 'User 2 -- result1= ', result2
 print ' '

End Test

===

acid_isolation_test4_transaction1.tst
===

%%%
%%%%%%
% Created by: Masood Dirin %
% Created Date: 5/25/1999 %
% Script name: tpcd_acid_isolation_test3_transaction1.tst %
% --- %
% %
% This test could be run by itself, but it is recommended to run it as %
% part of tpcd_acid_isolation_main3.tst file. %
% %
%%%
%%%%%%

 Test "acid_isolation_test4_transaction1.tst"
Description "Transaction 1 for isolation test 4"

stringconnect "dsn=tpch;"

execute {select now(*)} into times
print 'Isolation test 3 test start = ', times
print ' '

 execute {select ordr, line, delta from acid_isolation_table}
 into ordr, line, delta

 print 'User 1 -- The input data values for User 1 Acid Transaction.'
 print 'User 1 -- o_key = ',ordr
 print 'User 1 -- l_key = ',line
 print 'User 1 -- delta1 = ',delta

 print ' '
 execute {select now(*)} into times
 print 'User 1 -- Starting the Acid Transaction: ', times

 execute {select l_extendedprice from lineitem where l_linenumber=^ and l_orderkey=^}

TPC Benchmark H Full Disclosure Report Page 55

substitute line, ordr into extprice3

execute {select round(cast(^ as numeric(20,6)),2) }
 substitute extprice3 into extprice4
 print ' '
 print 'USER 1 -- extendedprice before acid transaction = ', extprice4

 execute {call acid_transaction(^, ^, ^)}
substitute ordr, line, delta
into rprice, quantity, tax, disc, extprice, ototal

 print ' '
 execute {select now(*)} into times
 print 'User 1 -- Acid Transaction complete: ', times
 print '30 second timer started'
SYNCHRONIZE
 sleep 30000

execute {select l_extendedprice from lineitem where l_linenumber=^ and l_orderkey=^}

substitute line, ordr into extprice3

execute {select round(cast(^ as numeric(20,6)),2) }
 substitute extprice3 into extprice4
 print ' '
 print 'USER 1 -- extendedprice before rooling back = ', extprice4
 print ' '
 execute {select now(*)} into times
 print 'User 1 -- starting rollback: ', times

 rollback
 print ' '
 execute {select now(*)} into times
 print 'User 1 -- transaction rollback complete: ', times

 execute {select round(cast(^ as numeric(20,6)),2) }
substitute extprice into extprice2

 print ' '
 print 'USER 1 -- original extendedprice = ', extprice2
 print 'USER 1 -- original quantity = ', quantity
 print ' '

 disconnect
 End Test

===

acid_isolation_test4_transaction2.tst
===
%%%
%%%%%
% Created by: Masood Dirin %
% Created Date: 5/25/1999 %
% Script name: tpcd_acid_isolation_test3_transaction2.tst %
% -- %
% %
% This test could be run by itself, but it is recommended to run it as %
% part of tpcd_acid_isolation_main3.tst file. %
% %
%%%
%%%%%

Test "acid_isolation_test4_transaction2.tst"
Description "Transaction 2 for isolation test 4"

stringconnect "dsn=tpch;"

TPC Benchmark H Full Disclosure Report Page 56

execute {select ordr, line, delta from acid_isolation_table}
 into ordr, line, delta
% generate a new set of values; we only use delta2
execute { call generate_acid_values()} into ordr2, line2, delta2

 print ' '
 print 'User 2 - The input data values for the Acid Transaction.'
 print 'User 2 -- o_key = ',ordr
 print 'User 2 -- l_key= ',line
 print 'User 2 -- delta2 = ',delta2

SYNCHRONIZE
sleep 5000

 print ' '
 execute {select now(*)} into times
 print 'User 2 -- Starting the Acid Transaction: ', times

execute {call acid_transaction(^, ^, ^) }
substitute ordr, line, delta2
into rprice, quantity, tax, disc, extprice, ototal

execute {select round(cast(^ as numeric(20,6)),2) }
substitute extprice into extprice2

sleep 5000
print ' '
execute {select now(*)} into times
print 'User 2 -- About to commit: ', times
commit

execute {select now(*)} into times
print 'User 2 -- transaction commit complete: ', times
print ' '
print 'USER 2 -- original extendedprice = ', extprice2
print 'USER 2 -- original quantity = ', quantity
print ' '

 fetch { select cast(^ as numeric(18,6))
 + (cast(^ as numeric(18,6))*(cast (^ as numeric(18,6))
 /cast (^ as numeric(18,6)))) }
 substitute extprice, delta2, extprice, quantity
 into result1
 % make it format nicely...
 execute { select cast(^ as numeric(18,2)) } substitute result1 into result2

 print ' '
 print 'User 2 -- result1 = '
 print ' txn2_extendedprice + (delta2 * (txn2_extendedprice/txn2_quantity))'
 print 'User 2 -- result1= ', result2
 print ' '

End Test

===

acid_isolation_test5_query.tst
===

%%
% Created by: Masood Dirin
% Created Date: 5/27/1999
% Script name: tpcd_acid_isolation_query_test5.tst
% ---
%
% This test could be run by itself, but it is recommended to run

TPC Benchmark H Full Disclosure Report Page 57

% it as part of tpcd_acid_isolation_main5.tst file.
%
%%

Test "tpcd_acid_isolation_query_test5.tst"
Description "Run Acid isolation query for test 5"

stringconnect "dsn=tpch;"

synchronize 2

execute { call generate_ps_values() } into ps_ptky, ps_spky
print ' '
print 'user 2 ps_partkey = ', ps_ptky
print 'user 2 ps_suppkey = ', ps_spky
print ' '

execute {select now(*)} into times
print 'User 2 beginning query = ', times
execute {select * from partsupp where ps_partkey=^ and ps_suppkey=^}

substitute ps_ptky, ps_spky
into ps_ptky, ps_spky, ps_aly, ps_spct, ps_ct

print ' '
print 'User2 gets all columns of the PARTSUPP table '
print ' for selected ps_partkey and ps_suppkey doing a query.'
print ' '
print 'ps_partkey = ', ps_ptky, ' ps_suppkey = ', ps_spky
print 'ps_availqty = ', ps_aly, ' ps_supplycost = ',ps_spct
print 'ps_comment = ', ps_ct
execute {select now(*)} into times
print 'User 2 query complete = ', times
print ' '

execute {select now(*)} into times
print 'User 2 about to commit = ', times
commit
execute {select now(*)} into times
print 'User 2 transaction commit complete = ', times

print ' '

End Test

===

acid_isolation_test5_transaction1.tst
===

%%%
%%%%%%
% Created by: Masood Dirin %
% Created Date: 5/27/1999 %
% Script name: tpcd_acid_isolation_test5_transaction1.tst %
% --- %
% %
% This test could be run by itself, but it is recommended to run it %
% as part of tpcd_acid_isolation_main5.tst file. %
% %
%%%
%%%%%%

Test "tpcd_acid_isolation_test5_transaction1.tst"
Description "Run Acid isolation for user1 on test5."

stringconnect "dsn=tpch;"

TPC Benchmark H Full Disclosure Report Page 58

execute {select ordr, line, delta from acid_isolation_table}
 into ordr, line, delta

 print ' '
 print 'The following are the input values for the users1 ACID Transaction.'
 print 'o_key = ',ordr,' l_key = ',line,' delta = ',delta
 print ''
execute {select now(*)} into times
print 'User 1 isolation test time = ', times
print ' '
print ' '
execute {select o_totalprice from orders where o_orderkey=^ }

substitute ordr into o_tprice
execute {select l_extendedprice, l_quantity,l_partkey, l_suppkey

from lineitem
where l_orderkey=^ and l_linenumber=^}
substitute ordr, line
into l_price, l_quant, l_ptky, l_spky

print 'User 1 o_totalprice = ', o_tprice
print 'User 1 l_extendedprice = ', l_price,' l_quantity = ', l_quant
print 'User 1 l_partkey = ', l_ptky,' l_suppkey = ', l_spky
print ' '

execute {select now(*)} into times
print 'User 1 starting acid transaction = ', times

execute {call acid_transaction(^, ^, ^, rprice, quantity, tax, disc,
extprice, ototal) } substitute ordr, line, delta

execute {select now(*)} into times
print 'User 1 waiting to commit = ', times
print ' '
synchronize 2
sleep 10000
execute {select now(*)} into times
print 'User 1 about to commit = ', times
commit
execute {select now(*)} into times
print 'User 1 transaction commit complete = ', times

execute {select o_totalprice from orders where o_orderkey=^ }
substitute ordr into o_tprice

execute {select l_extendedprice, l_quantity
from lineitem where l_orderkey=^ and l_linenumber=^}
substitute ordr, line
into l_price, l_quant

print 'User 1 o_totalprice = ', o_tprice
print 'User 1 l_extendedprice = ', l_price,' l_quantity = ', l_quant
print 'User 1 l_partkey = ', l_ptky,' l_suppkey = ', l_spky

print ' '
execute {select * from history where h_o_key=^

and h_date_t=(select max(h_date_t) from history where h_o_key=^)}
substitute ordr, ordr
into hpk, hsk, hok, hlk, hda, hdt

print 'User 1 history entry:'
print ' h_p_key = ', hpk
print ' h_s_key = ', hsk
print ' h_o_key = ', hok
print ' h_l_key = ', hlk
print ' h_delta = ', hda
print ' h_date_t = ', hdt

execute {select now(*)} into times

TPC Benchmark H Full Disclosure Report Page 59

print 'User 1 isolation test time = ', times
print ''

End Test

===

acid_isolation_test6_query.tst
===

%%%
%%%%
% Created by: Masood Dirin
% Created Date: 5/27/1999
% Script name: tpcd_acid_isolation_query_test6.tst
% --
%
% This test could be run by itself, but it is recommended to run it as
% part of tpcd_acid_isolation_main6.tst file. Run this file by itself as
% follow:
% dbtest -u acid_isolation_query_test6.tst > acid_isolation_query_test6.ot
%
%%%
%%%%

Test "tpcd_acid_isolation_query_test6.tst"
Description "Run Acid isolation query for test 6"

stringconnect "dsn=tpch;"

print 'User1 Query: '
print ' '
print 'User1 starts its query (Q1) here.'
execute {select now(*)} into qstart
print 'Start time for User1 Q1 =', qstart
print ' '
compare fetchall {select
 l_returnflag,
 l_linestatus,
 sum(l_quantity) as sum_qty,
 sum(l_extendedprice) as sum_base_price,
 sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
 sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
 avg(l_quantity) as avg_qty,
 avg(l_extendedprice) as avg_price,
 avg(l_discount) as avg_disc,
 count(*) as count_order
from lineitem
where l_shipdate <= dateadd(day, -1, '1998-12-01')
group by l_returnflag,l_linestatus
order by l_returnflag,l_linestatus
 } in 'queryresult'

execute {select now(*)} into qstop
print 'Stop time for User1 Q1 =', qstop
print ' '

End Test

===

TPC Benchmark H Full Disclosure Report Page 60

acid_isolation_test6_transaction1.tst
===

%%%
%%%%%%
% Created by: Masood Dirin %
% Created Date: 5/27/1999 %
% Script name: tpcd_acid_isolation_test6_transaction1.tst %
% --- %
% %
% This test could be run by itself, but it is recommended to run it %
% as part of tpcd_acid_isolation_main6.tst file. %
% %
%%%
%%%%%%

Test "tpcd_acid_isolation_test6_transaction1.tst"
Description "Run Acid isolation for user2 on test6."

stringconnect "dsn=tpch;"

execute {select ordr, line, delta from acid_isolation_table}
into ordr, line, delta

 execute {select now(*)} into qstart2
 print 'User2 acid Transaction = ', qstart2
 print 'o_key = ',ordr, ' l_key = ',line, ' delta = ',delta
 print ' '
execute {select o_totalprice from orders where o_orderkey=^ }

substitute ordr into o_tprice
execute {select l_extendedprice, l_quantity,l_partkey, l_suppkey

from lineitem where l_orderkey=^ and l_linenumber=^}
substitute ordr, line
into l_price, l_quant, l_ptky, l_spky

print 'User 2 o_totalprice = ', o_tprice
print 'User 2 l_extendedprice = ', l_price,' l_quantity = ', l_quant
print 'User 2 l_partkey = ', l_ptky,' l_suppkey = ', l_spky
print ' '

execute {select now(*)} into qstart2
print 'Start Time for User2 Transaction = ', qstart2
print ' '
execute {call acid_transaction(^, ^, ^, rprice, quantity,

tax, disc, extprice, ototal) }
substitute ordr, line, delta

execute {select now(*)} into qstop2
print 'User 2 about to commit = ', qstop2
commit
execute {select now(*)} into qstop2
print 'User 2 transaction commit complete = ', qstop2
print ' '

execute {select o_totalprice from orders where o_orderkey=^ }
substitute ordr
into o_tprice

execute {select l_extendedprice, l_quantity
from lineitem where l_orderkey=^ and l_linenumber=^}
substitute ordr, line
into l_price, l_quant

print 'User 2 o_totalprice = ', o_tprice
print 'User 2 l_extendedprice = ', l_price,' l_quantity = ', l_quant
print 'User 2 l_partkey = ', l_ptky,' l_suppkey = ', l_spky
print ' '

print ' '

TPC Benchmark H Full Disclosure Report Page 61

execute {select * from history
where h_o_key=^
and h_date_t=(select max(h_date_t) from history where h_o_key=^)}
substitute ordr, ordr
into hpk, hsk, hok, hlk, hda, hdt

print 'User 2 history entry:'
print ' h_p_key = ', hpk
print ' h_s_key = ', hsk
print ' h_o_key = ', hok
print ' h_l_key = ', hlk
print ' h_delta = ', hda
print ' h_date_t = ', hdt

print ' '
execute {select now(*)} into times
print 'User 2 completed = ', times

End Test

===

Disk Configuration Details
===

Solaris Volume Manager Setup
Note: The instructions below pertain to the controller
number and targets generated by the configuration used in the benchmark. Solaris chooses the
controller numbers and target numbers at boot time depending upon the cabling configuration and
the slot location of the HBAs. Thus another equivalently configured system may not have the same
the controller numbers and SCSI targets as shown below.

Using the format command, partition the disks as
follows

c0t0d0
 0 root wm 67 - 810 5.70GB
 1 swap wu 1 - 66 517.72MB
 2 backup wm 0 - 8920 68.34GB
 7 home wm 811 - 8920 62.13GB
 8 boot wu 0 - 0 7.84MB

c0t1d0
 0 unassigned wm 1 - 3134 24.01GB
 1 unassigned wm 3135 - 3526 3.00GB
 2 backup wu 0 - 3886 29.78GB
 3 unassigned wm 3527 - 3788 2.01GB
 4 unassigned wm 3789 - 3827 305.93MB
 5 unassigned wm 3828 - 3840 101.98MB
 7 unassigned wm 3841 - 3853 101.98MB
 8 boot wu 0 - 0 7.84MB

c0t2d0
 0 unassigned wm 1 - 3134 24.01GB
 1 unassigned wm 3135 - 3526 3.00GB
 2 backup wu 0 - 3886 29.78GB
 3 unassigned wm 3527 - 3788 2.01GB
 4 unassigned wm 3789 - 3827 305.93MB
 5 unassigned wm 3828 - 3840 101.98MB
 8 boot wu 0 - 0 7.84MB

c0t6d0
 0 unassigned wm 1 - 3134 24.01GB
 1 unassigned wm 3135 - 3526 3.00GB

TPC Benchmark H Full Disclosure Report Page 62

 2 backup wu 0 - 3886 29.78GB
 3 unassigned wm 3527 - 3788 2.01GB
 4 unassigned wm 3789 - 3827 305.93MB
 5 unassigned wm 3828 - 3840 101.98MB
 8 boot wu 0 - 0 7.84MB

c0t7d0
 0 unassigned wm 1 - 3134 24.01GB
 1 unassigned wm 3135 - 3526 3.00GB
 2 backup wu 0 - 3886 29.78GB
 3 unassigned wm 3527 - 3788 2.01GB
 4 unassigned wm 3789 - 3827 305.93MB
 5 unassigned wm 3828 - 3840 101.98MB
 8 boot wu 0 - 0 7.84MB
c0t11d0
 0 unassigned wm 1 - 3134 24.01GB
 1 unassigned wm 3135 - 3526 3.00GB
 2 backup wu 0 - 3886 29.78GB
 3 unassigned wm 3527 - 3788 2.01GB
 4 unassigned wm 3789 - 3827 305.93MB
 5 unassigned wm 3828 - 3840 101.98MB
 8 boot wu 0 - 0 7.84MB
c0t12d0
 0 unassigned wm 1 - 3134 24.01GB
 1 unassigned wm 3135 - 3526 3.00GB
 2 backup wu 0 - 3886 29.78GB
 3 unassigned wm 3527 - 3788 2.01GB
 4 unassigned wm 3789 - 3827 305.93MB
 5 unassigned wm 3828 - 3840 101.98MB
 8 boot wu 0 - 0 7.84MB

c0t14d0
 0 unassigned wm 1 - 3134 24.01GB
 1 unassigned wm 3135 - 3526 3.00GB
 2 backup wu 0 - 3886 29.78GB
 3 unassigned wm 3527 - 3788 2.01GB
 4 unassigned wm 3789 - 3827 305.93MB
 5 unassigned wm 3828 - 3840 101.98MB
 8 boot wu 0 - 0 7.84MB

c0t15d0
 0 unassigned wm 1 - 3134 24.01GB
 1 unassigned wm 3135 - 3526 3.00GB
 2 backup wu 0 - 3886 29.78GB
 3 unassigned wm 3527 - 3788 2.01GB
 4 unassigned wm 3789 - 3827 305.93MB
 5 unassigned wm 3828 - 3840 101.98MB
 8 boot wu 0 - 0 7.84MB

Then use svm as follows to create the mirrors used for the IQ log and the database devices

metainit d1 1 1 c0t1d0s4
metainit d2 1 1 c0t2d0s4
metainit d3 -m d111 d112

metainit d11 1 1 c0t0d0s0
metainit d12 1 1 c0t1d0s0
metainit d10 -m d11 d12

metainit d21 1 1 c0t6d0s0
metainit d22 1 1 c0t7d0s0
metainit d20 -m d21 d22

metainit d31 1 1 c0t11d0s0
metainit d32 1 1 c0t12d0s0
metainit d30 -m d31 d32

metainit d41 1 1 c0t14d0s0

TPC Benchmark H Full Disclosure Report Page 63

metainit d42 1 1 c0t15d0s0
metainit d40 -m d41 d42

File System Setup

run the following:

create a filesystem on /dev/md/rdsk/d1 and mount
/dev/md/dsk/d1 on /sybase2

newfs /dev/md/rdsk/d1

mount /dev/md/dsk/d1 /sybase2

echo "/dev/md/dsk/d1 /dev/md/rdsk/d1 /sybase2 ufs 1 yes -" >>/etc/vfstab

Database Device Links

Finally create the following links in /sybase2 to be used as temp devices:

/sybase2/T01 -> /dev/rdsk/c0t1d0s3
/sybase2/T02 -> /dev/rdsk/c0t2d0s3
/sybase2/T03 -> /dev/rdsk/c0t6d0s3
/sybase2/T04 -> /dev/rdsk/c0t7d0s3
/sybase2/T05 -> /dev/rdsk/c0t11d0s3
/sybase2/T06 -> /dev/rdsk/c0t12d0s3
/sybase2/T07 -> /dev/rdsk/c0t14d0s3
/sybase2/T08 -> /dev/rdsk/c0t15d0s3

and create the following links in /sybase2 to be used as database devices:

/sybase2/M01 -> /dev/md/rdsk/d10
/sybase2/M02 -> /dev/md/rdsk/d20
/sybase2/M03 -> /dev/md/rdsk/d30
/sybase2/M04 -> /dev/md/rdsk/d40

TPC Benchmark H Full Disclosure Report Page 64

Appendix C. Query Text and Query Output

===

qualification query 1
===

% select
% l_returnflag,
% l_linestatus,
% sum(l_quantity) as sum_qty,
% sum(l_extendedprice) as sum_base_price,
% sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
% sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
% avg(l_quantity) as avg_qty,
% avg(l_extendedprice) as avg_price,
% avg(l_discount) as avg_disc,
% count(*) as count_order
% from
% lineitem
% where
% l_shipdate <= dateadd(day,-90,'1998-12-01')
% group by
% l_returnflag,
% l_linestatus
% order by
% l_returnflag,
% l_linestatus;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.32000 seconds - current time 16:40:13
'A','F',37734107,56586554400.7292032,53758257134.8694563,55909065222.8284717,25.5220058532573342,
38273.1297346211374,.0499852958383577168,1478493
'N','F',991417,1487504710.38000107,1413082168.05409968,1469649223.19436967,25.5164719205229819,38
284.4677608483374,.0500934266742134809,38854
'N','O',74476040,111701729697.737336,106118230307.607383,110367043872.495174,25.5022267695849895,
38249.117988907361,.049996586053555131,2920374
'R','F',37719753,56568041380.8983326,53741292684.6045375,55889619119.8339581,25.5057936126907617,
38250.8546260985255,.0500094058300870121,1478870
% total of 4 rows written

===

qualification query 2
===

% select top 100
% s_acctbal,
% s_name,
% n_name,
% p_partkey,
% p_mfgr,
% s_address,
% s_phone,
% s_comment
% from
% part,
% supplier,
% partsupp,
% nation,
% region
% where

TPC Benchmark H Full Disclosure Report Page 65

% p_partkey = ps_partkey
% and s_suppkey = ps_suppkey
% and p_size = 15
% and p_type like 'BRASS'
% and s_nationkey = n_nationkey
% and n_regionkey = r_regionkey
% and r_name = 'EUROPE'
% and ps_supplycost = (
% select
% min(ps_supplycost)
% from
% partsupp,
% supplier,
% nation,
% region
% where
% p_partkey = ps_partkey
% and s_suppkey = ps_suppkey
% and s_nationkey = n_nationkey
% and n_regionkey = r_regionkey
% and r_name = 'EUROPE'
%)
% order by
% s_acctbal desc,
% n_name,
% s_name,
% p_partkey;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.76000 seconds - current time 16:40:25
9938.53,'Supplier#000005359 ','UNITED KINGDOM ',185358,'Manufacturer#4
','QKuHYh,vZGiwu2FWEJoLDx04','33-429-790-6131','blithely silent pinto beans are furiously. slyly
final deposits acros'
9937.84,'Supplier#000005969 ','ROMANIA ',108438,'Manufacturer#1
','ANDENSOSmk,miq23Xfb5RWt6dvUcvt6Qa','29-520-692-3537','carefully slow deposits use furiously.
slyly ironic platelets above the ironic'
9936.22,'Supplier#000005250 ','UNITED KINGDOM ',249,'Manufacturer#4
','B3rqp0xbSEim4Mpy2RH J','33-320-228-2957','blithely special packages are. stealthily express
deposits across the closely final instructi'
9923.77000000000119,'Supplier#000002324 ','GERMANY ',29821,'Manufacturer#4
','y3OD9UywSTOk','17-779-299-1839','quickly express packages breach quiet pinto beans. requ'
9871.22,'Supplier#000006373 ','GERMANY ',43868,'Manufacturer#5
','J8fcXWsTqM','17-813-485-8637','never silent deposits integrate furiously blit'
9870.78,'Supplier#000001286 ','GERMANY ',81285,'Manufacturer#2
','YKA,E2fjiVd7eUrzp2Ef8j1QxGo2DFnosaTEH','17-516-924-4574','final theodolites cajole slyly
special,'
9870.78,'Supplier#000001286 ','GERMANY ',181285,'Manufacturer#4
','YKA,E2fjiVd7eUrzp2Ef8j1QxGo2DFnosaTEH','17-516-924-4574','final theodolites cajole slyly
special,'
9852.52000000000119,'Supplier#000008973 ','RUSSIA ',18972,'Manufacturer#2
','t5L67YdBYYH6o,Vz24jpDyQ9','32-188-594-7038','quickly regular instructions wake-- carefully
unusual braids into the expres'
9847.83,'Supplier#000008097 ','RUSSIA ',130557,'Manufacturer#2
','xMe97bpE69NzdwLoX','32-375-640-3593','slyly regular dependencies sleep slyly furiously express
dep'
9847.57,'Supplier#000006345 ','FRANCE ',86344,'Manufacturer#1
','VSt3rzk3qG698u6ld8HhOByvrTcSTSvQlDQDag','16-886-766-7945','silent pinto beans should have to
snooze carefully along the final reques'
% total of 100 rows written

===

qualification query 3
===

% select top 10
% l_orderkey,
% sum(l_extendedprice * (1 - l_discount)) as revenue,
% o_orderdate,

TPC Benchmark H Full Disclosure Report Page 66

% o_shippriority
% from
% customer,
% orders,
% lineitem
% where
% c_mktsegment = 'BUILDING'
% and c_custkey = o_custkey
% and l_orderkey = o_orderkey
% and o_orderdate < '1995-03-15'
% and l_shipdate > '1995-03-15'
% group by
% l_orderkey,
% o_orderdate,
% o_shippriority
% order by
% revenue desc,
% o_orderdate;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.36000 seconds - current time 16:40:27
2456423,406181.011100000024,'1995-03-05',0
3459808,405838.698899999917,'1995-03-04',0
492164,390324.061,'1995-02-19',0
1188320,384537.935899999976,'1995-03-09',0
2435712,378673.055799999952,'1995-02-26',0
4878020,378376.795200000048,'1995-03-12',0
5521732,375153.9215,'1995-03-13',0
2628192,373133.309399999976,'1995-02-22',0
993600,371407.45949999994,'1995-03-05',0
2300070,367371.145200000107,'1995-03-13',0
% total of 10 rows written

===

qualification query 4
===

% select
% o_orderpriority,
% count(*) as order_count
% from
% orders
% where
% o_orderdate >= '1993-07-01'
% and o_orderdate < dateadd(month,3,'1993-07-01')
% and exists (
% select
% *
% from
% lineitem
% where
% l_orderkey = o_orderkey
% and l_commitdate < l_receiptdate
%)
% group by
% o_orderpriority
% order by
% o_orderpriority;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.25000 seconds - current time 16:40:31
'1-URGENT ',10594
'2-HIGH ',10476
'3-MEDIUM ',10410
'4-NOT SPECIFIED',10556

TPC Benchmark H Full Disclosure Report Page 67

'5-LOW ',10487
% total of 5 rows written

===

qualification query 5
===

% select
% n_name,
% sum(l_extendedprice * (1 - l_discount)) as revenue
% from
% customer,
% orders,
% lineitem,
% supplier,
% nation,
% region
% where
% c_custkey = o_custkey
% and l_orderkey = o_orderkey
% and l_suppkey = s_suppkey
% and c_nationkey = s_nationkey
% and s_nationkey = n_nationkey
% and n_regionkey = r_regionkey
% and r_name = 'ASIA'
% and o_orderdate >= '1994-01-01'
% and o_orderdate < dateadd(year,1,'1994-01-01')
% group by
% n_name
% order by
% revenue desc;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.65000 seconds - current time 16:40:36
'INDONESIA ',55502041.1696999431
'VIETNAM ',55295086.9966999531
'CHINA ',53724494.2565999746
'INDIA ',52035512.000200057
'JAPAN ',45410175.6954000235
% total of 5 rows written

===

qualification query 6
===

% select
% sum(l_extendedprice * l_discount) as revenue
% from
% lineitem
% where
% l_shipdate >= '1994-01-01'
% and l_shipdate < dateadd(year,1,'1994-01-01')
% and l_discount between .06 - 0.01 and .06 + 0.01
% and l_quantity < 24;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.15000 seconds - current time 16:40:41
123141078.228299007
% total of 1 rows written

===

qualification query 7
===

TPC Benchmark H Full Disclosure Report Page 68

% select
% supp_nation,
% cust_nation,
% l_year,
% sum(volume) as revenue
% from
% (
% select
% n1.n_name as supp_nation,
% n2.n_name as cust_nation,
% datepart(year, l_shipdate) as l_year,
% l_extendedprice * (1 - l_discount) as volume
% from
% supplier,
% lineitem,
% orders,
% customer,
% nation n1,
% nation n2
% where
% s_suppkey = l_suppkey
% and o_orderkey = l_orderkey
% and c_custkey = o_custkey
% and s_nationkey = n1.n_nationkey
% and c_nationkey = n2.n_nationkey
% and (
% (n1.n_name = 'FRANCE' and n2.n_name = 'GERMANY')
% or (n1.n_name = 'GERMANY' and n2.n_name = 'FRANCE')
%)
% and l_shipdate between '1995-01-01' and '1996-12-31'
%) as shipping
% group by
% supp_nation,
% cust_nation,
% l_year
% order by
% supp_nation,
% cust_nation,
% l_year;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.67000 seconds - current time 16:40:43
'FRANCE ','GERMANY ',1995,54639732.7335999489
'FRANCE ','GERMANY ',1996,54633083.3075999737
'GERMANY ','FRANCE ',1995,52531746.6696999669
'GERMANY ','FRANCE ',1996,52520549.0223998487
% total of 4 rows written

===

qualification query 8
===

% select
% o_year,
% sum(case
% when nation = 'BRAZIL' then volume
% else 0
% end) / sum(volume) as mkt_share
% from
% (
% select
% datepart(year, o_orderdate) as o_year,
% l_extendedprice * (1 - l_discount) as volume,
% n2.n_name as nation
% from
% part,
% supplier,
% lineitem,

TPC Benchmark H Full Disclosure Report Page 69

% orders,
% customer,
% nation n1,
% nation n2,
% region
% where
% p_partkey = l_partkey
% and s_suppkey = l_suppkey
% and l_orderkey = o_orderkey
% and o_custkey = c_custkey
% and c_nationkey = n1.n_nationkey
% and n1.n_regionkey = r_regionkey
% and r_name = 'AMERICA'
% and s_nationkey = n2.n_nationkey
% and o_orderdate between '1995-01-01' and '1996-12-31'
% and p_type = 'ECONOMY ANODIZED STEEL'
%) as all_nations
% group by
% o_year
% order by
% o_year;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.86000 seconds - current time 16:40:47
1995,.0344358904066548347
1996,.041485521293530345
% total of 2 rows written
===

qualification query 9
===

% select
% nation,
% o_year,
% sum(amount) as sum_profit
% from
% (
% select
% n_name as nation,
% datepart(year, o_orderdate) as o_year,
% l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as
% amount
% from
% part,
% supplier,
% lineitem,
% partsupp,
% orders,
% nation
% where
% s_suppkey = l_suppkey
% and ps_suppkey = l_suppkey
% and ps_partkey = l_partkey
% and p_partkey = l_partkey
% and o_orderkey = l_orderkey
% and s_nationkey = n_nationkey
% and p_name like 'green'
%) as profit
% group by
% nation,
% o_year
% order by
% nation,
% o_year desc;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%

TPC Benchmark H Full Disclosure Report Page 70

% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.69000 seconds - current time 16:40:48
'ALGERIA ',1998,31342867.2345000029
'ALGERIA ',1997,57138193.0233001232
'ALGERIA ',1996,56140140.1330001235
'ALGERIA ',1995,53051469.6533999741
'ALGERIA ',1994,53867582.128600049
'ALGERIA ',1993,54942718.132400012
'ALGERIA ',1992,54628034.7126999021
'ARGENTINA ',1998,30211185.708099997
'ARGENTINA ',1997,50805741.75230003
'ARGENTINA ',1996,51923746.5754999459
% total of 175 rows written

===

qualification query 10
===

% select top 20
% c_custkey,% c_name,
% sum(l_extendedprice * (1 - l_discount)) as revenue,
% c_acctbal,
% n_name,
% c_address,
% c_phone,
% c_comment
% from
% customer,
% orders,
% lineitem,
% nation
% where
% c_custkey = o_custkey
% and l_orderkey = o_orderkey
% and o_orderdate >= '1993-10-01'
% and o_orderdate < dateadd(month,3,'1993-10-01')
% and l_returnflag = 'R'
% and c_nationkey = n_nationkey
% group by
% c_custkey,
% c_name,
% c_acctbal,
% c_phone,
% n_name,
% c_address,
% c_comment
% order by
% revenue desc;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.50000 seconds - current time 16:40:55
57040,'Customer#000057040',734235.2455,632.87,'JAPAN ','Eioyzjf4pp','22-895-
641-3466','requests sleep blithely about the furiously i'
143347,'Customer#000143347',721002.694799999952,2557.4700000000003,'EGYPT
','1aReFYv,Kw4','14-742-935-3718','fluffily bold excuses haggle finally after the u'
60838,'Customer#000060838',679127.307700000048,2454.77,'BRAZIL
','64EaJ5vMAHWJlBOxJklpNc2RJiWE','12-913-494-9813','furiously even pinto beans integrate under
the ruthless foxes; ironic, even dolphins across the slyl'
101998,'Customer#000101998',637029.566699999809,3790.89,'UNITED KINGDOM
','01c9CILnNtfOQYmZj','33-593-865-6378','accounts doze blithely! enticing, final deposits sleep
blithely special accounts. slyly express accounts pla'
125341,'Customer#000125341',633508.086,4983.5100000000006,'GERMANY
','S29ODD6bceU8QSuuEJznkNaK','17-582-695-5962','quickly express requests wake quickly blithely'
25501,'Customer#000025501',620269.784899999976,7725.04,'ETHIOPIA ','
W556MXuoiaYCCZamJI,Rn0B4ACUGdkQ8DZ','15-874-808-6793','quickly special requests sleep evenly
among the special deposits. special deposi'
115831,'Customer#000115831',596423.867200000167,5098.1,'FRANCE ','rFeBbEEyk dl
ne7zV5fDrmiq1oK09wV7pxqCgIc','16-715-386-3788','carefully bold excuses sleep alongside of the

TPC Benchmark H Full Disclosure Report Page 71

thinly idle'
84223,'Customer#000084223',594998.023899999976,528.65,'UNITED KINGDOM ','nAVZCs6BaWap
rrM27N 2qBnzc5WBauxbA','33-442-824-8191','pending, final ideas haggle final requests. unusual,
regular asymptotes affix according to the even foxes.'
54289,'Customer#000054289',585603.391799999952,5583.02,'IRAN
','vXCxoCsU0Bad5JQI ,oobkZ','20-834-292-4707','express requests sublate blithely regular
requests. regular, even ideas solve.'
39922,'Customer#000039922',584878.113399999976,7321.10999999999881,'GERMANY
','Zgy4s50l2GKN4pLDPBU8m342gIw6R','17-147-757-8036','even pinto beans haggle. slyly bold accounts
inte'
6226,'Customer#000006226',576783.760599999905,2230.09,'UNITED KINGDOM
','8gPu8,NPGkfyQQ0hcIYUGPIBWc,ybP5g,','33-657-701-3391','quickly final requests against the
regular instructions wake blithely final instructions. pa'
922,'Customer#000000922',576767.533299999833,3869.25,'GERMANY
','Az9RFaut7NkPnc5zSD2PwHgVwr4jRzq','17-945-916-9648','boldly final requests cajole blith'
147946,'Customer#000147946',576455.132,2030.1300000000003,'ALGERIA
','iANyZHjqhyy7Ajah0pTrYyhJ','10-886-956-3143','furiously even accounts are blithely above the
furiousl'
115640,'Customer#000115640',569341.193299999952,6436.1,'ARGENTINA ','Vtgfia9qI
7EpHgecU1X','11-411-543-4901','final instructions are slyly according to the'
73606,'Customer#000073606',568656.857799999952,1785.67,'JAPAN
','xuR0Tro5yChDfOCrjkd2ol','22-437-653-6966','furiously bold orbits about the furiously busy
requests wake across the furiously quiet theodolites. d'
110246,'Customer#000110246',566842.981499999881,7763.35,'VIETNAM ','7KzflgX
MDOq7sOkI','31-943-426-9837','dolphins sleep blithely among the slyly final'
142549,'Customer#000142549',563537.236799999952,5085.9899999999994,'INDONESIA
','ChqEoK43OysjdHbtKCp6dKqjNyvvi9','19-955-562-2398','regular, unusual dependencies boost slyly;
ironic attainments nag fluffily into the unusual packages?'
146149,'Customer#000146149',557254.9865,1791.55,'ROMANIA ','s87fvzFQpU','29-744-
164-6487','silent, unusual requests detect quickly slyly regul'
52528,'Customer#000052528',556397.350899999976,551.79,'ARGENTINA
','NFztyTOR10UOJ','11-208-192-3205','unusual requests detect. slyly dogged theodolites use slyly.
deposit'
23431,'Customer#000023431',554269.536000000119,3381.86,'ROMANIA
','HgiV0phqhaIa9aydNoIlb','29-915-458-2654','instructions nag quickly. furiously bold accounts
cajol'
% total of 20 rows written

===

qualification query 11
===

% select
% ps_partkey,
% sum(ps_supplycost * ps_availqty) as value
% from
% partsupp,
% supplier,
% nation
% where
% ps_suppkey = s_suppkey
% and s_nationkey = n_nationkey
% and n_name = 'GERMANY'
% group by
% ps_partkey having
% sum(ps_supplycost * ps_availqty) > (
% select
% sum(ps_supplycost * ps_availqty) * 0.0001000000
% from
% partsupp,
% supplier,
% nation
% where
% ps_suppkey = s_suppkey
% and s_nationkey = n_nationkey
% and n_name = 'GERMANY'
%)
% order by
% value desc;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)

TPC Benchmark H Full Disclosure Report Page 72

%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.49000 seconds - current time 16:41:01
129760,17538456.8599999994
166726,16503353.9199999988
191287,16474801.9699999988
161758,16101755.5399999976
34452,15983844.7200000018
139035,15907078.3400000006
9403,15451755.6199999988
154358,15212937.8799999982
38823,15064802.8599999994
85606,15053957.150000003
% total of 1048 rows written

===

qualification query 12
===

% select
% l_shipmode,
% sum(case
% when o_orderpriority = '1-URGENT'
% or o_orderpriority = '2-HIGH'
% then 1
% else 0
% end) as high_line_count,
% sum(case
% when o_orderpriority <> '1-URGENT'
% and o_orderpriority <> '2-HIGH'
% then 1
% else 0
% end) as low_line_count
% from
% orders,
% lineitem
% where
% o_orderkey = l_orderkey
% and l_shipmode in ('MAIL', 'SHIP')
% and l_commitdate < l_receiptdate
% and l_shipdate < l_commitdate
% and l_receiptdate >= '1994-01-01'
% and l_receiptdate < dateadd(year,1,'1994-01-01')
% group by
% l_shipmode
% order by
% l_shipmode;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.26000 seconds - current time 16:41:03
'MAIL ',6202,9324
'SHIP ',6200,9262
% total of 2 rows written

===

qualification query 13
===

% select
% c_count,
% count(*) as custdist
% from
% (
% select
% c_custkey,
% count(o_orderkey)

TPC Benchmark H Full Disclosure Report Page 73

% from
% customer left outer join orders on
% c_custkey = o_custkey
% and o_comment not like 'specialrequests'
% group by
% c_custkey
%) as c_orders (c_custkey, c_count)
% group by
% c_count
% order by
% custdist desc,
% c_count desc;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.17000 seconds - current time 16:41:06
0,50004
9,6641
10,6566
11,6058
8,5949
12,5553
13,4989
19,4748
7,4707
18,4625
% total of 42 rows written

===

qualification query 14
===

% select
% 100.00 * sum(case
% when p_type like 'PROMO'
% then l_extendedprice * (1 - l_discount)
% else 0
% end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue
% from
% lineitem,
% part
% where
% l_partkey = p_partkey
% and l_shipdate >= '1995-09-01'
% and l_shipdate < dateadd(month,1,'1995-09-01');
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.24000 seconds - current time 16:41:19
16.3807786263955563
% total of 1 rows written

===

qualification query 15
===

 Executing command:
% create view revenue0 (supplier_no, total_revenue) as
% select
% l_suppkey,
% sum(l_extendedprice * (1 - l_discount))
% from
% lineitem
% where
% l_shipdate >= '1996-01-01'
% and l_shipdate < dateadd(month,3,'1996-01-01')

TPC Benchmark H Full Disclosure Report Page 74

% group by
% l_suppkey;
% execution time 0.81000 seconds - current time 16:41:21

 Executing command:
%
% select
% s_suppkey,
% s_name,
% s_address,
% s_phone,
% total_revenue
% from
% supplier,
% revenue0
% where
% s_suppkey = supplier_no
% and total_revenue = (
% select
% max(total_revenue)
% from
% revenue0
%)
% order by
% s_suppkey;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.27000 seconds - current time 16:41:21
8449,'Supplier#000008449 ','Wp34zim9qYFbVctdW','20-469-856-8873',1772627.20870000005
% total of 1 rows written

===

qualification query 16
===

% select
% p_brand,
% p_type,
% p_size,
% count(distinct ps_suppkey) as supplier_cnt
% from
% partsupp,
% part
% where
% p_partkey = ps_partkey
% and p_brand <> 'Brand#45'
% and p_type not like 'MEDIUM POLISHED'
% and p_size in (49, 14, 23, 45, 19, 3, 36, 9)
% and ps_suppkey not in (
% select
% s_suppkey
% from
% supplier
% where
% s_comment like 'CustomerComplaints'
%)
% group by
% p_brand,
% p_type,
% p_size
% order by
% supplier_cnt desc,
% p_brand,
% p_type,
% p_size;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%

TPC Benchmark H Full Disclosure Report Page 75

%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.27000 seconds - current time 16:41:22
'Brand#41 ','MEDIUM BRUSHED TIN',3,28
'Brand#54 ','STANDARD BRUSHED COPPER',14,27
'Brand#11 ','STANDARD BRUSHED TIN',23,24
'Brand#11 ','STANDARD BURNISHED BRASS',36,24
'Brand#15 ','MEDIUM ANODIZED NICKEL',3,24
'Brand#15 ','SMALL ANODIZED BRASS',45,24
'Brand#15 ','SMALL BURNISHED NICKEL',19,24
'Brand#21 ','MEDIUM ANODIZED COPPER',3,24
'Brand#22 ','SMALL BRUSHED NICKEL',3,24
'Brand#22 ','SMALL BURNISHED BRASS',19,24

% total of 18314 rows written

===

qualification query 17
===

% select
% sum(l_extendedprice) / 7.0 as avg_yearly
% from
% lineitem,
% part
% where
% p_partkey = l_partkey
% and p_brand = 'Brand#23'
% and p_container = 'MED BOX'
% and l_quantity < (
% select
% 0.2 * avg(l_quantity)
% from
% lineitem
% where
% l_partkey = p_partkey
%);
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.22000 seconds - current time 16:41:28
348406.054285713732
% total of 1 rows written

===

qualification query 18
===

% select top 100
% c_name,
% c_custkey,
% o_orderkey,
% o_orderdate,
% o_totalprice,
% sum(l_quantity)
% from
% customer,
% orders,
% lineitem
% where
% o_orderkey in (
% select
% l_orderkey
% from
% lineitem
% group by
% l_orderkey having
% sum(l_quantity) > 300

TPC Benchmark H Full Disclosure Report Page 76

%)
% and c_custkey = o_custkey
% and o_orderkey = l_orderkey
% group by
% c_name,
% c_custkey,
% o_orderkey,
% o_orderdate,
% o_totalprice
% order by
% o_totalprice desc,
% o_orderdate;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.34000 seconds - current time 16:41:29
'Customer#000128120',128120,4722021,'1994-04-07',544089.089999999881,323
'Customer#000144617',144617,3043270,'1997-02-12',530604.43999999994,317
'Customer#000013940',13940,2232932,'1997-04-13',522720.61,304
'Customer#000066790',66790,2199712,'1996-09-30',515531.82,327
'Customer#000046435',46435,4745607,'1997-07-03',508047.99,309
'Customer#000015272',15272,3883783,'1993-07-28',500241.33,302
'Customer#000146608',146608,3342468,'1994-06-12',499794.58,303
'Customer#000096103',96103,5984582,'1992-03-16',494398.78999999994,312
'Customer#000024341',24341,1474818,'1992-11-15',491348.26,302
'Customer#000137446',137446,5489475,'1997-05-23',487763.25,311
% total of 57 rows written

===

qualification query 19
===

% select
% sum(l_extendedprice* (1 - l_discount)) as revenue
% from
% lineitem,
% part
% where
% (
% p_partkey = l_partkey
% and p_brand = 'Brand#12'
% and p_container in ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')
% and l_quantity >= 1 and l_quantity <= 1 + 10
% and p_size between 1 and 5
% and l_shipmode in ('AIR', 'AIR REG')
% and l_shipinstruct = 'DELIVER IN PERSON'
%)
% or
% (
% p_partkey = l_partkey
% and p_brand = 'Brand#23'
% and p_container in ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
% and l_quantity >= 10 and l_quantity <= 10 + 10
% and p_size between 1 and 10
% and l_shipmode in ('AIR', 'AIR REG')
% and l_shipinstruct = 'DELIVER IN PERSON'
%)
% or
% (
% p_partkey = l_partkey
% and p_brand = 'Brand#34'
% and p_container in ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
% and l_quantity >= 20 and l_quantity <= 20 + 10
% and p_size between 1 and 15
% and l_shipmode in ('AIR', 'AIR REG')
% and l_shipinstruct = 'DELIVER IN PERSON'
%);
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)

TPC Benchmark H Full Disclosure Report Page 77

%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.35000 seconds - current time 16:41:46
3083843.05780000031
% total of 1 rows written

===

qualification query 20
===

% select
% s_name,
% s_address
% from
% supplier,
% nation
% where
% s_suppkey in (
% select
% ps_suppkey
% from
% partsupp
% where
% ps_partkey in (
% select
% p_partkey
% from
% part
% where
% p_name like 'forest'
%)
% and ps_availqty > (
% select
% 0.5 * sum(l_quantity)
% from
% lineitem
% where
% l_partkey = ps_partkey
% and l_suppkey = ps_suppkey
% and l_shipdate >= '1994-01-01'
% and l_shipdate < dateadd(year,1,'1994-01-01')
%)
%)
% and s_nationkey = n_nationkey
% and n_name = 'CANADA'
% order by
% s_name;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.37000 seconds - current time 16:41:51
'Supplier#000000020 ','iybAE,RmTymrZVYaFZva2SH,j'
'Supplier#000000091 ','YV45D7TkfdQanOOZ7q9QxkyGUapU1oOWU6q3'
'Supplier#000000197 ','YC2Acon6kjY3zj3Fbxs2k4Vdf7X0cd2F'
'Supplier#000000226 ','83qOdU2EYRdPQAQhEtn GRZEd'
'Supplier#000000285 ','Br7e1nnt1yxrw6ImgpJ7YdhFDjuBf'
'Supplier#000000378 ','FfbhyCxWvcPrO8ltp9'
'Supplier#000000402 ','i9Sw4DoyMhzhKXCH9By,AYSgmD'
'Supplier#000000530 ','0qwCMwobKY OcmLyfRXlagA8ukENJv,'
'Supplier#000000688 ','D fw5ocppmZpYBBIPI718hCihLDZ5KhKX'
'Supplier#000000710 ','f19YPvOyb QoYwjKC,oPycpGfieBAcwKJo'
% total of 204 rows written

===

qualification query 21
===

TPC Benchmark H Full Disclosure Report Page 78

% select top 100
% s_name,
% count(*) as numwait
% from
% supplier,
% lineitem l1,
% orders,
% nation
% where
% s_suppkey = l1.l_suppkey
% and o_orderkey = l1.l_orderkey
% and o_orderstatus = 'F'
% and l1.l_receiptdate > l1.l_commitdate
% and exists (
% select
% *
% from
% lineitem l2
% where
% l2.l_orderkey = l1.l_orderkey
% and l2.l_suppkey <> l1.l_suppkey
%)
% and not exists (
% select
% *
% from
% lineitem l3
% where
% l3.l_orderkey = l1.l_orderkey
% and l3.l_suppkey <> l1.l_suppkey
% and l3.l_receiptdate > l3.l_commitdate
%)
% and s_nationkey = n_nationkey
% and n_name = 'SAUDI ARABIA'
% group by
% s_name
% order by
% numwait desc,
% s_name;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.54000 seconds - current time 16:41:53
'Supplier#000002829 ',20
'Supplier#000005808 ',18
'Supplier#000000262 ',17
'Supplier#000000496 ',17
'Supplier#000002160 ',17
'Supplier#000002301 ',17
'Supplier#000002540 ',17
'Supplier#000003063 ',17
'Supplier#000005178 ',17
'Supplier#000008331 ',17
% total of 100 rows written

===

qualification query 22
===

% select
% cntrycode,
% count(*) as numcust,
% sum(c_acctbal) as totacctbal
% from
% (
% select
% substring(c_phone,1,2) as cntrycode,
% c_acctbal
% from

TPC Benchmark H Full Disclosure Report Page 79

% customer
% where
% substring(c_phone,1,2) in
% ('13', '31', '23', '29', '30', '18', '17')
% and c_acctbal > (
% select
% avg(c_acctbal)
% from
% customer
% where
% c_acctbal > 0.00
% and substring(c_phone,1,2) in
% ('13', '31', '23', '29', '30', '18', '17')
%)
% and not exists (
% select
% *
% from
% orders
% where
% o_custkey = c_custkey
%)
%) as custsale
% group by
% cntrycode
% order by
% cntrycode;
% Estimated 1 rows in query (I/O estimate 1010)
% PLAN> vt_1 (seq)
%
%
% 1 record(s) selected -- actual I/O 0
% select time including I/O 0.18000 seconds - current time 16:42:07
'13',888,6737713.98999999881
'17',861,6460573.72
'18',964,7236687.40000001431
'23',892,6701457.95000000954
'29',948,7158866.62999999642
'30',909,6808436.13000000119
'31',922,6806670.17999998569
% total of 7 rows written
Appendix D. Seed and Query Substitution Parameters

TPC Benchmark H Full Disclosure Report Page 80

Appendix D. Query Parameters

This Appendix contains Seed values and substitution parameters
for each stream

Seed Values
stream0 1104160842
stream1 1104160843
stream2 1104160844
stream3 1104160845
stream4 1104160846
stream5 1104160847

Query Parameters

===

stream0: seed = 1104160842
14 1997-10-01
2 39 BRASS ASIA
9 yellow
20 blanched 1994-01-01 RUSSIA
6 1993-01-01 0.05 24
17 Brand#44 LG BAG
18 315
8 IRAN MIDDLE EAST PROMO BRUSHED COPPER
21 INDIA
13 unusual deposits
3 MACHINERY 1995-03-14
22 14 10 31 16 34 32
19
16 Brand#14 ECONOMY POLISHED 29 5

27 40 17 15 16 3
4 1995-04-01
11 CHINA 0.0000010000
15 1995-04-01
1 115
10 1994-08-01
19 Brand#21 Brand#25 Brand#32 8

12 20
5 ASIA 1993-01-01
7 INDONESIA IRAN
12 AIR MAIL 1997-01-01
===

stream1: seed =1104160843
21 ALGERIA
3 BUILDING 1995-03-31
18 312
5 EUROPE 1993-01-01
11 FRANCE 0.0000010000
7 ARGENTINA BRAZIL
6 1993-01-01 0.02 24
20 lime 1993-01-01 JAPAN
17 Brand#41 LG PKG
12 REG AIR MAIL 1993-01-01
16 Brand#44 STANDARD BRUSHED 17
13 4 2 38 8 9 46
15 1993-01-01
13 unusual packages
10 1993-06-01
2 27 TIN MIDDLE EAST
8 BRAZIL AMERICA PROMO PLATED COPPER
14 1993-02-01

19 Brand#23 Brand#13 Brand#21 3
13 27

9 thistle
22 11 15 13 16 20 10
23
1 62
4 1997-11-01
===

stream2: seed = 1104160844
6 1993-01-01 0.07 25
17 Brand#43 LG DRUM
14 1993-05-01
16 Brand#24 LARGE BURNISHED 21
35 24 25 16 50 2 3
19 Brand#25 Brand#41 Brand#25 8

14 23
10 1994-03-01
9 slate
2 15 COPPER ASIA
15 1995-08-01
8 ROMANIA EUROPE PROMO ANODIZED COPPER
5 MIDDLE EAST 1993-01-01
22 27 30 34 23 19 10
12
12 SHIP FOB 1993-01-01
7 CHINA ROMANIA
13 unusual packages
18 314
1 70
4 1995-07-01
20 tan 1996-01-01 ARGENTINA
3 HOUSEHOLD 1995-03-17
11 ROMANIA 0.0000010000
21 PERU
===

stream3: seed = 1104160845
8 IRAQ MIDDLE EAST ECONOMY POLISHED COPPER
5 AFRICA 1993-01-01
4 1993-04-01
6 1993-01-01 0.05 24
17 Brand#45 MED BAG
7 IRAN IRAQ
1 78
18 315
22 32 11 30 17 22 34
18
14 1993-08-01
9 saddle
10 1994-12-01
15 1993-05-01
11 GERMANY 0.0000010000
20 gainsboro 1995-01-01 MOZAMBIQUE
2 3 STEEL AFRICA
21 IRAN
19 Brand#32 Brand#34 Brand#25 4

15 30
13 express packages
16 Brand#14 PROMO PLATED 24 26
21 13 48 46 36 25
12 FOB REG AIR 1993-01-01
3 BUILDING 1995-03-02
===

stream4: seed = 1104160846
5 ASIA 1994-01-01
21 BRAZIL
14 1993-11-01
19 Brand#34 Brand#12 Brand#14 9

16 26
15 1995-11-01
17 Brand#42 MED PKG
12 TRUCK FOB 1993-01-01
6 1994-01-01 0.02 24
4 1995-11-01
9 puff
8 CANADA AMERICA ECONOMY BURNISHED COPPER

TPC Benchmark H Full Disclosure Report Page 81

16 Brand#44 SMALL BRUSHED 1 20
50 13 24 22 43 33
11 SAUDI ARABIA 0.0000010000
2 40 BRASS ASIA
10 1993-09-01
18 313
1 86
13 express packages
7 BRAZIL CANADA
22 33 14 13 31 24 25
10
3 HOUSEHOLD 1995-03-19
20 red 1993-01-01 FRANCE
===

stream5: seed = 1104160847
21 ROMANIA
15 1993-08-01
4 1993-08-01
6 1994-01-01 0.08 25
7 ROMANIA SAUDI ARABIA
16 Brand#25 ECONOMY ANODIZED 20 9 39

18 46 21 17 16
19 Brand#31 Brand#45 Brand#13 4 17 23
18 314
14 1994-02-01
22 21 12 33 11 28 30 20
11 INDIA 0.0000010000
13 express packages
3 AUTOMOBILE 1995-03-04
1 94
2 28 NICKEL AFRICA
5 EUROPE 1994-01-01
8 SAUDI ARABIA MIDDLE EAST ECONOMY
ANODIZED TIN
20 chocolate 1996-01-01 VIETNAM
12 RAIL FOB 1994-01-01
17 Brand#54 MED DRUM
10 1994-06-01
9 papaya

TPC Benchmark H Full Disclosure Report Page 82

Appendix E. Implementation-Specific
Layer/Driver Code

===

===

ntest15

#!/bin/bash

Notes:
Notes: the default behavior of ntest15 is to load tables serially in the optimal
order
Notes: for parallel loads with restart after load, use a negative value for the
number of disks
Notes:

RESTART_IQ_AFTER_LOAD=

cur_dir=$(pwd)
if [[$cur_dir != /export/home/sybase/run/scripts]]
then
 echo
 echo ERROR: $(basename $0) must be run from $HOME/run/scripts
 echo
 echo " the current dir is $cur_dir "
 echo
 exit
fi

export audit_file_dir="/sybase_stage/results/"

if (($# < 1))
then
 echo
 echo "usage: `basename $0` scope (plus additional args depending upon
scope) "
 echo
 echo " scope values: "
 echo
 echo " - restart restart IQ with new tpch.cfg, options.sql or MPSS
values "
 echo " - load create and load a tpch database from scratch
"
 echo " - qi do query i (i=1,2,...,22) (without restarting IQ)
"
 echo " - stream0 restart IQ and do all 22 queries without any
refreshes "
 echo " - refresh restart IQ and do a single rerfesh pair
"
 echo " - power restart IQ and do a single power run
"
 echo " - tpworf restart IQ and do a single throughput run without
any refreshes "
 echo " - throughput restart IQ and do a single throughput run with
concurrent refresh "
 echo " - throughputtr restart IQ and do a single throughput run with
trailing refreshes "
 echo " - lthroughput restart IQ and do a load-throughput cycle
"
 echo " - run1 restart IQ and do a single power-throughput cycle
(without a load) "
 echo " - lrun1 restart IQ and do a load-power-throughput cycle
"
 echo " - all do full audit run (load + 2 power-throughput cycles)"

 echo " - alltr do full audit run (load + 2 power-throughput with
trailing refresh cycles)"
 echo " - mall do mpx audit run (load + 2 power-throughput
cycles), assumes running IQ"
 echo
 exit
fi

scope=$1

 echo scope=$scope # remove

case $scope in
 restart) if (($# < 1 || $# > 1))
 then
 echo
 echo "usage: `basename $0` restart"
 echo
 exit
 fi
 ;;

 load) if (($# < 2 || $# > 2))
 then
 echo
 echo "usage: `basename $0` load scale_factor "
 echo
 exit
 fi

 sf=$2 ;;

 q*) if (($# < 2 || $# > 2))
 then
 echo
 echo "usage: `basename $0` qi scale_factor "
 echo
 echo " note: iqsrv must be running; if not restart it first"
 echo
 exit
 fi

 query_num=${scope:1}
 case $query_num in
 [1-9]) ;; # q1 to q9
 1[0-9]) ;; # q10 to q19
 2[0-2]) ;; # q20 to q22
 *) echo
 echo "ERROR: query number ($query_num) must be between
1 and 22"
 echo
 exit
 esac

 sf=$2 ;;

 # assumes iqsrv is running; no shutdown and restart
 # note that this arrangement allows for a warmed up cache

 stream0) if (($# < 3 || $# > 3))
 then
 echo
 echo "usage: `basename $0` stream0 scale_factor input_seed"
 echo
 exit
 fi

 sf=$2
 input_seed=$3 ;;

 refresh) if (($# < 2 || $# > 2))
 then
 echo

TPC Benchmark H Full Disclosure Report Page 83

 echo "usage: `basename $0` refresh scale_factor "
 echo
 exit
 fi

 sf=$2 ;;

 power) if (($# < 3 || $# > 3))
 then
 echo
 echo "usage: `basename $0` power scale_factor input_seed"
 echo
 exit
 fi

 sf=$2
 nqs=0
 input_seed=$3 ;;

 tpworf) if (($# < 4 || $# > 4))
 then
 echo
 echo "usage: `basename $0` tpworf scale_factor "
 echo " num_query_streams input_seed "
 echo
 exit
 fi

 sf=$2
 nqs=$3
 input_seed=$4 ;;

 throughput) if (($# < 4 || $# > 4))
 then
 echo
 echo "usage: `basename $0` throughput scale_factor "
 echo " num_query_streams input_seed "
 echo
 exit
 fi

 sf=$2
 nqs=$3
 input_seed=$4 ;;

 throughputtr) if (($# < 4 || $# > 4))
 then
 echo
 echo "usage: `basename $0` throughputtr scale_factor "
 echo " num_query_streams input_seed "
 echo
 exit
 fi

 sf=$2
 nqs=$3
 input_seed=$4 ;;

 lthroughput) if (($# < 4 || $# > 4))
 then
 echo
 echo "usage: `basename $0` lthroughput scale_factor "
 echo " num_query_streams input_seed "
 echo
 exit
 fi

 real_scope2=$scope # i.e. real_scope2 is lthroughput
 scope=all # pretend for now that scope = all
 sf=$2
 nqs=$3
 input_seed=$4 ;;

 run1) if (($# < 7 || $# > 7))
 then
 echo
 echo "usage: `basename $0` run1 scale_factor "
 echo " num_query_streams "
 echo " num_disks disk_size(in GB) system_cost "
 echo " input_seed "
 echo
 exit
 echo
 fi

 sf=$2
 nqs=$3

 let nd=$4
 if ((nd < 0))
 then
 RESTART_IQ_AFTER_LOAD=yes
 fi

 let ds=$5
 let sc=$6
 input_seed=$7 ;;

 lrun1) if (($# < 7 || $# > 7))
 then
 echo
 echo "usage: `basename $0` lrun1 scale_factor "
 echo " num_query_streams "
 echo " num_disks disk_size(in GB) system_cost "
 echo " input_seed "
 echo
 exit
 echo
 fi

 real_scope=$scope # i.e. real_scope is lrun1
 scope=all # pretend for now that scope = all
 sf=$2
 nqs=$3
 let nd=$4
 if ((nd < 0))
 then
 RESTART_IQ_AFTER_LOAD=yes
 fi

 let ds=$5
 let sc=$6
 input_seed=$7
 echo input_seed = $input_seed ;;

 all) if (($# < 7 || $# > 7))
 then
 echo
 echo "usage: `basename $0` all scale_factor "
 echo " num_query_streams "
 echo " num_disks disk_size(in GB) system_cost "
 echo " input_seed "
 echo
 exit
 echo
 fi

 sf=$2
echo scale=$sf
 nqs=$3
 let nd=$4
 if ((nd < 0))
 then
 RESTART_IQ_AFTER_LOAD=yes
 fi

TPC Benchmark H Full Disclosure Report Page 84

 let ds=$5
 let sc=$6
 input_seed=$7
 echo input_seed = $input_seed ;;

 alltr) if (($# < 7 || $# > 7))
 then
 echo
 echo "usage: `basename $0` all scale_factor "
 echo " num_query_streams "
 echo " num_disks disk_size(in GB) system_cost "
 echo " input_seed "
 echo
 exit
 echo
 fi

 sf=$2
 nqs=$3
 let nd=$4
 if ((nd < 0))
 then
 RESTART_IQ_AFTER_LOAD=yes
 fi

 let ds=$5
 let sc=$6
 input_seed=$7 ;;

 mall) if (($# < 7 || $# > 7))
 then
 echo
 echo "usage: `basename $0` mall scale_factor "
 echo " num_query_streams "
 echo " num_disks disk_size(in GB) system_cost"
 echo " input_seed"
 echo
 exit
 echo
 fi
 sf=$2
 nqs=$3
 let nd=$4
 if ((nd < 0))
 then
 RESTART_IQ_AFTER_LOAD=yes
 fi

 let ds=$5
 let sc=$6
 input_seed=$7 ;;

 *) echo
 echo "ERROR: scope (=$scope) must be one of: "
 echo
 echo " restart,load,q1,q2,...,q22,stream0,refresh,power,"
 echo " tpworf,throughput,lthroughput,run1,lrun1,all "
 echo
 echo
 exit
esac

echo INPUT_SEED = $input_seed

start_load.out gets created if there is a load; existance is tested in
tpch_report.bash
to determine if load order should be displayed in the report
rm start_load.out

we impose the minimum stream requirement only in the "all" case
for all other scopes the min number of query streams is 1
aminqs is thus the "allowed minimum" for the current run

aminqs=1
if [[($scope = all || $scope = mall) && -z $real_scope && -z $real_scope2]] #
really all; not lrun1 or lthroughput1
then
 case $sf in
 .1) aminqs=1
 ;;
 1) aminqs=2
 ;;
 10) aminqs=3
 ;;
 30) aminqs=4
 ;;
 50) aminqs=4
 ;;
 100) aminqs=5
 ;;
 300) aminqs=6
 ;;
 1000) aminqs=7
 ;;
 3000) aminqs=8
 ;;
 10000) aminqs=9
 ;;
 *)
 echo
 echo "ERROR: scale factor (=$sf) must be one of
(.1,1,10,30,50,100,300,1000,3000,10000)"
 echo
 exit
 echo;;
 esac
fi

These are the minimum number of streams for a compliant run
case $sf in
 1) cmin=2
 ;;
 10) cmin=3
 ;;
 30) cmin=4
 ;;
 50) cmin=4
 ;;
 100) cmin=5
 ;;
 300) cmin=6
 ;;
 1000) cmin=7
 ;;
 3000) cmin=8
 ;;
 10000) cmin=9
 ;;
 *) cmin=1
 ;;
esac

make sure server is configured with enough connections to run the
specified number of streams

max_connections=$(grep '\-gm' tpch.cfg|cut -d' ' -f 2)

((min_req_connections=nqs+1))

echo "XXXXX min_required_connections = $min_req_connections
input_seed=$input_seed"

if [[$scope != mall]]
then

TPC Benchmark H Full Disclosure Report Page 85

 if ((max_connections<min_req_connections))
 then
echo " XXXXX $min_req_connections"
 echo
 echo "In order to run $nqs query streams -gm in tpch.cfg must be at least
$min_req_connections"
 echo "-gm is currently set to only $max_connections"
 echo
 exit
 fi
else
 echo
 echo "WARNING: Make sure total no. of connections is >= no. of streams +
1"
 echo
fi

make sure MPSS values are legal for the scopes where they have been supplied
as commandline args (i.e. everything but the standalone queries)

PLATFORM=`uname -m`

if [[$scope != q*]] # every other scope restarts IQ
then
 mpssheap=$(current_mpssheap_value.bash)
 if [[$PLATFORM == "i86pc"]]
 then
 if [[$mpssheap != 4k && $mpssheap != 2m && \
 $mpssheap != 4K && $mpssheap != 2M]]
 then
 echo
 echo "ERROR: mpssheap (=$mpssheap) defined in
$IQDIR15/bin64/start_iq"
 echo " must be one of [4k,2m] where k and m are case-insensitive"
 echo
 exit
 fi
 else
 if [[$mpssheap != 8k && $mpssheap != 64k && $mpssheap != 512k &&
\
 $mpssheap != 8K && $mpssheap != 64K && $mpssheap != 512K && \
 $mpssheap != 4m && $mpssheap != 32m && $mpssheap != 256m
&& \
 $mpssheap != 4M && $mpssheap != 32M && $mpssheap !=
256M]]
 then
 echo
 echo "ERROR: mpssheap (=$mpssheap) defined in
$IQDIR15/bin64/start_iq"
 echo " must be one of [8k,64k,512k,4m,256m] where k and m are
case-insensitive"
 echo
 exit
 fi
 fi

 mpssstack=$(current_mpssstack_value.bash)
 if [[$PLATFORM == "i86pc"]]
 then
 if [[$mpssstack != 4k && $mpssstack != 2m && \
 $mpssstack != 4K && $mpssstack != 2M]]
 then
 echo
 echo "ERROR: mpssstack (=$mpssstack) defined in
$IQDIR15/bin64/start_iq"
 echo " must be one of [4k,2m] where k and m are case-insensitive"
 echo
 exit
 fi
 else
 if [[$mpssstack != 8k && $mpssstack != 64k && $mpssstack != 512k

&& \
 $mpssstack != 8K && $mpssstack != 64K && $mpssstack != 512K &&
\
 $mpssstack != 4m && $mpssstack != 32m && $mpssstack != 256m &&
\
 $mpssstack != 4M && $mpssstack != 32M && $mpssstack != 256M
]]
 then
 echo
 echo "ERROR: mpssstack (=$mpssstack) defined in
$IQDIR15/bin64/start_iq"
 echo " must be one of [8k,64k,512k,4m,256m] where k and m are
case-insensitive"
 echo
 exit
 fi
 fi
fi

make sure input_seed value is legal (i.e. >= 0) for the scopes where it is been
supplied as a commandline arg ("lrun1" and "lthroughput" are covered by "all"

if [[$scope = stream0 || $scope = power || $scope = tpworf || \
 $scope = throughputtr || $scope = throughput || $scope = run1 || \
 $scope = all || $scope = alltr]]
then
 if [[$input_seed < 0]]
 then
 echo
 echo "ERROR: input_seed($input_seed) must be >= 0"
 echo
 exit
 fi
fi

make sure disk_size is reasonable for the scopes where it is supplied
as a commandline arg (i.e. run1, lrun1 and all)

if [[($scope = run1 || $scope = all || $scope = alltr || $scope = mall) &&
$real_scope2 != lthroughput]]
then
 if ((ds < 20))
 then
 echo
 echo "ERROR: disk_size (=$ds) appears to be too small" # this may
need to be changed
 echo
 exit
 fi

 if ((ds > 2000))
 then
 echo
 echo "ERROR: disk_size (=$ds) appears to be too large" # this may
need to be changed
 echo " if this is not he case, modify the script `basename $0`"
 echo
 exit
 fi
fi

check that the scale factor is legal where it has been supplied as
a command line arg (i.e. everything but restart)

if [[$scope != restart]]
then
 if [[$sf != .1 && $sf != 1 && $sf != 10 && $sf != 30 && $sf != 50 && \
 $sf != 100 && $sf != 300 && $sf != 1000 && $sf != 3000 && $sf !=
10000]]
 then

TPC Benchmark H Full Disclosure Report Page 86

 echo
 echo "ERROR: scale factor (=$sf) must be one of
[.1,1,10,30,50,100,300,1000,3000,10000]"
 echo
 exit
 fi
fi

make sure the correct version of tpch_wait.sql is being used
if [[$scope = throughput || $scope = throughputtr || $scope = lthroughput ||
$scope = run1 || $scope = lrun1 ||$scope = all || $scope = alltr || $scope = mall ||
$scope = load]]
then
 if [[-e tpch_wait_${sf}GB.sql]]
 then
 cp tpch_wait_${sf}GB.sql tpch_wait.sql
 else
 echo
 echo "ERROR: tpch_wait_${sf}GB.sql does not exist"
 echo
 exit
 fi

 # generate update_throughputX.sql
 upd_tput_fname="update_throughput${nqs}.sql"

 sleep_time_in_secs=0
 #cat update_throughput_header > $upd_tput_fname
 sed "s/xxx/$sleep_time_in_secs/" update_throughput_header >
$upd_tput_fname
 i=1
 while ((i<=nqs))
 do
 echo "call tpch_rf1 (c_path,'${i}');" >> $upd_tput_fname
 echo "commit;" >> $upd_tput_fname
 echo "tpch_wait;" >> $upd_tput_fname
 echo "call tpch_rf2 (c_path,'${i}');" >> $upd_tput_fname
 echo "commit;" >> $upd_tput_fname
 if ((i<nqs))
 then
 echo "tpch_wait;" >> $upd_tput_fname
 fi
 ((i=i+1))
 done
 cat update_throughput_footer >> $upd_tput_fname

 if [[-f update_throughput${nqs}.sql]]
 then
 echo
 else
 echo
 echo "ERROR: update_throughput${nqs}.sql must exist for a run of $nqs
streams"
 echo
 exit
 fi

fi

make sure that the number of query streams >= minimum allowed num
streams
aminqs has been previously set to 1 except when $scope is "all" in which
case aminqs is the complient minimun

if [[$scope = all || $scope = alltr || $scope = mall]]
then
 if ((nqs < aminqs)) # nqs: requested number of query streams
 then
 echo
 echo "ERROR: requested query streams (=$nqs) must be >= $aminqs for
sf=$sf & scope=$scope"
 echo

 exit
 fi
fi

make sure /sybase_stage contains the right amount of data for the
supplied scale factor whenever a load is done

if [[($scope = load || $scope = all || $scope = alltr || $scope = mall) && $sf != .
1]] # can't do sf=.1 without floating point support
then
 rm -f dbgen_files
 ln -s /sybase_stage/${sf}GB dbgen_files
 if [[! -x dbgen_files]]
 then
 echo "ERROR: /sybase_stage/${sf}GB does not exist"
 echo
 exit
 fi
 cd dbgen_files

 if [[! -f dbgen_size]]
 then
 echo "ERROR: /sybase_stage/${sf}GB appears to be incomplete"
 echo
 exit
 fi
 dbg=$(dbgen_size)
 if ((dbg < sf*1000000000))
 then
 echo
 echo "WARNING: dbgen files in /sybase_stage/${sf}GB contain only $
(show_dbgen_size)"
 echo " -- not enough for a scale factor of $sf -- "
 echo
 #exit
 fi

 if ((dbg > 2*sf*1000000000))
 then
 echo
 echo "ERROR: dbgen files in /sybase_stage/${sf}GB contain $
(show_dbgen_size)"
 echo " -- too much for a scale factor of $sf -- "
 echo
 fi
 cd /export/home/sybase/run/scripts
fi

#dbgen often sets strange premissions on customer
cust_file_name="dbgen_files/customer.tbl"
if [[! -r ${cust_file_name}]]
then
 echo
 echo " ERROR: File customer.tbl doesn't have correct permission"
 echo
 exit 1
fi

make sure the number of lineitem.tbl files and orders.tbl files
in /sybase_stage matches the number in load_lineitem.sql

if [[$scope = load || $scope = all || $scope = alltr || $scope = mall]]
then
 liss=$(ls dbgen_files/lineitem.tbl* | grep -v u | wc -l)
 lill=$(grep lineitem load_lineitem.sql | wc -l)

 if ((liss>lill))
 then
 echo
 echo $liss lineitem.tbl files in /sybase_stage/${sf}GB but only $lill in
load_lineitem.sql
 echo
 exit

TPC Benchmark H Full Disclosure Report Page 87

 fi

 if ((lill>liss))
 then
 echo
 echo $liss lineitem.tbl files in /sybase_stage/${sf}GB but $lill in
load_lineitem.sql
 echo
 exit
 fi

 oss=$(ls dbgen_files/orders.tbl* | grep -v u | wc -l)
 olo=$(grep orders load_orders.sql | wc -l)

 if ((oss>olo))
 then
 echo
 echo $oss orders.tbl files in /sybase_stage/${sf}GB but only $olo in
load_orders.sql
 echo
 exit
 fi

 if ((olo>oss))
 then
 echo
 echo $oss orders.tbl files in /sybase_stage/${sf}GB but $olo in
load_orders.sql
 echo
 exit
 fi
fi

decide if orderkey should be bigint or int (regardless of scope)

export partitioned=
#export partitioned=_partitioned_by_months
#export partitioned=_partitioned_by_6months
#export partitioned=_partitioned_by_years

if ((sf >= 1000))
then
 big=big # make l_orderkey and o_orderkey bigint
else
 big= # otherwise int
fi

#if [[$scope != q* && $scope != stream0 && $scope != restart && $sf != .1]]
#??? big can be set unconditionally
#then
if ((sf >= 1000))
then
big=big # make l_orderkey and o_orderkey bigint
else
big= # otherwise int
fi
#fi

we want to make sure that /sybase2 is a mounted filesystem
this will not guarantee that it is mounted on a mirrored device
but at least it will prevent running with /sybase2 as a subdirectory
of the root filesystem
if [[! $(df -kF ufs | grep /sybase2)]]
then
 echo
 echo "ERROR: /sybase2 is not a mounted filesystem"
 echo
 exit
fi

make sure that M* and T* referenced in create_databases.sql &
add_xxxx_files.sql
are writable links
if not, fix /sybase2

if [[$scope = load || $scope = all || $scope = alltr]]
then
 if [[! -L /sybase2/M01]]
 then
 echo "ERROR: /sybase2/M01 is not a symbolic link "
 echo
 exit
 fi
 if [[! -w /sybase2/M01]]
 then
 echo "ERROR: /sybase2/M01 is not writable"
 echo
 exit
 fi

 if [[! -L /sybase2/T01]]
 then
 echo "ERROR: /sybase2/T01 is not a symbolic link "
 echo
 exit
 fi
 if [[! -w /sybase2/T01]]
 then
 echo "ERROR: /sybase2/T01 is not writable"
 echo
 exit
 fi

for i in $(grep sybase add_main_files.sql | grep -v "\-\-" | tr -s " " | tr -d "'" | tr -d
"," | tr -d ";" | cut -d" " -f3)
 do
 if [[! -L $i]]
 then
 echo "ERROR(main): $i is not a symbolic link "
 echo
 exit
 fi
 if [[! -w $i]]
 then
 echo "ERROR(main): $i is not writable"
 echo
 exit
 fi
done

for i in $(grep sybase add_temp_files.sql | grep -v "\-\-" | tr -s " " | tr -d "'" | tr -d
"," | tr -d ";" | cut -d" " -f3)
 do
 if [[! -L $i]]
 then
 echo "ERROR(temp): $i is not a symbolic link "
 echo
 exit
 fi
 if [[! -w $i]]
 then
 echo "ERROR(temp): $i is not writable"
 echo
 exit
 fi
done

fi

if [[! -L /sybase_stage/dbgenrf]]
then
 echo "ERROR: /sybase_stage/dbgenrf is not a symbolic link "

TPC Benchmark H Full Disclosure Report Page 88

 echo
 exit
fi

we have checked the commandline args for reasonableness, now
describe the scope of the run and its configuration
echo
echo
echo " $(date) "
echo
if [[-e benchmark_disks]]
then
 echo benchmark disks
 echo ---------------
 cat benchmark_disks
else
 echo
 echo " ------ benchmark_disks file does not exist ------"
 echo
 exit
 echo
fi

echo
case $scope in
 q*)
 echo "DOING QUERY $query_num with: " ;;
 all)
 if [[$real_scope = lrun1]]
 then
 echo "DOING LOAD, FOLLOWED BY POWER, FOLLOWED
BY THROUGHPUT with:"
 else
 echo "DOING FULL AUDIT TEST (load, plus 2 full runs) with:
"
 fi ;;
 alltr)
 if [[$real_scope = lrun1]]
 then
 echo "DOING LOAD, FOLLOWED BY POWER, FOLLOWED
BY THROUGHPUT WITH TRAILING REFRESHES and:"
 else
 echo "DOING FULL AUDIT TEST (load, plus 2 full runs) WITH
TRAILING REFRESHES and: "
 fi ;;
 mall)
 echo "DOING FULL AUDIT TEST FOR MULTIPLEX
ENVIRONMENT, ASSUMING IQ IS ALREADY STARTED" ;;
 load)
 echo "ONLY DOING LOAD (and create database) with: " ;;
 power)
 echo "ONLY DOING ONE POWER TEST with:" ;;
 refresh)
 echo "ONLY DOING ONE REFRESH PAIR with: " ;;
 tpworf)
 echo "ONLY DOING ONE THROUGHPUT TEST WITHOUT
REFRESHES with:" ;;
 throughput)
 echo "ONLY DOING ONE THROUGHPUT TEST with:" ;;
 throughputtr)
 echo "ONLY DOING ONE THROUGHPUT TEST WITH
TRAILING REFRESHES and:" ;;
 lthroughput)
 echo "ONLY DOING LOAD AND ONE THROUGHPUT TEST
with:" ;;
 run1)
 echo "ONLY DOING ONE POWER FOLLOWED BY ONE
THROUGHPUT TEST with:" ;;
 lrun1)
 echo "ONLY DOING LOAD, POWER FOLLOWED BY ONE
THROUGHPUT TEST with:" ;;
 stream0)
 echo "ONLY DOING 22 SINGLE-USER QUERIES (NO

REFRESHES):" ;;
 restart)
 echo "ONLY RESTARTING IQ with:" ;;
 *)
 echo "ERROR: scope (=$scope) must be one of"
 echo " (all,restart,load,power,refresh,stream0,throughput,run1)"
 echo
 exit ;;
esac

echo " "

if [[$scope != restart]]
then
 echo " scale factor = $sf "
fi

if [[$scope = all || $scope = alltr || $scope = load || $scope = mall]]
then
 cd dbgen_files
 s=$(show_dbgen_size)
 cd $cur_dir
 echo " dbgen files: $s "
 echo " $(grep -h "IQ PAGE SIZE" create_database.sql)"
else
 echo " IQ PAGE SIZE unchanged from existing value"
fi

if [[$scope != q*]] # every other scope restarts IQ; maybe some scopes should
not restart ???
then
 echo " MPSSHEAP = $mpssheap (for this node)"
 echo " MPSSSTACK = $mpssstack (for this node)"
 echo
 iqmc=$(grep iqmc tpch.cfg | grep -v "#" | tr -s ' '| cut -d' ' -f 2)
 iqmc_gt=$(round_to_tenths.pl $(my_calc.pl "$iqmc/1000"))
 iqtc=$(grep iqtc tpch.cfg | grep -v "#" | tr -s ' '| cut -d' ' -f 2)
 iqtc_gt=$(round_to_tenths.pl $(my_calc.pl "$iqtc/1000"))
 if [[$iqmc_gt = *.0]]
 then
 iqmc_g=$(echo $iqmc_gt | cut -d '.' -f1)
 else
 iqmc_g=$iqmc_gt
 fi
 if [[$iqtc_gt = *.0]]
 then
 iqtc_g=$(echo $iqtc_gt | cut -d '.' -f1)
 else
 iqtc_g=$iqtc_gt
 fi

 echo " iqmc = $iqmc MB"
 echo " iqtc = $iqtc MB"
 echo " iqmt = $(grep iqmt tpch.cfg | grep -v "#" | tr -s ' '| cut -d' ' -f 2)
threads"
else
 echo " MPSS values unchanged from existing values"
 echo " iqmc unchanged from existing value"
 echo " iqtc unchanged from existing value"
 echo " iqmt unchanged from existing value"
fi

if [[$scope = all || $scope = alltr || $scope = run1 || $scope = throughput || $scope
= throughputtr || $scope = tpworf || $scope = mall]]
then
 echo " num throughput streams = $nqs (compliant minimum for this scale
factor: $cmin)"
 echo " max connections = $(grep gm tpch.cfg|cut -d' ' -f 2) (for this node)
"
fi

TPC Benchmark H Full Disclosure Report Page 89

if [[$scope = load || $scope = all || $scope = alltr]]
then
 if [[$big = big]]
 then
 echo " using orderkeys of type unsigned bigint"
 else
 echo " using orderkeys of type unsigned int "
 fi

 echo

fi

seed is irrelevant for load, refresh and restart

if [[$scope != load && $scope != refresh && $scope != restart]]
then
 if [[$input_seed == 1]]
 then
 seed=$input_seed # testing for seed = 1 is used later when
gen_streams.ksh is invoked
 echo " using newly gererated seed"
 elif [[$input_seed == 0]]
 then
 caution=yes # print message below warning that this is not a auditable
run
 if [[-f stream0.sql]]
 then
 existing_seed=$(grep "as a seed" stream0.sql | cut -d 'g' -f2 | cut -d 'a'
-f1)
 seed=$existing_seed
 echo " using existing seed = $seed"
 else
 echo "ERROR: Cannot use existing seed when stream0.sql does not
exist"
 exit
 fi
 else
 caution=yes # print message below warning that this is not a auditable run
 echo " using $input_seed as seed"
 seed=$input_seed
 fi
fi

echo

echo " Using the following devices"
echo " ---------------------------"
echo " $(grep "iq path" create_database.sql | grep -v "-" | tr -d "'" | tr -s ' ' | cut
-d' ' -f3)"

for i in $(grep main add_main_files.sql | grep -v alter | tr -d "," | tr -d "'" | tr -d
";" | tr -s " " | cut -d' ' -f3)
do
 echo " $i"
done
echo

echo " Using the following temporary devices (on this node)"
echo " --"

echo " $(grep "temporary path" create_database.sql | grep -v "-" | tr -d "'" | tr
-s ' '| cut -d' ' -f3)"

for i in $(grep temp add_temp_files.sql | grep -v alter | tr -d "," | tr -d "'" | tr -d
";" | tr -s " " | cut -d' ' -f3)
do
 echo " $i"
done
echo

((main_link_count=$(ls -l /sybase2/M* | wc -l)+0))
((main_db_count=$(grep main add_main_files.sql | wc -l)+1))
if ((main_link_count > main_db_count))
then
 echo "WARNING: There are more main links($main_link_count) in /sybase2 "
 echo " than "
 echo " main devices($main_db_count) referenced in create_database.sql
and add_main_files.sql"
 echo
fi

((temp_link_count=$(ls -l /sybase2/T* | wc -l)+0))
((temp_db_count=$(grep temp add_temp_files.sql | wc -l)+1))
if ((temp_link_count > temp_db_count))
then
 echo "WARNING: There are more temp links($temp_link_count) than temp
devices($temp_db_count) (on this node)"
 echo
fi

show which optional indexes are being used
may not be accurate if a load is not being done and
create_tables has been changed since the last load
ps_hg_index=$(grep "l_partsupp_hg" create_tables_${big}int$
{partitioned}.sql)
p_hg_index=$(grep "l_partkey_hg" create_tables_${big}int${partitioned}.sql)
echo " optional lineiten indexes: "
echo " $ps_hg_index"
echo " $p_hg_index"
echo

show relevant /etc/system values
adb -k >/tmp/out <<END
tune_t_fsflushr/D
END
echo " $(grep tune_t_fsflushr /tmp/out | tr ":" " " | tail -1)"

adb -k >/tmp/out <<END
autoup/D
END
echo " $(grep autoup /tmp/out | tail -1)"

adb -k >/tmp/out <<END
maxphys/D
END
echo " $(grep maxphys /tmp/out | tail -1)"

adb -k >/tmp/out <<END
lotsfree/D
END
echo " $(grep lotsfree /tmp/out | tail -1)"

adb -k >/tmp/out <<END
bufhwm/D
END
echo " $(grep bufhwm /tmp/out | tail -1)"

if [[$scope = q*]]
then
 echo " options.sql unchanged "
else # going to restart iq and rerun options.sql
 echo
 cat options.sql
fi

echo
iq_version=$(ls $HOME | grep IQ-)
iq_version=$(my_transform.pl "$iq_version" 's/ASIQ/IQ/') not needed in
IQ15

TPC Benchmark H Full Disclosure Report Page 90

iqv=$(ls $HOME | grep IQ- | grep -v lic | cut -d'-' -f2)
echo Running $iq_version
echo

echo Load Order:
echo

if [[$scope != mall]]
then
 if [[$RESTART_IQ_AFTER_LOAD = yes]]
 then
 grep dbisql $0 | grep -v grep | grep load | grep restart
 else
 grep dbisql $0 | grep -v grep | grep load | grep optimized
 fi
else
 grep dbisql mpx | grep -v grep | grep load
fi
echo

if [[$scope = mall]]
then
 mpx_streams=$(grep dbisqlc mpx_throughput.bash | grep -v "#" | wc -l)
 if [[$nqs -ne $mpx_streams]]
 then
 echo "ERROR: Number of query streams($nqs) does not match"
 echo " the number of streams($mpx_streams) exececued in"
 echo " mpx_throughput.bash"
 echo
 exit
 fi
fi
echo

echo
echo " the following are run immediately before stream0 or stream0 RF1 "
echo " --- "
grep Junk $0 | grep -v grep | grep -v "#"
echo
echo
if [[$RESTART_IQ_AFTER_LOAD = yes]]
then
 echo
 echo " Note: this run will restart IQ after the load and auditor verification
"
 echo " scripts complete, as indicated by the negative number of disks
"
 echo
 echo
fi

echo
echo "html query plans from gen_streams_new.ksh"
echo "---"
 grep DSS_QUERY gen_streams_new.ksh | grep export | grep -v "#"
echo
echo " set DSS_QUERY in gen_streams_new.ksh to identify query plans "
echo

grep -v "#" comments.txt
echo
 cp comments.txt /tmp/comments.txt # this makes the /tmp copy the one
used for
 # reporting this run.
echo

if [[-f $upd_tput_fname]]
then
 echo waiting -----\>\>\> $(grep sleep $upd_tput_fname | tr -d "'" | \
 tr -d ";" | tr -s " " | cut -d " " -f3) \<\<\<----- \
 seconds after throughput query streams begin before starting refreshes

fi

echo
echo " using create_tables_${big}int${partitioned}.sql "
echo

if [[$caution = yes]]
then
 banner "CAUTION:" ; banner "this is"; banner "not a "; banner
"AUDITABLE "; banner "RUN"
fi

echo -e "Are these OK? (type y or n) \c"
read ans

if [[$ans = n || $ans = no]]
then
 echo
 echo change one or more of
 echo " options.sql, tpch.cfg, create_database.sql, create_tables_${big}int$
{partitioned} or /etc/system"
 echo and try again
 echo
 exit
fi

------------- start real execution ----------------------------------

rm JuNk # file containing redirected output of restarting IQ after load

if [[$scope = mall || $scope = all || $scope = alltr]]
then
 rm -f ${audit_file_dir}* 2&>/dev/null
fi

if [[$scope = mall]]
then
 mpx $sf $mpssheap $mpssstack $nqs $nd $ds $sc $input_seed $iqmc_g
$iqtc_g $iqv $iq_version
 exit
fi

echo

power=0 # used in run1 to determine if Composite should be calculated
throughput=0 # this might not be necessary

if [[$scope = q*]]
then
 # assumes iq is running; no shutdown and restart
 do_one_query $query_num $sf
 echo
 exit
fi

echo
echo

stop & restart IQ in all other cases
note: the qi case does not do a restart, but qi
exits a few line above
when scope is load or all, the database is re-created

stop IQ if it's running
iq_running=`ps -eaf | grep iq | grep -v grep | wc -l`
if ((iq_running > 0))
then
 echo "Stopping IQ"
 #dbstop -c "DSN=tpch" -y # replace this with

TPC Benchmark H Full Disclosure Report Page 91

 stop_iq -stop all
fi

if [[$scope = load || $scope = all || $scope = alltr]]
then
 # remove the old stuff in /sybase2 and
 # then recreate the tpch database

 if [[-f /sybase2/firstmain.iq]]
 then
 # rm -f /export/home/sybase/new_firstmain.iq
 rm -f /sybase2/firstmain.iq

 if [[-f /sybase2/firstmain.iq]]
 then
 echo
 echo unable to remove /sybase2/firstmain.iq
 echo
 exit
 fi

 echo "removed /sybase2/firstmain.iq"
 fi

 if [[-f /sybase2/tpch.db]]
 then
 rm -f /sybase2/tpch.db

 # there have been times when this file hasn't been removed; if
 # this happens exit immediately

 if [[-f /sybase2/tpch.db]]
 then
 echo
 echo unable to remove /sybase2/tpch.db
 echo
 exit
 fi

 echo "removed /sybase2/tpch.db"
 fi

 if [[-f /sybase2/tpch.log]]
 then
 rm -f /sybase2/tpch.log

 # there have been times when this file hasn't been removed; if
 # this happens exit immediately

 if [[-f /sybase2/tpch.log]]
 then
 echo
 echo unable to remove /sybase2/tpch.log
 echo
 exit
 fi

 echo "removed /sybase2/tpch.log"
 fi

 if [[-f /sybase2/tpch.iqmsg]]
 then
 ts=`date '+%m%d%H%M%S'`
 mv /sybase2/tpch.iqmsg /sybase2/tpch.iqmsg.$ts
 echo "renamed /sybase2/tpch.iqmsg to /sybase2/tpch.iqmsg.$ts"
 fi

 echo " "
 echo " "

 echo " "
 echo "Starting IQ with utility database: `date` "

 #echo Sleeping 1 Seconds
 echo " "
 sleep 1

 if [[-e cud.ooo]]
 then
 rm cud.ooo
 fi

 start_iq @utility.cfg

 # start_iq @/export/home/sybase/IQ-15_0/demo/iqdemo.cfg
/export/home/sybase/IQ-15_0/demo/iqdemo.db

 #start_iq @utility.cfg /export/home/sybase/IQ-15_0/demo/iqdemo.db

 echo IQ started with utility database: `date`
 echo " "
 echo " creating tpch database: `date`"
 echo " "
 dbisqlc -c "DSN=utility_db" -q create_database.sql >cud.ooo
 if [[-s cud.ooo]] # cud.ooo exists and non-empty
 then
 echo " tpch database created: `date`"
 else
 echo
 echo ERROR: create_database.sql failed
 echo
 exit
 fi
 echo " "
 echo " "

 echo " Shutting down IQ: `date` "
 echo " "
 sleep 1
 dbstop -c "DSN=utility_db" -y
 echo
 echo "IQ utility database shutdown complete: `date` "
 echo " "
 echo " "
fi

echo "sleeping 5 secs"
sleep 5

echo "Restarting IQ with tpch database: `date` "

start_iq @tpch.cfg /sybase2/tpch.db
echo " IQ tpch database started: `date` "
echo " "

sleep 1

add files to the database and create the 2 stored procs which control the refresh
operations
if [[$scope = load || $scope = all || $scope = alltr]]
then
 if [[-e af.ooo]]
 then
 rm af.ooo
 fi

 dbisqlc -c "DSN=tpch" -q add_main_files.sql >af.ooo

 if [[-s af.ooo]]
 then
 echo " main files added "
 else
 echo

TPC Benchmark H Full Disclosure Report Page 92

 echo ERROR: alter database add main files failed
 echo
 exit
 fi

 dbisqlc -c "DSN=tpch" -q add_temp_files.sql >af.ooo
 if [[-s af.ooo]]
 then
 echo " temp files added "
 else
 echo
 echo ERROR: alter database add temp files failed
 echo
 exit
 fi

 if [[-e tpchrf.ooo]]
 then
 rm tpchrf.ooo
 fi

 dbisqlc -c "DSN=tpch" -q tpch_rf_${big}int.sql >tpchrf.ooo
 if [[-s tpchrf.ooo]]
 then
 echo " executed tpch_rf_${big}int.sql"
 else
 echo
 echo ERROR: tpch_rf_${big}int.sql failed
 echo
 exit
 fi

 if [[-e tpchw.ooo]]
 then
 rm tpchw.ooo
 fi

 dbisqlc -c "DSN=tpch" -q tpch_wait.sql >tpchw.ooo
 if [[-s tpchw.ooo]]
 then
 echo " executed tpch_wait.sql"
 else
 echo
 echo ERROR: tpch_wait.sql failed
 echo
 exit
 fi

 echo " "

fi

set IQ options
if [[-e o.ooo]]
then
 rm o.ooo
fi

dbisqlc -c "DSN=tpch" -q options.sql >o.ooo
if [[-s o.ooo]]
then
 echo " executed options.sql"
else
 echo
 echo ERROR: options.sql failed
 echo
 exit
fi

echo

sleep 1

echo Shutting down IQ: `date`
dbstop -c "DSN=tpch" -y
echo
echo

sleep 5

echo "Restarting IQ with tpch database and specified MPSS values: `date` "
start_iq @tpch.cfg /sybase2/tpch.db
echo "IQ restarted: `date` "
echo " "

if [[$scope = restart]]
then
 echo
 echo exiting `basename $0`
 echo
 exit
fi

set $new_seed to the time at this instant
if there is a load, new_seed will be reset to the end of the load time.
without a load, new_seed gets it value here

new_seed=`date '+%m%d%H%M%S'`

if [[$scope = load || $scope = all || $scope = alltr]]
then
 sleep 1

 if [[-e ct.ooo]]
 then
 rm ct.ooo
 fi

 dbisqlc -c "DSN=tpch" -q create_tables_${big}int${partitioned}.sql >ct.ooo
 dbisqlc -c "DSN=tpch" -q log_query_status.sql > log_query_status.out
 if [[-s ct.ooo]]
 then
 echo " executed create_tables_${big}int${partitioned}.sql"
 else
 echo
 echo ERROR: create_tables_${big}int${partitioned}.sql failed
 echo
 exit
 fi

 sleep 1

 #
 # Load the database
 #
 echo " "

 show_iq_cpu start_load > start_load_cpu.out

 echo " Load Started `now_iq_format.bash`" | tee start_load.out

 if [[$RESTART_IQ_AFTER_LOAD = yes]]
 then

 # use standard table load order (faster than optimized order)

 dbisqlc -c "DSN=tpch" -q load_lineitem.sql > load_lineitem_restart.out &
 loadlpid=$!
 echo " "
 echo " - lineitem load started: `date` "

 dbisqlc -c "DSN=tpch" -q load_region.sql > load_region_restart.out
 echo " - region load completed: `date` "

TPC Benchmark H Full Disclosure Report Page 93

 dbisqlc -c "DSN=tpch" -q load_nation.sql > load_nation_restart.out
 echo " - nation load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_customer.sql > customer_restart.out
 echo " - customer load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_part.sql > load_part_restart.out
 echo " - part load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_supplier.sql >
load_supplier_restart.out
 echo " - supplier load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_partsupp.sql >
load_partsupp_restart.out
 echo " - partsupp load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_orders.sql > load_orders_restart.out
 echo " - orders load completed: `date` "

 wait $loadlpid
 echo " - lineitem parallel load completed: `date` "

 else

 # use optimized table load order

 dbisqlc -c "DSN=tpch" -q load_lineitem.sql >
load_lineitem_optimized.out
 echo " - lineitem load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_region.sql > load_region_optimized.out
 echo " - region load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_nation.sql > load_nation_optimized.out
 echo " - nation load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_customer.sql >
load_customer_optimized.out
 echo " - customer load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_orders.sql > load_orders_optimized.out
 echo " - orders load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_supplier.sql >
load_supplier_optimized.out
 echo " - supplier load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_part.sql > load_part_optimized.out
 echo " - part load completed: `date` "

 dbisqlc -c "DSN=tpch" -q load_partsupp.sql >
load_partsupp_optimized.out
 echo " - partsupp load completed: `date` "

 fi

 echo
 echo " Load Finished `now_iq_format.bash` " | tee end_load.out
 new_seed=`date '+%m%d%H%M%S'`
 echo
 show_iq_cpu end_load > end_load_cpu.out

 slt=`tr -s ' ' <start_load.out | cut -d' ' -f 4,5 `
 elt=`tr -s ' ' <end_load.out | cut -d' ' -f 4,5 `
 lt=`calculate_load_time.bash "$elt" "$slt" ` # calls secs_from_epoch.pl
 echo "Database Load Time: $lt"
 echo " "

 if [[$scope = load]]
 then
 echo exiting `basename $0`

 echo
 exit
 fi
fi

note: load has exited

if [[$scope = stream0 || $scope = power || $scope = tpworf || \
 $scope = throughput || $scope = run1 || $scope = all || \
 $scope = throughputtr || $scope = alltr]]
then
 if [[$seed = "1"]]
 then
 echo "Generating $((nqs+1)) Query Streams "
 seed=$new_seed
 echo "Using the appropriate timestamp seed = $seed "
 gen_streams_new.ksh $seed $sf $nqs
 else
 if [[$input_seed = "1"]]
 then
 echo "Using existing seed = $seed"
 else
 echo "Using provided seed = $seed"
 rm -f stream*.sql
 gen_streams_new.ksh $seed $sf $nqs
 fi
 fi
 echo
fi

if [[$scope = all || $scope = alltr]]
then
 echo "Starting Audit Verification Scripts `date` "
 echo

 grep dbisqlc $0 | grep _start | grep -v grep

 dbisqlc -c "DSN=tpch" -q dbtables-syb.sql > rdbtablest_start.out
 dbisqlc -c "DSN=tpch" -q dew_cat1.sql > dew_cat1_start.out
 dbisqlc -c "DSN=tpch" -q dew_cat2.sql > dew_cat2_start.out
 dbisqlc -c "DSN=tpch" -q dew_cat3.sql > dew_cat3_start.out

 dbisqlc -q -c "DSN=tpch" check_options.sql > check_options_start.out

 echo
 echo "Finished Audit Verification Scripts `date` "
 echo

 copy_audit_db_data.bash start
fi

delete all stream*.out files
so that if the number of streams in the current run is
less than the number of streams from a prior run, there
won't be any old outfiles.

This is important because some of the report calculations
use all the stream*.out files.
If some of these files belong to prior runs, then some of
the report values will not be correct.

Also delete update_power.out and update_throughput.out so
that the stream0 and tpworf scopes will not report old
refresh information

rm stream*.out

echo
assume that there are always some stream?.out files
echo "removed stream*.out"
echo
if rm update_power.out 2>/tmp/junk

TPC Benchmark H Full Disclosure Report Page 94

then
 echo "removed update_power.out"
else
 echo "cannot remove update_power.out. file does not exist"
fi
echo
if rm update_throughput.out 2>/tmp/junk
then
 echo "removed update_throughput.out"
else
 echo "cannot remove update_throughput.out. file does not exist"
fi
echo
echo

iq system monitoring (trace)
iqsysmonitor.sh start
echo "press any key to continue..."
read xyzvar

echo " scope = $scope real_scope2 = $real_scope2 "

if [[($scope = refresh || $scope = stream0 || $scope = power || $scope = run1 ||
$scope = all || $scope = alltr) \
 && $real_scope2 != lthroughput]]
then

 if [[$RESTART_IQ_AFTER_LOAD = yes]]
 then
 echo
 echo restarting IQ
 echo
 echo " first shutdown IQ: `date` "

 dbstop -c "DSN=tpch" -y

 echo
 echo

 sleep 60

 echo " now restart IQ with tpch database and specified MPSS values:
`date` "
 start_iq @tpch.cfg /sybase2/tpch.db > JuNk

 if (($(grep failed JuNk | wc -l) > 0))
 then
 echo
 echo " -- IQ failed to restart "
 echo
 exit
 else
 echo
 echo " IQ restarted after load: `date` "
 echo
 fi
 fi

 echo

 # queries to prime the cache

 #dbisqlc -c "DSN=tpch" -q q6.sql > Junk6.out
 #dbisqlc -c "DSN=tpch" -q q14.sql > Junk14.out
 #dbisqlc -c "DSN=tpch" -q q2.sql > Junk2.out

 if [[$scope = power || $scope = run1 || $scope = all || $scope = alltr]]
 then
 echo
 echo "Start Run 1 Power Test `date` "
 echo "---------------------- "
 elif [[$scope = stream0]]

 then
 echo
 echo "Start Stream0 `date` "
 echo "------------- "
 else
 echo
 echo "Start Refresh `date` "
 echo "------------- "
 fi

 if [[$scope = refresh || $scope = power || $scope = run1 || $scope = all ||
$scope = alltr]]
 then
 show_iq_cpu start_power > start_power_cpu.out
 show_iq_cpu start_refresh1 > start_refresh1_cpu.out
 echo
 echo " Start RF1 `date` "
 dbisqlc -c "DSN=tpch" -q rf1.sql > rf1.out

 show_iq_cpu end_refresh1 > end_refresh1_cpu.out
 fi

 if [[$scope = stream0 || $scope = power || $scope = run1 || $scope = all ||
$scope = alltr]]
 then
 show_iq_cpu start_stream0 >start_stream0_cpu.out
 echo
 echo " Start Query Stream `date` "
 dbisqlc -c "DSN=tpch" -q stream0.sql > /streamtmp/stream0.out
 #dbisqlc -c "DSN=tpch" -q stream0.sql > stream0.out

 echo
 echo " Finish Query Stream `date` "
 show_iq_cpu end_stream0 >end_stream0_cpu.out
 fi

 if [[$scope != stream0]] # do refresh2
 then
 show_iq_cpu start_refresh2 > start_refresh2_cpu.out
 echo
 echo " Start RF 2 `date` "
 dbisqlc -c "DSN=tpch" -q rf2.sql > rf2.out
 echo " End RF 2 `date` "
 show_iq_cpu end_refresh2 > end_refresh2_cpu.out
 show_iq_cpu end_power >end_power_cpu.out
 cat rf1.out > update_power.out
 cat rf2.out >> update_power.out
 else
 echo
 echo "End Stream0 `date`"
 echo "----------- "
 echo will now make report
 echo
 fi

 if [[$scope = refresh]]
 then
 echo
 echo " End RF 2 `date` "
 echo "---------------------------"
 echo
 echo
 tpch_power_response_times.bash refresh
 echo
 exit # on refresh
 else
 echo
 echo "End Run 1 Power Test `date` "
 echo "--------------------- "

TPC Benchmark H Full Disclosure Report Page 95

 echo

 mv /streamtmp/stream0.out . # non timed interval

 tpch_power_response_times.bash $scope
 power=$(tpch_power.bash $sf)
 echo
 echo " Power = $power"
 echo
 echo
 ps -eaf | grep iq | grep -v grep | awk -F' ' '{print $7,$8}'
 echo
 fi
fi

if [[$scope = throughput || $scope = run1 || $scope = all || $scope = tpworf ||
$scope = alltr || $scope = throughputtr]]
then
 show_iq_cpu start_throughput >start_throughput_cpu.out
 echo
 echo "Start Run 1 Throughput `date` "
 echo "---------------------- "
 echo " "
 echo " Start Query Streams `date` "
 echo " "

 ((i=1))
 while ((i<=nqs)) # run all query streams concurrently
 do
 dbisqlc -c "DSN=tpch" -q stream${i}.sql > /streamtmp/stream${i}.out &
 #dbisqlc -c "DSN=tpch" -q stream${i}.sql > stream${i}.out &
 # qs${i}pid=$! not needed anymore since we do a wait (for everything)
 ((i=i+1))
 done

 if [[$scope = throughputtr || $scope = alltr]] # wait if it's only throughput
with trailing refreshes
 then
 echo " Waiting for query streams to complete... `date`"
 wait # for query streams
 echo " All query streams have completed `date` "
 fi

 if [[$scope != tpworf]] # tpworf does a throughput without refreshes
 then
 echo " Start Refresh Streams `date` "
 echo " "

 dbisqlc -c "DSN=tpch" -q update_throughput${nqs}.sql >
update_throughput.out &
 rf0pid=$!

 wait $rf0pid
 echo " All refresh streams have completed `date` "
 fi

 wait # for everything

 if [[$scope != tpworf]] # tpworf does a throughput without refreshes
 then
 echo " All query and refresh streams have completed `date` "
 echo
 echo "End Run 1 Throughput `date` "
 echo "-------------------- "
 echo
 else
 echo " All query streams have completed `date` "
 echo
 echo "End Throughput (without refreshes) `date` "
 echo "-------------------- "
 echo
 fi

 ((i=1))
 while ((i<=nqs)) # copy throughput output files back to run/scripts
 do
 mv /streamtmp/stream${i}.out .
 ((i=i+1))
 done

 throughput_interval=$(tpch_throughput_interval.bash $nqs)
 throughput=$(tpch_throughput.bash $sf $nqs)
 echo
 echo " Throughput Interval = $throughput_interval secs "
 echo
 echo " Throughput = $throughput"
 echo
 if [[$power != 0]]
 then
 composite=$(my_calc.pl "sqrt($power*$throughput)")
 echo " Composite = $composite"
 echo
 fi
 echo
 ps -eaf | grep iq | grep -v grep | awk -F' ' '{print $7,$8}'
 echo
 show_iq_cpu end_throughput >end_throughput_cpu.out
fi

if [[$sf = .1]] # this was intended for a quick Niagara run with scope = all
then # why not use lrun1 ???? and forget this
 exit
fi

if [[$scope = stream0 || $scope = power || $scope = tpworf ||
 $scope = throughput || $scope = throughputtr || $scope = run1 || $scope =
lrun1 ||\
 $scope = all || $scope = alltr]]
then
 dayHr=`date '+%m%d%H'`
 echo
 echo
 if [[-z $real_scope2]] # non_null means lthroughput
 then
 if [[-z $real_scope]] # non_null means lrun1
 then
 if [[$scope = stream0]]
 then
 composite=0
 fi
 if [[$scope = power]]
 then
 composite=$power
 fi
 if [[$scope = throughput || $scope = throughputtr || $scope = tpworf]]
 then
 composite=$throughput
 fi
 rpt_file_name="mrun1_${scope}_${sf}g_${nqs}s_${iqmc_g}m_$
{iqtc_g}t_${dayHr}_${iqv}_1n_$(round_to_tenths.pl ${composite}).r"
 echo "Producing ${rpt_file_name}"
 tpch_report.bash $scope $sf $mpssheap $mpssstack \
 run1_${scope}_${sf}g_${nqs}s_${iqmc_g}m_${iqtc_g}t_$
{dayHr}_${iqv}_1n.r \
 $seed $nqs $nd $ds $sc \
 > ${rpt_file_name}

 cp ${rpt_file_name} /sybase_stage/results
 else
 # lrun1
 rpt_file_name="mrun1_${real_scope}_${sf}g_${nqs}s_${iqmc_g}m_$
{iqtc_g}t_${dayHr}_${iqv}_1n_$(round_to_tenths.pl ${composite}).r"
 echo "Producing ${rpt_file_name}"
 tpch_report.bash lrun1 $sf $mpssheap $mpssstack \
 run1_${scope}_${sf}g_${nqs}s_${iqmc_g}m_${iqtc_g}t_$

TPC Benchmark H Full Disclosure Report Page 96

{dayHr}_${iqv}_1n.r \
 $seed $nqs $nd $ds $sc \
 > ${rpt_file_name}

 cp ${rpt_file_name} /sybase_stage/results

 fi
 else
 # lthroughput
 composite=$throughput
 rpt_file_name="mrun1_${real_scope2}_${sf}g_${nqs}s_${iqmc_g}m_$
{iqtc_g}t_${dayHr}_${iqv}_1n_$(round_to_tenths.pl ${composite}).r"
 echo "Producing ${rpt_file_name}"
 tpch_report.bash lthroughput $sf $mpssheap $mpssstack
\
 run1_${scope}_${sf}g_${nqs}s_${iqmc_g}m_${iqtc_g}t_$
{dayHr}_${iqv}_1n.r \
 $seed $nqs $nd $ds $sc \
 > ${rpt_file_name}

 cp ${rpt_file_name} /sybase_stage/results

 fi
 echo
fi

iq system monitoring (trace)
#iqsysmonitor.sh stop
#echo "press any key to continue..."
#read xyzvar

if [[$scope = all || $scope = alltr]]
then
 echo
 ((i=0))
 while ((i<=nqs)) # move the streamX.out files to audit naming standard
 do
 mv stream${i}.out /sybase_stage/results/m1s0${i}q.out
 ((i=i+1))
 done

 mv update_power.out /sybase_stage/results/m1s00rf.out
 mv update_throughput.out /sybase_stage/results/m1s01rf.out

 echo "Moved *.out files to audit naming standard in /sybase_stage/results"
 echo
 echo "Need To Copy all audit required files to audit dir --- NOT DONE
YET"
 echo
 echo "FINISHED Run1 "
 echo

 if [[$real_scope = lrun1 || $real_scope2 = lthroughput]]
 then
 echo
 if [[$real_scope = lrun1]]
 then
 real_scope_var=lrun1
 else
 real_scope_var=lthroughput
 fi
 echo Nothing More to Do with $real_scope_var
 echo
 exit
 fi

 echo
 echo STARTING RUN 2

 echo "Start Run 2 Power Test `date` "

 echo "---------------------- "

 # Start the RF Stream in the Background

 show_iq_cpu start_power > start_power_cpu.out
 show_iq_cpu start_refresh1 > start_refresh1_cpu.out
 echo
 echo " Start RF1 in the background `date` "
 dbisqlc -c "DSN=tpch" -q rf1.sql > rf1.out

 show_iq_cpu end_refresh1 > end_refresh1_cpu.out

 # RF1 has completed and RF2 is waiting on the Query Stream to Complete

 show_iq_cpu start_stream0 >start_stream0_cpu.out
 echo
 echo " Start Query Stream `date` "
 #dbisqlc -c "DSN=tpch" -q stream0.sql > stream0.out
 dbisqlc -c "DSN=tpch" -q stream0.sql > /streamtmp/stream0.out

 echo
 echo " Finish Query Stream `date` "
 show_iq_cpu end_stream0 >end_stream0_cpu.out

Finished Query Stream

 # Remove the lock file so that the RF will continue with RF2

 show_iq_cpu start_refresh2 > start_refresh2_cpu.out
 echo
 echo " Start RF 2 `date` "
 dbisqlc -c "DSN=tpch" -q rf2.sql > rf2.out

 echo " End RF 2 `date` "
 show_iq_cpu end_refresh2 > end_refresh2_cpu.out
 show_iq_cpu end_power >end_power_cpu.out
 cat rf1.out > update_power.out
 cat rf2.out >> update_power.out

 mv /streamtmp/stream0.out . # non timed interval

 echo
 echo "End Run 2 Power Test `date` "
 echo "--------------------- "
 echo
 echo
 tpch_power_response_times.bash $scope
 power=$(tpch_power.bash $sf)
 echo
 echo " Power = $power"
 echo
 echo
 ps -eaf | grep iq | grep -v grep | awk -F' ' '{print $7,$8}'
 echo
 show_iq_cpu start_throughput >start_throughput_cpu.out
 echo
 echo "Start Run 2 Throughput `date` "
 echo "---------------------- "
 echo " "
 echo " Start Query Streams `date` "
 echo " "

 ((i=1))
 while ((i<=nqs)) # run all query streams concurrently
 do
 #dbisqlc -c "DSN=tpch" -q stream${i}.sql > stream${i}.out &
 dbisqlc -c "DSN=tpch" -q stream${i}.sql > /streamtmp/stream${i}.out &
 ((i=i+1))
 done

 if [[$scope = throughputtr || $scope = alltr]] # wait if it's only throughput
with trailing refreshes
 then

TPC Benchmark H Full Disclosure Report Page 97

 wait # for query streams
 echo " All query streams have completed `date` "
 fi

 echo Start the refresh streams `date`
 echo

 dbisqlc -c "DSN=tpch" -q update_throughput${nqs}.sql >
update_throughput.out &
 rf0pid=$!

 echo
 wait $rf0pid
 echo " All refresh streams have completed" `date`

 wait # for everything
 echo " All query and refresh streams have completed" `date`

 ((i=1))
 while ((i<=nqs)) # copy throughput output files back to run/scripts
 do
 mv /streamtmp/stream${i}.out .
 ((i=i+1))
 done

 echo
 echo "End Run 2 Throughput `date` "
 echo "-------------------- "
 echo
 echo
 throughput_interval=$(tpch_throughput_interval.bash $nqs)
 throughput=$(tpch_throughput.bash $sf $nqs)
 echo
 echo " Throughput Interval = $throughput_interval secs "
 echo
 echo " Throughput = $throughput"
 echo
 composite=$(my_calc.pl "sqrt($power*$throughput)")
 echo " Composite = $composite"
 echo
 echo

 ps -eaf | grep iq | grep -v grep | awk -F' ' '{print $8,$9}'
 show_iq_cpu end_throughput >end_throughput_cpu.out

###

 echo

 dayHr=`date '+%m%d%H'`
 echo
 rpt_file_name="mrun2_${scope}_${sf}g_${nqs}s_${iqmc_g}m_$
{iqtc_g}t_${dayHr}_${iqv}_1n_$(round_to_tenths.pl ${composite}).r"
 echo "Producing ${rpt_file_name}"

 tpch_report.bash $scope $sf $mpssheap $mpssstack \
 run2_${scope}_${sf}g_${nqs}s_${iqmc_g}m_${iqtc_g}t_$
{dayHr}_${iqv}_1n.r \
 $seed $nqs $nd $ds $sc \
 > ${rpt_file_name}

 cp ${rpt_file_name} /sybase_stage/results

 ((i=0))
 while ((i<=nqs)) # move the streamX.out files to audit naming standard
 do
 cp stream${i}.sql /sybase_stage/results/stream${i}.sql
 cp stream${i}.out /sybase_stage/results/m2s0${i}q.out
 ((i=i+1))
 done

 cp /sybase2/tpch.iqmsg /sybase_stage/results/tpch.iqmsg

 cp qparm*.txt /sybase_stage/results

 # copy these rather than move so that we can make reports
 # for debug purposes if necessary

 cp update_power.out /sybase_stage/results/m2s00rf.out
 cp update_throughput.out /sybase_stage/results/m2s01rf.out

 echo "Copied *.out files to audit naming standard in /sybase_stage/results"
 echo

 dbisqlc -c "DSN=tpch" -q dbtables-syb.sql > rdbtablest_end.out
 dbisqlc -c "DSN=tpch" -q dew_cat1.sql > dew_cat1_end.out
 dbisqlc -c "DSN=tpch" -q dew_cat2.sql > dew_cat2_end.out
 dbisqlc -c "DSN=tpch" -q dew_cat3.sql > dew_cat3_end.out

 dbisqlc -q -c "DSN=tpch" check_options.sql > check_options_end.out

 copy_audit_db_data.bash end

 prtdiag -v > /sybase_stage/results/prtdiag.out

 for i in $(ls $IQDIR15/lib64/*so*)
 do
 strings ${i} > /sybase_stage/results/strings/`basename ${i}`.strings
 done

 strings $IQDIR15/bin64/iqsrv* > /sybase_stage/results/strings/iqsrv.strings

 tar cf /sybase_stage/results/strings.tar /sybase_stage/results/strings/*

 tar cf /sybase_stage/results/outfiles.tar /sybase_stage/results/*out
/sybase_stage/results/*.r /sybase_stage/results/tpch.iqmsg
/sybase_stage/results/qparm*.txt

 gzip -f /sybase_stage/results/*.tar

 echo "FINISHED Run2 "
fi
############zzzzzz

TPC Benchmark H Full Disclosure Report Page 98

Appendix F. Misc database scripts

The dbtables-syb.sql script was run to validate the
correctness of the database after the database load.
Three other scripts were used to extract basic
information about tables and indexes from the database
dew_cat1.sql, dew_cat2.sql, dew_cat3.sql.

Auditor Scripts
===

dbtables-syb.sql
===

-- ===
-- FILENAME
-- DBTABLES.SQL
-- DESCRIPTION
-- CHECK ROW COUNT AND ROW STRUCTURE/CONTENT FOR
EACH TABLE
-- IN THE TPC-H DATABASE.
--
-- ===
--
-- GET TIMESTAMP
SELECT 'START TIME', CONVERT(CHAR(30), GETDATE(),
120);
go
-- ===
-- TABLE: LINEITEM
-- ===
SELECT COUNT(*) FROM LINEITEM;
go
SELECT * FROM LINEITEM
WHERE L_ORDERKEY IN
 (4, 26598, 148577, 387431, 56704, 517442,
600000)
 AND L_LINENUMBER = 1
ORDER BY L_ORDERKEY;
go
-- ===
-- TABLE: ORDERS
-- ===
-- GET TIMESTAMP
SELECT 'TIME', CONVERT(CHAR(30), GETDATE(), 120);
go
SELECT COUNT(*) FROM ORDERS;
go
SELECT * FROM ORDERS
WHERE O_ORDERKEY IN (7, 44065, 287590, 411111,
483876, 599942)
ORDER BY O_ORDERKEY;
go
-- ===
-- TABLE: PART
-- ===
-- GET TIMESTAMP
SELECT 'TIME', CONVERT(CHAR(30), GETDATE(), 120);
go
SELECT COUNT(*) FROM PART;
go
SELECT * FROM PART
WHERE P_PARTKEY IN (1,984,8743,9028,13876,17899,20000)
ORDER BY P_PARTKEY;
go
-- ===
-- TABLE: PARTSUPP
-- ===
-- GET TIMESTAMP
SELECT 'TIME', CONVERT(CHAR(30), GETDATE(), 120);
go
SELECT COUNT(*) FROM PARTSUPP;
go
SELECT* FROM PARTSUPP

 WHERE PS_PARTKEY = 3398
 AND PS_SUPPKEY = (SELECT MIN(PS_SUPPKEY)
 FROM PARTSUPP WHERE PS_PARTKEY = 3398);
go
SELECT* FROM PARTSUPP
 WHERE PS_PARTKEY =15873
 AND PS_SUPPKEY = (SELECT MIN(PS_SUPPKEY)
 FROM PARTSUPP WHERE PS_PARTKEY = 15873);
go
SELECT* FROM PARTSUPP
 WHERE PS_PARTKEY = 11394
 AND PS_SUPPKEY = (SELECT MIN(PS_SUPPKEY)
 FROM PARTSUPP WHERE PS_PARTKEY = 11394);
go
SELECT* FROM PARTSUPP
 WHERE PS_PARTKEY = 6743
 AND PS_SUPPKEY = (SELECT MIN(PS_SUPPKEY)
 FROM PARTSUPP WHERE PS_PARTKEY = 6743);
go
SELECT* FROM PARTSUPP
 WHERE PS_PARTKEY = 19763
 AND PS_SUPPKEY = (SELECT MIN(PS_SUPPKEY) FROM
PARTSUPP WHERE PS_PARTKEY =19763);
go
-- ===
-- TABLE: SUPPLIER
-- ===
-- GET TIMESTAMP
SELECT 'TIME', CONVERT(CHAR(30), GETDATE(), 120);
go
SELECT COUNT(*) FROM SUPPLIER;
go
SELECT * FROM SUPPLIER
WHERE S_SUPPKEY IN (83,265,492,784,901,1000)
ORDER BY S_SUPPKEY;
go
-- ===
-- TABLE: CUSTOMER
-- ===
-- GET TIMESTAMP
SELECT 'TIME', CONVERT(CHAR(30), GETDATE(), 120);
go
SELECT COUNT(*) FROM CUSTOMER;
go
SELECT * FROM CUSTOMER
WHERE C_CUSTKEY IN (832,2653,4924,7845,92016,108070)
ORDER BY C_CUSTKEY;
go
-- ===
-- TABLE: NATION & REGION
-- ===
-- GET TIMESTAMP
SELECT 'TIME', CONVERT(CHAR(30), GETDATE(), 120);
go
SELECT * FROM REGION;
go
SELECT COUNT(*) FROM NATION;
go
SELECT * FROM NATION
WHERE N_NATIONKEY IN (3,10,14,20)
ORDER BY N_NATIONKEY;
go
-- ===
-- CHECK KEY VALUES
-- ===
-- GET TIMESTAMP
SELECT 'TIME', CONVERT(CHAR(30), GETDATE(), 120);
go
if exists (select name from sysobjects where
name='MINMAX')
 drop table MINMAX
go
CREATE TABLE MINMAX
(TNAME CHAR(15),
KEYMIN INTEGER,
KEYMAX INTEGER);
go
INSERT INTO MINMAX

TPC Benchmark H Full Disclosure Report Page 99

SELECT 'LINEITEM_ORD',MIN(L_ORDERKEY),MAX(L_ORDERKEY)
FROM LINEITEM;
go
INSERT INTO MINMAX
SELECT
'LINEITEM_NBR',MIN(L_LINENUMBER),MAX(L_LINENUMBER)
FROM LINEITEM;
go
INSERT INTO MINMAX
SELECT 'ORDERS',MIN(O_ORDERKEY),MAX(O_ORDERKEY)
FROM ORDERS;
go
INSERT INTO MINMAX
SELECT 'CUSTOMER',MIN(C_CUSTKEY),MAX(C_CUSTKEY)
FROM CUSTOMER;
go
INSERT INTO MINMAX
SELECT 'PART',MIN(P_PARTKEY),MAX(P_PARTKEY)
FROM PART;
go
INSERT INTO MINMAX
SELECT 'SUPPLIER',MIN(S_SUPPKEY),MAX(S_SUPPKEY)
FROM SUPPLIER;
go
INSERT INTO MINMAX
SELECT 'PARTSUPP_PART',MIN(PS_PARTKEY),MAX(PS_PARTKEY)
FROM PARTSUPP;
go
INSERT INTO MINMAX
SELECT 'PARTSUPP_SUPP',MIN(PS_SUPPKEY),MAX(PS_SUPPKEY)
FROM PARTSUPP;
go
INSERT INTO MINMAX
SELECT 'NATION',MIN(N_NATIONKEY),MAX(N_NATIONKEY)
FROM NATION;
go
INSERT INTO MINMAX
SELECT 'REGION',MIN(R_REGIONKEY),MAX(R_REGIONKEY)
FROM REGION;
go
SELECT * FROM MINMAX;
go
if exists (select name from sysobjects where
name='MINMAX')
 drop table MINMAX
go
SELECT 'END TIME', CONVERT(CHAR(30), GETDATE(), 120);
go

===

dew_cat1.sql
===

SELECT st.table_name,
 st.table_type,
 su.user_name,
 st.server_type
 from SYS.SYSTABLE st, SYS.SYSUSERPERMS su
 where creator = user_id

order by 4,1,3;

===

dew_cat2.sql
===

 select T.table_name ,
T.table_type ,

 C.column_name ,
 C.column_id
 From SYS.SYSTABLE T,
 SYS.SYSCOLUMN C,
 SYS.SYSDOMAIN D,
 SYS.SYSUSERPERMS SU
 where T.creator = SU.user_id
 and T.table_id = C.table_id
 and C.domain_id = D.domain_id
order by 1,2;

===

dew_cat3.sql
===

SELECT index_name,T.table_name ,
 column_name ,
 index_type
 from SYS.SYSTABLE T,
 SYS.SYSCOLUMN C,
 SYS.SYSINDEX I,
 SYS.SYSUSERPERMS UP,
 SYS.SYSFILE F,
 SYS.SYSIXCOL IC
 where T.table_id = C.table_id
 and C.table_id = I.table_id
 and T.file_id = F.file_id
 and I.table_id = IC.table_id
 AND I.index_id = IC.index_id
 AND IC.column_id = C.column_id
 and T.creator = UP.user_id;

TPC Benchmark H Full Disclosure Report Page 100

Appendix G. Pricing information

Sybase pricing:

For: Q u o ta tio n fo r S o ftw are an d S u p p o rt
Com pa ny Sybase Inc. S YBAS E S a le s Re p:

Conta ct P h one : 925-236-5079
P hon e 925-236-5776 Fa x : 925-236-6178

Fa x
Addre ss

Pr o d u ct L ice n s e M ach in e P /S L is t P r ice Qu a n t ity P r ice Dis co u n t Ex te n d e d
Nu m b e r De s cr ip t io n T yp e Pe r Un it P r ice

12193 CP S un P 2,595 8 20,760 1,038 19,722.00
98477 1,713 8 13,704 685 13,018.80

Disc ounts :

Q uote Date:
V al id thru: Tota l 32,740.80

Lic ens e + 3 y ear s upport

Pat Maloney
P ras anta G osh

S yb a se Inc. 1 S yba se Drive , Dub lin , CA 94568
1 S y base Drive, Dublin CA 94568

C ata lo g u e

S y bas e IQ S ingle A pp S vr, per cpu c ore
3 y r s upport S ingle A pp S vr, per cpu c ore

 5% (if tota l undic ounted order > $25,000)
 10% (if total undic ounted order > $50,000)

12/01/2009

Sales Quotation
Quote Number:

Quote Date:

T-US-1559714-B

11/12/09

Customer :

Tel / Fax :

ROBERT HOOPER
AT&T CORPORATION
2301 W 120TH ST
HAWTHORNE CA 90250
9733608737 / 9733608737

Sun :

Tel / Fax :

Wesley Kenison
Sun Microsystems, Inc.
500 Eldorado Blvd
Broomfield Colorado 80021
303-272-5183/

We are pleased to quote as follows:
Validity Period Credit Terms Shipping Terms

60 Days NET 3O FRM INV DATE Origin

Item Product
Number

Description Qty Unit List
Price

Disc Unit Net
Price

Extended Net
Price

Quote requested by Nobel Shelby. Contract # AR-50958

1 Config ID
7960173

Configuration: X4270-S1-AA 1 $33,038.00 N/A $27,091.16 $27,091.16

1.1 X4270-S1-AA Sun Fire X4270 x64 Server: 2.5-
inch HDD base chassis package
including motherboard, no DVD,
1 x PSU, redundant fans and
Service Processor for Factory
Integration. RoHS-6.

1 $2,695.00 18.00% $2,209.90 $2,209.90

1.2 X311L Localized Power Cord Kit North
American/Asian This Product is
Hazard Class Y, RoHS compliant.

1 N/C N/A N/C N/C

1.3 5868A 8 GB Memory kit DDR3-1066
Registered ECC DIMMs (1 x 8 GB)
for Sun Fire X4170, X4270 &
X4275 x64 servers. RoHS-6. For
Factory Integration Only.

15 $1,050.00 18.00% $861.00 $12,915.00

YOU MUST READ THE FOLLOWING: THIS SUN QUOTATION AND ANY ORDER YOU SUBMIT FOR PRODUCTS OR
SERVICES IS SUBJECT TO: (1) THE TERMS OF ANY EXISTING SALES AGREEMENT YOU HAVE WITH SUN
GOVERNING THAT PRODUCT OR SERVICE, OR,IF NONE, BY SUN'S SALES TERMS FOUND AT
http://www.sun.com/sales/salesterms, THE GENERAL TERMS OF WHICH ARE EITHER ATTACHED OR ON
THE REVERSE SIDE HEREOF, AND (2) APPLICABLE SUN SERVICE LISTINGS AND STATEMENTS OF WORK FOUND
AT http://www.sun.com/service/servicelist [(1) AND (2) COLLECTIVELY BEING CALLED "SUN SALES
TERMS."]

ALL ORDERS MUST REFERENCE EITHER YOUR SALES AGREEMENT NUMBER OR THIS SALES QUOTATION AND
BE IN CONFORMANCE WTIH SUN SALES TERMS. ORDERS ARE SUBJECT TO ACCEPTANCE BY SUN EITHER
THROUGH ISSUANCE OF AN ORDER ACKNOWLEDGEMENT OR DELIVERY OF THE PRODUCTS OR SERVICES.
THIS QUOTATION REMAINS FIRM FOR THE PERIOD LISTED ABOVE, EXCEPT THAT SUN MAY MODIFY THIS
SALES QUOTATION IF THERE IS A TYPOGRAPHICAL ERROR OR THE AVAILABILITY OF PRODUCTS, SERVICES, OR
CREDIT CHANGE. SUN EQUIPMENT, OR PARTS OR COMPONENTS OF SUN EQUPMENT, MAY BE NEW OR
USED, REGARDLESS, SUN WARRANTY TERMS APPLY.

Sales Quotation
Quote Number:

Quote Date:

T-US-1559714-B

11/12/09

Item Product
Number

Description Qty Unit List
Price

Disc Unit Net
Price

Extended Net
Price

1.4 RB-SS2CF-
146G10K

146GB 10K RPM 2.5" SAS hard
disk drive with Marlin bracket.
RoHS-6. (ATO)

1 $329.00 18.00% $269.78 $269.78

1.5 RA-ST2CF-
32G2SSD

2.5" 32GB SATA SSD (Type: SLC)
with Marlin bracket, RoHS-6
Compliant. For Factory
Integration Only

8 $1,199.00 18.00% $983.18 $7,865.44

1.6 SG-PCIE8SAS-I-Z Sun StorageTek (TM) 8-Port
internal SAS PCI-Express LSI
3081E Host Bus Adapter with
RAID 0, 1, 1E support. RoHS-6.
XATO.

1 $249.00 18.00% $204.18 $204.18

1.7 5861A 1 Intel Xeon Model Number
X5570 Quad-Core (2.93GHz/95W)
Processor without Heatsink for
Sun Fire X4170 & Sun Fire X4270
& Sun Fire X4275 Servers. RoHS-
6. For Factory Integration Only.

2 $2,199.00 18.00% $1,803.18 $3,606.36

1.8 6334A Power supply unit filler panel for
Sun Fire
X4240/X4270/X4275/X4440/X44
50 x64 servers. XATO. RoHS-6.

1 N/C 18.00% N/C N/C

1.9 6331A Drive bay filler panel for Sun Fire
X4140/X4170/X4240/X4270/X44
40/X4150 /X4450/Sun Blade
X6270 x64 servers. RoHS-6. XATO.

7 N/C 18.00% N/C N/C

1.10 6332A DVD bay filler panel for Sun Fire
X4140/X4240/X4440/X4150/X41
70/X4250 /X4270/X4450 server.
XATO. RoHS-5.

1 N/C 18.00% N/C N/C

1.11 5879A Memory Filler Panel for Sun Fire
X4170 and X4270; Sun Blade
X6275 Server Module, Sun Blade
X6270 Server Module. For
Factory Integration Only. RoHS-
6.

3 N/C 18.00% N/C N/C

1.12 5899A CPU Heatsink for Sun Fire X4270
& X4275 Server. For Factory
Integration Only. RoHS-6

2 N/C 18.00% N/C N/C

1.13 X5900A Media and Documentation Kit
for Sun Fire X4170, Sun Fire
X4270 and Sun Fire X4275 x64
servers. X-Option.

1 $25.00 18.00% $20.50 $20.50

List Price Total: $33,038.00

Total: $27,091.16

Sales Quotation
Quote Number:

Quote Date:

T-US-1559714-B

11/12/09

WE CAN HELP YOU SAVE WHEN YOU FINANCE YOUR TECHNOLOGY SOLUTION THROUGH SUN
MICROSYSTEMS GLOBAL FINANCIAL SERVICES (SMGFS). CHOOSE FROM A WIDE RANGE OF
FLEXIBLE ,LOW RATE FINANCING AND LEASING PLANS. CONTACT US TODAY AT SMGFS_
Quote_ AMER @ sun. com

Sales Quotation
Quote Number:

Quote Date:

T-US-1559714-B

11/12/09

THESE ARE THE GENERAL TERMS APPLICABLE TO YOUR ORDER. ADDITIONAL TERMS APPLY TO YOUR ORDER AND CAN BE FOUND
AT http://www.sun.com/sales/salesterms/ .

1. INTERPRETATION
The purpose of the General Terms is to create a single mechanism under which you and
your Affiliated Companies, if any, ("Company") may form purchasing or other Agreements
with Sun Microsystems and its Affiliated Companies ("Sun"). In the General Terms:

"Affiliated Company" means, in relation to either party, any entity: (a) which is owned 50%
or more by that party; or (b) over which that party exercises management control; or (c)
which is under common control with that party; or (d) which owns 50% or more of that
party;
"Agreement" means each agreement entered into under the General Terms, comprising
the General Terms and an Exhibit executed by Sun and Company referencing the
General Terms;
"Confidential Information" means any information disclosed by one party to another
under any Agreement which is, prior to or at the time of disclosure, identified in writing as
confidential or proprietary;
"Equipment" means the hardware (including components), software media and spare
parts listed in the standard product price lists published by Sun from time to time;
"Exhibit" means any exhibit to the General Terms as executed by the parties from time to
time;
"IPR" means intellectual property rights, including patents, trademarks, design rights,
copyrights, database rights, trade secrets and all rights of an equivalent nature anywhere
in the world;
"Products" means Equipment or Software;
"Service Listing" means any offering in Sun's Enterprise Services Service List, which is
located at http://www.sun.com/service/servicelist (a hard copy of each of which will be
made available to
Company on request), together with such other standard service offerings as the parties
may agree from time to time;
"Services" means the services described in any Service Listing or SOW;
"Software" means (i) any binary software programs listed in the standard price lists
published by Sun from time to time, (ii) any Updates, and (iii) any related user manuals or
other documentation;
"SOW" means any statement of work relating to Services;
"Sun Trademarks" means all names, marks, logos, designs, trade dress and other brand
designations used by Sun in connection with Products and Services;
"Updates" means subsequent releases and error corrections for Software previously
licensed, as listed in the standard price lists published by Sun from time to time.

2. CONFIDENTIAL INFORMATION
2.1 A party receiving Confidential Information ("the Recipient") may use it only for the

purposes for which it was provided under the Agreement. Confidential Information may
be disclosed only:) to employees or contractors obligated to the Recipient under similar
confidentiality restrictions and in each case only for the purposes for which it was
provided under the relevant Agreement.

2.2 The obligations set out in section 2.1 do not apply to information which: (a) is rightfully
obtained by the Recipient without breach of any obligation to maintain its confidentiality;
(b) is or becomes known to the public through no act or omission of the Recipient; (c) the
Recipient develops independently without using Confidential Information of the other
party; or (d) is disclosed in response to a valid court or governmental order, if the
Recipient has given the other party prior written notice and provides reasonable
assistance so as to afford it the opportunity to object.

3. RESTRICTED ACTIVITIES
3.1 Export laws. Products, Services and technical data delivered by Sun may be subject to

US export controls or the trade laws of other countries. Company will comply with all such
laws and obtain all licenses to export, re-export or import as may be required after
delivery to Company. Company will not export or re-export to entities on the most current
U.S. export exclusion lists or to any country subject to U.S. embargo or terrorist controls
as specified in the U.S. export laws. Company will not use or provide Products, Services,
or technical data for nuclear, missile, or chemical biological weaponry end uses.

3.2 Nuclear applications. Company acknowledges that Products and Services are not
designed or intended for use in the design, construction, operation or maintenance of
any nuclear facility.

4. SUN TRADEMARKS
4.1 Company may refer to Products and Services by their associated names, provided that

such reference is not misleading and complies with Sun's Trademark and Logo Policies,
which are located at
http://www.sun.com/policies/trademarks (and a hard copy of which will be made available
to Company on request).

4.2 Company may not remove or alter any Sun Trademarks, nor may it co-logo Products or
Services. Company agrees that any use of Sun Trademarks by Company will inure to the

sole benefit of Sun.
4.3 Company agrees not to incorporate any Sun Trademarks into Company's trademarks,

service marks, company names, Internet addresses, domain names, or any other
similar designations.

5. PUBLICITY
5.1 Sun may use Company's name in promotional materials, including press releases,

presentations and customer references regarding the sale of Products or Services.
These permissions are free of charge for worldwide use in any medium. Sun will
obtain Company's prior approval for publicity that contains claims, quotes,
endorsements or attributions by Company, such approval not to be unreasonably
withheld.

6. INTELLECTUAL PROPERTY CLAIMS
6.1 Each party ("the Indemnifying Party") will defend or settle, at its option and expense,

any legal proceeding brought against the other ("the Indemnified Party") to the extent
that it is based on a claim that materials (which term includes Products) developed and
provided by the Indemnifying Party infringe a third party's patent, trade secret or
copyright. The Indemnifying Party will indemnify the Indemnified Party against all
damages and costs attributable exclusively to such claim awarded by the court finally
determining the case, provided that the Indemnified Party: (a) gives written notice of
the claim promptly to the Indemnifying Party; (b) gives the Indemnifying Party sole
control of the defense and settlement of the claim; (c) provides to the Indemnifying
Party, at the expense of the Indemnifying Party, all available information and
assistance; (d) does not compromise or settle such claim; and (e) is not in material
breach of any Agreement.

6.2 If such materials or services are found to infringe, or in the reasonable opinion of the
Indemnifying Party are likely to be the subject of a claim, the Indemnifying Party will at
its option: (a) obtain for the Indemnified Party the right to use such materials; (b)
replace or modify the materials so they become non-infringing; or (c) if neither (a) nor
(b) is reasonably achievable, remove such materials and refund their net book value.

6.3 Neither party has any obligation to the extent any claim results from: (a) use of
materials in combination with any third party equipment, software or data; (b)
compliance by the Indemnifying Party with the designs or specifications of the
Indemnified Party; (c) modification of materials other than at the direction of the
Indemnifying Party; or (d) use of an allegedly infringing version of the materials, if the
alleged infringement could have been avoided by the use of a different version made
available to the Indemnified Party.

6.4 This section states the entire liability of each party (as Indemnifying Party) and the
exclusive remedies of each party (as Indemnified Party) for claims that materials
infringe a third party's IPR.

7. WARRANTY
7.1 Sun warrants Products and Services as provided at

http://www.sun.com/service/support/warranty (the "Warranty Web Page") (a hard copy
of which is available on request).

7.2 EXCEPT AS SPECIFIED IN THE WARRANTY WEB PAGE, ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY,
SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT
PERMITTED BY LAW.

8. LIMITATION OF LIABILITY
8.1 No limitation on certain categories of liability. Each party acknowledges the full extent

of its own liability to the other, arising from: (a) death or personal injury resulting from
negligent acts or omissions; (b) breach of any applicable license grant; or (c) claims for
non payment; and the non-excludable statutory rights of consumers (for example,
under laws providing for strict product liability) are not affected.

8.2 Limitations on other categories of liability. Subject to 7.1 above and to the extent not
prohibited by applicable law: (a) each party's maximum aggregate liability for all claims
relating to any Agreement, whether for breach of contract, breach of warranty or in tort,
including negligence, will be limited to two million US dollars (U.S. $2,000,000); and (b)
neither party will be liable for any indirect, punitive, special, incidental or consequential
damages in connection with or arising out of the General Terms or any Agreement
(including, without limitation, loss of business, revenue, profits, goodwill, use, data,
electronically transmitted orders, or other economic advantage), however they arise,
whether in breach of contract, breach of warranty or in tort, including negligence, and
even if that party has previously been advised of the possibility of such damages.

8.3 Failure of essential purpose. Liability for damages will be limited and excluded, even if
any exclusive remedy provided for in the Agreement fails of its essential purpose.

9. TERMINATION AND EXPIRATION

Sales Quotation
Quote Number:

Quote Date:

T-US-1559714-B

11/12/09

9.1 Termination for cause. Either party may terminate the General Terms or any Exhibit
immediately by written notice: (a) if the other party commits a non-remediable material
breach of the General Terms or Exhibit (as the case may be); or (b) if the other party fails
to cure any remediable material breach within thirty (30) days of being notified in writing
of such breach.

9.2 Termination without cause. (a) Either party may terminate the General Terms
immediately by written notice if no Exhibit is in effect. (b) Either party may terminate any
Exhibit at any time upon expiration of ninety (90) days' written notice.

9.3 Actions following termination or expiration. On termination or expiration of the General
Terms (for whatever reason), all Exhibits shall automatically terminate with immediate
effect. Following termination or expiration of an Exhibit (for whatever reason), each party
will deliver to the other any property of the other in its possession or control relating to that
Exhibit, in good condition, reasonable wear and tear excepted.

9.4 Effect of termination. Neither party will be liable for any damages arising out of the
termination or expiration of the General Terms or any Exhibit, provided that such
termination or expiration will not affect any right to recover: (a) damages sustained by
reason of material breach; or (b) any payments which may be owing in respect of any
Agreement.

10. ASSIGNMENT AND SUBCONTRACTING
10.1 Neither party may assign or otherwise transfer any of its rights or obligations under the

General Terms or any Exhibit without the prior written consent of the other party, which
consent will not be unreasonably withheld, except that: (a) both parties may assign their
right to receive payment; and (b) Sun may use subcontractors in the performance of its
obligations, in which case Sun will remain responsible for the performance by such sub-
contractors.

11. DISPUTE RESOLUTION. The parties will use reasonable efforts to resolve any dispute
arising out of the General Terms or any Exhibit through a meeting of appropriate managers
from each party. If the parties are unable to resolve the dispute, either party may escalate the
dispute to its executives. If an executive level meeting fails to resolve the dispute within thirty
(30) days after escalation, either party may seek any available legal relief. This provision will

not affect either party's right to seek injunctive or other provisional relief at any time.

12. GENERAL . All disputes will be governed by the laws of the State of California The venue
for litigation will be the appropriate courts located in the County of Santa Clara. Choice of
law rules of any jurisdiction and the United Nations Convention on Contracts for the
International Sale of Goods will not apply to any dispute under the Agreement. Force
majeure. A party is not liable under any Agreement for non-performance caused by events
or conditions beyond that party's reasonable control, if the party makes reasonable efforts
to perform. This provision does not relieve either party of its obligation to make payments
then owing. Notices. All written notices required by the General Terms or any Exhibit must
be delivered in person or by means evidenced by a delivery receipt or acknowledgment
and will be effective upon receipt. Notices communicated by electronic mail or facsimile will
be deemed to be written. Relationship. Neither the General Terms nor any Agreement is
intended to create a partnership, franchise, joint venture, agency, or a fiduciary or
employment relationship. Neither party may bind the other party or act in a manner which
expresses or implies a relationship other than that of independent contractor. Invalidity. If
any provision of the General Terms or any Agreement is held invalid by any law or
regulation of any government or by any court or arbitrator, such invalidity will not affect the
enforceability of other provisions. Survival. Rights and obligations under the General
Terms and any Exhibit which by their nature should survive, will remain in effect after
termination or expiration of the General Terms or the relevant Exhibit. No waiver. Any
express waiver or failure to exercise promptly any right under the General Terms or any
Exhibit will not create a continuing waiver or any expectation of non-enforcement.
Modification. No modification to the General Terms or any Exhibit will be binding, unless in
writing and manually signed by an authorized representative of each party. Entire
agreement. Each Agreement constitutes the parties' entire agreement relating to its subject
matter. It cancels and supersedes all prior or contemporaneous oral or written
communications, proposals, conditions, representations and warranties and prevails over
any conflicting or additional terms contained in any quote, purchase order,
acknowledgment, or other communication between the parties relating to its subject matter
during its term.

 Quotation
 Sun Microsystems, Inc.

Quote Nr. US1071076
Quote Date 12-NOV-09

Quote valid until
Duration/Period 12-DEC-09 To 11-DEC-12

Agreement Number AR-50958:EU:123016
Page 1 of 2

AT&T CORP
ROBERT, HOOPER

Email id - hooper@research.att.com
Phone No - 973-360-8737
Fax No -

 Sun Microsystems, Inc.
4150 NETWORK CIRCLE
95054 SANTA CLARA
CA United States

ANY TAXES LISTED ON THIS QUOTATION ARE ESTIMATES ONLY AND THE ACTUAL TAX TO BE PAID
WILL BE LISTED ON THE INVOICE WE SEND TO YOU. IF TAXES ARE NOT LISTED ON THIS
QUOTATION, THEY ARE NOT INCLUDED IN THE TOTAL QUOTE VALUE. THE ACTUAL AMOUNT
PAYABLE, INCLUDING ALL TAXES, WILL BE LISTED ON THE INVOICE WE SEND TO YOU.

Sun Contact : DELEO, JOHN R

Office: x63315/+1 732-537-3315

Fax:
Email: john.deleo@sun.com

THIS IS OUR QUOTATION TO YOU. IF YOU WISH TO BUY OUR PRODUCTS OR SERVICES, PLEASE SEND YOUR PURCHASE ORDER TO US USING THE CONTACT INFORMATION LISTED
BELOW. TO RECEIVE COMPLETE AND TIMELY SERVICE, INCLUDE THE FOLLOWING ON YOUR ORDER: THE NUMBER OF THIS QUOTATION, YOUR INSTALLATION ADDRESS(ES), YOUR
CONTACT NAME(S), YOUR PHONE NUMBER(S) AND EMAIL ADDRESS(ES). YOUR ORDER MUST BE MADE OUT TO US. THANK YOU.

PLEASE READ THE FOLLOWING:
THIS SUN QUOTATION AND ANY ORDER YOU SEND TO US FOR PRODUCTS OR SERVICES IS COVERED BY (1) THE TERMS OF ANY SALES CONTRACT YOU ALREADY HAVE WITH US,
OR BY THE CONTRACT TERMS SET OUT ON OUR WEBSITE AT http://www.sun.com/sales/salesterms; AND (2) FOR SERVICES: (A) THE APPROPRIATE SERVICE LISTING(S) SET OUT ON
OUR WEBSITE AT http://www.sun.com/service/servicelist; OR (B) THE APPROPRIATE STATEMENT OF WORK; OR (C) OTHER DOCUMENT(S) PROVIDED BY US DESCRIBING THE
SERVICE(S) YOU WANT TO PURCHASE FROM US.

ALL YOUR ORDERS MUST REFER TO: (1) THE NUMBER OF THE SALES CONTRACT YOU ALREADY HAVE WITH US, OR (2) THIS SALES QUOTATION. BY SENDING AN ORDER TO US,
YOU AGREE THAT OUR CONTRACT TERMS APPLY TO ANY ORDER WE ACCEPT. WE WILL SHOW THAT WE HAVE ACCEPTED YOUR ORDER BY: (1) SHIPPING THE PRODUCT; (2)
STARTING TO PROVIDE THE SERVICE; OR (3) SENDING YOU A WRITTEN ACCEPTANCE. THIS QUOTATION WILL REMAIN IN EFFECT FOR THE PERIOD LISTED ABOVE, EXCEPT THAT
WE CAN CHANGE THIS QUOTATION IF: (1) IT CONTAINS A TYPOGRAPHICAL ERROR, OR (2) THE AVAILABILITY OF PRODUCTS OR SERVICES CHANGE, OR (3) YOUR CREDIT STATUS
WITH US CHANGES.

CHANGES TO ANY OF OUR CONTRACT TERMS OR TO THIS QUOTATION WILL TAKE EFFECT ONLY IF IN WRITING AND SIGNED BY OUR AUTHORIZED REPRESENTATIVE.

OUR EQUIPMENT OR PARTS OF IT MAY BE NEW OR USED, BUT ANY LIMITED WARRANTY WE GIVE WILL STILL APPLY.

IF THE SERIAL NUMBER OF A HARDWARE ITEM WAS NOT PROVIDED, THE PRICE LISTED ON THIS QUOTATION INCLUDES A FULL WARRANTY. WHEN THE SERIAL NUMBER OF THE
HARDWARE ITEM IS PROVIDED, THE ACTUAL AMOUNT PAYABLE WILL BE ADJUSTED TO INCLUDE THE PRICE OF THE REMAINING WARRANTY FOR THAT HARDWARE ITEM.

IF YOUR PURCHASE ORDER REQUIRES THAT (1) SUN FEDERAL PROVIDE PERSONNEL WITH U.S. GOVERNMENT SECURITY CLEARANCES, OR (2) SUN FEDERAL OR ITS SUPPLIERS
ACCESS CLASSIFIED INFORMATION OR SECURE FACILITIES, YOU MUST GIVE US A VALID DD FORM 254 OR OTHER APPLICABLE SECURITY SPECIFICATION(S). IF THE REQUIRED
FORM OR SPECIFICATIONS ARE NOT GIVEN TO US, OR YOU DO NOT HAVE FACILITY CLEARANCE LEVELS TO GIVE THEM TO US, WE MAY NOT PROVIDE YOU WITH CLEARED
PERSONNEL.

Total Quote Value (excluding taxes): USD 844.20

AT&T CORP Sun Microsystems, Inc.

SIGNATURE DATE SIGNATURE DATE

PRINTED NAME PRINTED NAME

 Quotation
 Sun Microsystems, Inc.

Quote Nr. US1071076
Quote Date 12-NOV-09

Quote valid until
Duration/Period 12-DEC-09 To 11-DEC-12

Agreement Number AR-50958:EU:123016

Page 2 of 2

Service Level Details:
Site Name: AT&T CORP

 200 LAUREL AVE
 A2-1A21
 MIDDLETOWN NJ 07748-1914 United States

Service Line # Service Item # Service Description Line Start Date Line End Date Currency Total Net Price
1 GOLD-SYS-SVC Gold system service plan 12-DEC-09 11-DEC-12 USD 844.20

Service Item #: GOLD-SYS-SVC [Gold system service plan]

Covered Product:

Qty Mktg part# Description Serial No. /
Cust. Ref. List Price Discounts % Line Start

Date
Line End
Date

Warr
(Y/N)

Warranty End
Date Total Net price

1 1 X4270-S1-A
A

X4270 1 x Standard PSU / 118.42 Ar-50958:Eu 64
WTY_UP 45

12-DEC-09 11-DEC-12 Y 11-DEC-12 844.20

Billing Details:

 Total Period 1 USD 281.40
 Total Period 2 USD 281.40
 Total Period 3 USD 281.40

Total Quote Value: USD 844.20

Sun's Purchase Order Guidelines
• Vendor Information (PO made out to Sun Microsystems, Inc. or Sun Federal)
• PO Number & Date
• Customer Bill-to Address
• Legal Company Name
• Payment Terms (Net 30)
• Fully funded for services
• Signed by Authorized Agent
• Buyers Name
• Phone Number
• Tax Status (if applicable)
• Billing Frequency

	1. General Items
	1.1 Benchmark Sponsor
	1.2 Parameter Settings
	1.3 Configuration Diagram

	2. Clause 1 Logical Database Design
	2.1 Database Definition Statements
	2.2 Physical Organization
	2.3 Horizontal Partitioning
	2.4 Replication

	3. Clause 2 Queries and Refresh Functions
	3.1 Query Language
	3.2 Verifying Method for Random Number Generation
	3.3 Generating Values for Substitution Parameters
	3.4 Query Text and Output Data from Qualification Database
	3.5 Query Substitution Parameters and Seeds Used
	3.6 Query Isolation Level
	3.7 Source Code of Refresh Functions

	4. Clause 3 Database System Properties
	4.1 ACID Properties
	4.2 Atomicity
	4.2.1 Completed Transaction
	4.2.2 Aborted Transaction

	4.3 Consistency
	4.3.1 Consistency Test

	4.4 Isolation
	4.4.1 Read-Write Conflict with Commit
	4.4.2 Read-Write Conflict with Rollback
	4.4.3 Write-Write Conflict with Commit
	4.4.4 Write-Write Conflict with Rollback
	4.4.5 Concurrent Progress of Read and Write Transactions
	4.4.6 Read-Only Query Conflict with Update Transaction

	4.5 Durability
	4.5.1 Failure of a Durable Medium
	4.5.2 System Crash
	4.5.3 Memory Failure

	5. Clause 4 Scaling and Database Population
	5.1 Ending Cardinality of Tables
	5.2 Distribution of Tables and Logs Across Media
	5.3 Database partition/replication mapping
	5.4 RAID Feature
	5.5 Modifications to the DBGEN
	5.6 Database Load Time
	5.7 Data Storage Ratio
	5.8 Database Load Mechanism Details and Illustration
	5.9 Qualification Database Configuration

	6. Clause 5 Performance Metrics and Execution Rules
	6.1 System Activity Between Load and Performance Tests
	6.2 Steps in the Power Test
	6.3 Timing Intervals for Each Query and Refresh Functions
	6.4 Number of Streams for the Throughput Test
	6.5 Start and End Date/Times for Each Query Stream
	6.6 Total Elapsed Time of the Measurement Interval
	6.7 Refresh Function Start Date/Time and Finish Date/Time
	6.8 Timing Intervals for Each Query and Each Refresh Function for Each Stream
	6.9 Performance Metrics
	6.10 The Performance Metric and Numerical Quantities from Both Runs
	6.11 System Activity Between Performance Tests

	7. Clause 6 SUT and Driver Implementation
	7.1 Driver
	7.2 Implementation-Specific Layer
	7.3 Profile-Directed Optimization

	8. Clause 7 Pricing
	8.1 Hardware and Software Used
	8.2 Total Three Year Price
	8.3 Availability Date

	9. Auditor's Information and Attestation Letter

