

TPC BENCHMARK™ C

Standard Specification

Revision 5.11

February 2010

Transaction Processing Performance Council (TPC)

www.tpc.org

info@tpc.org

© 2010 Transaction Processing Performance Council

http://www.tpc.org/

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 2 of 130

Acknowledgments

The TPC acknowledges the substantial contribution of François Raab, consultant to the TPC -C subcommittee and

technical ed itor of the TPC-C benchmark standard . The TPC also acknowledges the work and contributions of the

TPC-C subcommittee member companies: Amdahl, Bull, CDC, DEC, DG, Fujitsu/ ICL, HP, IBM, Informix, Mips,

Oracle, Sequent, Sun, Sybase, Tandem, and Unisys.

TPC Membership

(as of February 2010)

Full Members

Associate Members

http://www.amd.com/
http://www.bull.com/
http://www.dell.com/
http://www.dell.com/
http://www.fujitsu.com/
http://www.fusionio.com/
http://www.greenplum.com/
http://www.hp.com/
http://global.hitachi.com/
http://global.hitachi.com/
http://www.ibm.com/products/
http://www.ingres.com/
http://www.intel.com/
http://www.kickfire.com/
http://www.microsoft.com/
http://www.microsoft.com/
http://www.nec.com/
http://www.netezza.com/
http://www.oracle.com/
http://www.paraccel.com/
http://www.sybase.com/
http://www.syncsort.com/
http://www.teradata.com/
http://www.unisys.com/
http://www.vertica.com/
http://www.vmware.com/
http://www.xsprada.com/
http://www.ideasinternational.com/
http://www.itom.com/
http://www.tta.or.kr/English/new/main/index.htm

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 3 of 130

Document History

 Date Version Description

 22 June 1992 Draft 6.6 Mail ballot version (proposed standard)

 13 August 1992 Revision 1.0 Standard specification released to the public

 1 June 1993 Revision 1.1 First minor revision

 20 October 1993 Revision 2.0 First major revision

 15 February 1995 Revision 3.0 Second major revision

 4 June 1996 Revision 3.1 Minor changes to rev 3.1.

 27 August 1996 Revision 3.2 Changed mix back to 3.0 values.

 12 September 1996 Revision 3.2.1 Fixed Member list and added index

 15 January 1997 Revision 3.2.2 Added word ing for TAB Ids #197, 221 & 224

 6 February 1997 Revision 3.2.3 Added word ing for TAB Ids #205, 222 & 226

 8 April 1997 Revision 3.3 New Clauses 2.3.6 & 9.2.2.3 (TAB Id #225)

 9 April 1997 Revision 3.3.1 Wording added for availability date in Clause 8.1.8.3

 25 June 1997 Revision 3.3.2 Editorial changes in Clauses 8.1.6.7 and 9.1.4

 16 April 1998 Revision 3.3.3 Editorial changes in Clauses 2.5.2.2 and 4.2.2

 24 August 1998 Revision 3.4 New Clause 5.7 and changed word ing in Clause 8.3

 25 August 1999 Revision 3.5 Modify word ing in Clause 7.1.3

 18 October 2000 Revision 5.0 Change pricing, 2 Hour Measurement, 60 Day Space

 6 December 2000 Revision 5.0 7x24 Maintenance, Mail Ballot Draft

 26 February 2001 Revision 5.0 Official Version 5.0 Specification

 11 December 2002 Revision 5.1 Clause 3.5.4, PDO Limitations, Cluster Durability,

 Checkpoint Interval, Typographical Errors

 11 December 2003 Revision 5.2 Modified Clause 7.1.3, Clause 8.3, Clause 7.1.6,

 and Clause 8.1.8.8. Replaced Clause 8.1.1.2,

 and Clause 8.1.8.2. Modified Clause 5.4.4 (truncated

 reported MQTh)

 22 April 2004 Revision 5.3 Clause 8.3 (9), Executive Summary, Modify 7.1.3 (5),

 New Comment 4 and 5 to 7.1.3

 21 April 2005 Revision 5.4 Modified Clause 3.3.3.2, Modified Clause 5.3.3, Integrated

 TPC Pricing Specification

 20 October 2005 Revision 5.5 Modified Clauses 8.1.1.7 and 8.1.9.1, Added Comment to

 Clause 8.1.1.2 and added Clause 9.2.9.

 8 December 2005 Revision 5.6 Modified Clauses 5.5.1.2, 8.1.1.2. Replaced 6.6.6

 21 April 2006 Revision 5.7 Modified Clauses 1.3.1 and 1.4.9. Added Clause 1.4.14

 14 December 2006 Revision 5.8 Modified Clauses 0.2, 1.3.1, 5.2.5.4, 8.1.8.1, 9.2.8.1, 7.1.3,

 8.3, and 9.2.1. Added Clause 7.2.6

 14 June 2007 Revision 5.9 Modified Clause 7.2.6.1, 7.2.6.2, 8.3.1, 8.3.2 to address

 substitution rules

 17 April 2008 Revision 5.10 Modified Clauses 1.3.1, 3.1.5, 3.3.2, 3.5, 3.5.1, 3.5.3, 3.5.3.4,

 4.3.2.2, 5.2.3, 5.2.5.6, 8.1.1.2, Added Clause 9.2.9.2.

 5 February 2009 Revision 5.10.1 Editorial changes in Clauses 3.4.2.9,3.5,5.6.4,7.2.6.1,8.1.1.3

 11 February 2010 Revision 5.11 Updated TPC Membership, Editorial change in Clause

 1.3.1, Modified Clause 6.6.3.7, Modified Clause 7.2.3.1,

 Modified / Added Clauses 0.1, 5.7.1, 8.1.1.2, and 9.2.9 to

 support TPC-Energy requirements.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 4 of 130

TPC Benchmark™, TPC-C, and tpmC are trademarks of the Transaction Processing Performance Council.

Permission to copy without fee all or part of this material is granted provided that the TPC copyright notice, the title

of the publication, and its date appear, and notice is given that copying is by permission of the Transaction

Processing Performance Council. To copy otherwise requires specific permission.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 5 of 130

TABLE OF CONTENTS

Acknowledgments .. 2
TPC Membership ... 2

TABLE OF CONTENTS ... 5

Clause 0: PREAMBLE .. 7
0.1 Introduction .. 7
0.2 General Implementation Guidelines ... 8
0.3 General Measurement Guidelines ... 9

Clause 1: LOGICAL DATABASE DESIGN ... 10
1.1 Business and Application Environment ... 10
1.2 Database Entities, Relationships, and Characteristics .. 11
1.3 Table Layouts ... 11
1.4 Implementation Rules ... 18
1.5 Integrity Rules .. 19
1.6 Data Access Transparency Requirements .. 20

Clause 2: TRANSACTION and TERMINAL PROFILES... 21
2.1 Definition of Terms ... 21
2.2 General Requirements for Terminal I/ O .. 23
2.3 General Requirements for Transaction Profiles .. 26
2.4 The New-Order Transaction .. 28
2.5 The Payment Transaction ... 33
2.6 The Order-Status Transaction .. 37
2.7 The Delivery Transaction ... 40
2.8 The Stock-Level Transaction .. 44

Clause 3: TRANSACTION and SYSTEM PROPERTIES ... 47
3.1 The ACID Properties ... 47
3.2 Atomicity Requirements ... 47
3.3 Consistency Requirements ... 48
3.4 Isolation Requirements ... 51
3.5 Durability Requirements .. 57

Clause 4: SCALING and DATABASE POPULATION .. 61
4.1 General Scaling Ru les.. 61
4.2 Scaling Requirements .. 61
4.3 Database Population ... 64

Clause 5: PERFORMANCE METRICS and RESPONSE TIME .. 69
5.1 Definition of Terms ... 69
5.2 Pacing of Transactions by Emulated Users .. 69
5.3 Response Time Definition .. 73
5.4 Computation of Throughput Rating ... 73
5.5 Measurement Interval Requirem ents ... 74
5.6 Required Reporting ... 76
5.7 Primary Metrics ... 78

Clause 6: SUT, DRIVER, and COMMUNICATIONS DEFINITION ... 79
6.1 Models of the Target System .. 79
6.2 Test Configuration ... 80
6.3 System Under Test (SUT) Definition .. 80
6.4 Driver Definition ... 80

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 6 of 130

6.5 Communications Interface Definitions ... 81
6.6 Further Requirements on the SUT and Driver System ... 81

Clause 7: PRICING ... 85
7.1 Pricing Methodology... 85
7.2 Priced System ... 85
7.3 Required Reporting ... 88

Clause 8: FULL DISCLOSURE .. 89
8.1 Full Disclosure Report Requirements ... 89
8.3 Revisions to the Full Disclosure Report ... 98

Clause 9: AUDIT ... 100
9.1 General Rules ... 100
9.2 Auditor's check list .. 100

Index 105

Appendix A: SAMPLE PROGRAMS ... 108
A.1 The New-Order Transaction .. 108
A.2 The Payment Transaction ... 110
A.3 The Order-Status Transaction .. 112
A.4 The Delivery Transaction ... 114
A.5 The Stock-Level Transaction .. 116
A.6 Sample Load Program .. 117

Appendix B: EXECUTIVE SUMMARY STATEMENT .. 130

Appendix C: NUMERICAL QUANTITIES SUMMARY ... 132

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 7 of 130

Clause 0: PREAMBLE

0.1 Introduction

TPC Benchmark™ C (TPC-C) is an OLTP workload . It is a mixture of read -only and update intensive transactions

that simulate the activities found in complex OLTP application environments. It does so by exercising a bread th of

system components associated with such environments, which are characterized by:

• The simultaneous execution of multiple transaction types that span a bread th of complexity

• On-line and deferred transaction execution modes

• Multiple on-line terminal sessions

• Moderate system and application execution tim e

• Significant d isk input/ output

• Transaction integrity (ACID properties)

• Non-uniform d istribution of data access through primary and secondary keys

• Databases consisting of many tables with a wide variety of sizes, attributes, and relat ionships

• Contention on data access and update

The performance metric reported by TPC-C is a "business throughput" measuring the number of orders processed

per minute. Multiple transactions are used to simulate the business activity of processing an order, and each

transaction is subject to a response time constraint. The performance metric for this benchmark is expressed in

transactions-per-minute-C (tpmC). To be compliant with the TPC-C standard , all references to TPC-C results must

include the tpmC rate, the associated price-per-tpmC, and the availability date of the priced configuration.

To be compliant with the optional TPC-Energy standard , the add itional primary metric, expressed as watts-per-

tpmC must be reported . The requirements of the TPC-Energy Specification can be found at www.tpc.org.

Although these specifications express implementation in terms of a relational data model with conventional locking

scheme, the database may be implemented using any commercially available database management system (DBMS),

database server, file system, or other data repository that provides a functionally equivalent implementation. The

terms "table", "row", and "column" are used in this d ocument only as examples of logical data structures.

TPC-C uses terminology and metrics that are similar to other benchmarks, originated by the TPC or others. Such

similarity in terminology d oes not in any way imply that TPC-C results are comparable to other benchmarks. The

only benchmark results comparable to TPC-C are other TPC-C results conformant with the same revision.

Despite the fact that this benchmark offers a rich environment that emulates many OLTP application s, this

benchmark does not reflect the entire range of OLTP requirements. In add ition, the extent to which a customer can

achieve the results reported by a vendor is highly dependent on how closely TPC -C approximates the customer

application. The relative performance of systems derived from this benchmark does not necessarily hold for other

workloads or environments. Extrapolations to any other environment are not recommended .

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 8 of 130

Benchmark results are highly dependent upon workload , specific application requirements, and systems design and

implementation. Relative system performance will vary as a result of these and other factors. Therefore, TPC -C

should not be used as a substitu te for a specific customer application benchmarking when critical capacity plan ning

and/ or product evaluation decisions are contemplated .

Benchmark sponsors are permitted several possible system designs, insofar as they adhere to the model described

and pictorially illustrated in Clause 6. A Full Disclosure Report of the implementation details, as specified in Clause

8, must be made available along with the reported resu lts.

Comment: While separated from the main text for readability, comments are a part of the standard and must be

enforced . However, the sample programs, included as Appendix A, the summary statements, included as Appendix

B, and the numerical quantities summary, included as Appendix C, are provided only as examples and are

specifically not part of this standard .

0.2 General Implementation Guidelines

The purpose of TPC benchmarks is to provide relevant, objective performance data to industry users. To achieve

that purpose, TPC benchmark specifications require that benchmark tests be imp lemented with systems, p roducts,

technologies and pricing that:

• Are generally available to users.

• Are relevant to the market segment that the ind ividual TPC benchmark models or represents (e.g. TPC -A

models and represents high-volume, simple OLTP environments).

• A significant number of users in the market segment the benchmark models or represents would plausibly

implement.

The use of new systems, p roducts, technologies (hardware or software) and pricing is encouraged so long as they

meet the requirements above. Specifically prohibited are benchmark systems, products, technologies, pricing

(hereafter referred to as "implementations") whose primary purpose is performance optimization of TPC benchmark

results without any corresponding ap plicability to real-world applications and environments. In other words, all

"benchmark specials," implementations that improve benchmark results but not real-world performance or pricing,

are prohibited .

The following characteristics should be used as a guide to judge whether a particular implementation is a

benchmark special. It is not required that each point below be met, but that the cumulative weight of the evidence

be considered to identify an unacceptable implementation. Absolute certainty or certainty beyond a reasonable

doubt is not required to make a judgment on this complex issue. The question that must be answered is this: based

on the available evidence, does the clear preponderance (the greater share or weight) of evide nce ind icate that this

implementation is a benchmark special?

The following characteristics should be used to jud ge whether a particular implementation is a benchmark special:

• Is the implementation generally available, documented , and supported?

• Does the implementation have significant restrictions on its use or applicability that limits its use beyond TPC

benchmarks?

• Is the implementation or part of the implementation poorly integrated into the larger product?

• Does the implementation take special advantage of the limited nature of TPC benchmarks (e.g., transaction

profile, transaction mix, transaction concurrency and/ or contention, transaction isolation) in a manner that

would not be generally applicable to the en vironment the benchmark represents?

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 9 of 130

• Is the use of the implementation d iscouraged by the vendor? (This includes failing to promote the

implementation in a manner similar to other products and technologies.)

• Does the implementation require uncommon soph istication on the part of the end -user, programmer, or

system administrator?

• Is the pricing unusual or non-customary for the vendor or unusual or non -customary to normal business

practices? See the current revision of the TPC Pricing Specification for add itional information.

• Is the implementation being used (includ ing beta) or purchased by end -users in the market area the

benchmark represents? How many? Multiple sites? If the implementation is not currently being used by

end-users, is there any evid ence to ind icate that it will be used by a significant number of users?

0.3 General Measurement Guidelines

TPC benchmark results are expected to be accurate representations of system performance. Therefore, there are

certain guidelines which are expected to be followed when measuring those resu lts. The approach or methodology is

explicitly outlined in or described in the specification.

• The approach is an accepted is an accepted engineering practice or standard .

• The approach does not enhance the result.

• Equipment used in measuring results is calibrated accord ing to established quality standards.

• Fidelity and candor is maintained in reporting any anomalies in the results, even if not specified in the

benchmark requirements.

The use of new methodologies and approaches is encouraged so long as they meet the requirements above.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 10 of 130

Clause 1: LOGICAL DATABASE DESIGN

1.1 Business and Application Environment

TPC Benchmark™ C is comprised of a set of basic operations designed to exercise system functionalities in a manner

representative of complex OLTP application environments. These basic operations have been given a life-like

context, portraying the activity of a wholesale supplier, to help users relate intuitively to the components of the

benchmark. The workload is centered on the activity of processing orders and provides a logical database design,

which can be d istributed without structural changes to transactions.

TPC-C does not represent the activity of any particular business segment, but rather any industry which must

manage, sell, or d istribu te a product or service (e.g., car rental, food d istribu tion, parts supplie r, etc.). TPC-C does

not attempt to be a model of how to build an actual application .

The purpose of a benchmark is to reduce the d iversity of operations found in a production application , while

retaining the application's essential performance characteristics, namely: the level of system utilization and the

complexity of operations. A large number of functions have to be performed to manage a production order entry

system. Many of these functions are not of primary interest for performance analysis, since they are proportionally

small in terms of system resource utilization or in terms of frequency of execution. Although these functions are vital

for a production system, they merely create excessive d iversity in the context of a standard benchmark and have

been omitted in TPC-C.

The Company portrayed by the benchmark is a wholesale supplier w ith a number of geographically d istributed

sales d istricts and associated warehouses. As the Company's business expands, new warehouses and associated

sales d istricts are created . Each regional warehouse covers 10 d istricts. Each d istrict serves 3,000 customers. All

warehouses maintain stocks for the 100,000 items sold by the Company. The following d iagram illustrat es the

warehouse, d istrict, and customer hierarchy of TPC-C's business environment.

Customers

Company

Warehouse-1

Dis trict-10

Warehouse-W

Dis trict-1 Dis trict-2

3k1 2 30k

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 11 of 130

Customers call the Company to place a new order or request the status of an existing order. Orders are composed of

an average of 10 order lines (i.e., line items). One p ercent of all order lines are for items not in -stock at the regional

warehouse and must be supplied by another warehouse.

The Company's system is also used to enter payments from customers, process orders for delivery, and examine

stock levels to identify potential supply shortages.

1.2 Database Entities, Relationships, and Characteristics

1.2.1 The components of the TPC-C database are defined to consist of nine separate and ind ividua l tables.

The relationships among these tables are defined in the entity -relationship d iagram shown below and are subject to

the rules specified in Clause 1.4.

Warehouse Dis trict

His tory

Customer

New-Order

OrderOrder-L ineItem

Stock

W W*10

3k

1+

W*30k

W*30k+
5-15

0-1

1+
W*30k+

W*9k+

W*300k+

3+

100k

W

W*100k

100k

10

Legend:

• All numbers shown illustrate the database population requirements (see Clause 4.3) .

• The numbers in the entity blocks represent the card inality of the tables (number of rows). These numbers are

factored by W, the number of Warehouses, to illustrate the database scaling. (see Clause 4).

• The numbers next to the relationship arrows represent the card inality of the relationships (average number of

child ren per parent).

• The plus (+) symbol is used after the card inality of a relationship or table to illustrate that this number is

subject to small variations in the initial database population over the measurement interval (see Clause 5.5) as

rows are added or deleted .

1.3 Table Layouts

1.3.1 The following list defines the minimal structure (list of attributes) of each table where:

• N unique IDs means that the attribute must be able to hold any one ID within a minimum set of N unique

IDs, regard less of the physical representation (e.g., binary, packed decimal, alphabetic, etc.) of the attribute.

• variable text, size N means that the attribute must be able to hold any string of characters of a variable length

with a maximum length of N. If the attribute is stored as a fixed length string and the string it h olds is shorter

than N characters, it must be padded with spaces.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 12 of 130

• fixed text, size N means that the attribute must be able to hold any string of characters of a fixed length of N.

• date and time represents the data type for a date value th at includes a time component. The date component

must be able to hold any date between 1st January 1900 and 31st December 2100. The time component must be

capable of representing the range of time values from 00:00:00 to 23:59:59 with a resolution of at least one

second . Date and Time must be implemented using data types that are defined by the DBMS for that use.

• numeric(m [,n]) means an unsigned numeric value with at least m total decimal d igits, of which n d igits are

to the right (after) the decimal point. The attribute must be able to hold all possible values which can be

expressed as numeric(m,n). Omitting n, as in numeric(m), ind icates the same as numeric(m,0). Numeric

fields that contain monetary values (W_YTD, D_YTD, C_CREDIT_LIM, C_BALA NCE, C_YTD_PAYMENT,

H_AMOUNT, OL_AMOUNT, I_PRICE) must use data types that are defined by the DBMS as being an exact

numeric data type or that satisfy the ANSI SQL Standard definition of being an exact numeric representation.

• signed numeric(m [,n]) is identical to numeric(m [,n]) except that it can represent both positive and negative

values.

• null means out of the range of valid values for a given attribute and always the same value for that attribute.

Comment 1: For each table, the following list of attributes can be implemented in any order, using any physical

representation available from the tested system.

Comment 2: Table and attribute names are used for illustration purposes only; d ifferent names may be used by the

implementation.

Comment 3: A signed numeric data type may be used (at the sponsor‟ s d iscretion) anywhere a numeric data type

is defined .

 WAREHOUSE Table Layout

Field Name Field Definition Comments

W_ID 2*W unique IDs W Warehouses are populated

W_NAME variable text, size 10

W_STREET_1 variable text, size 20

W_STREET_2 variable text, size 20

W_CITY variable text, size 20

W_STATE fixed text, size 2

W_ZIP fixed text, size 9

W_TAX signed numeric(4,4) Sales tax

W_YTD signed numeric(12,2) Year to date balance

Primary Key: W_ID

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 13 of 130

 DISTRICT Table Layout

Field Name Field Definition Comments

D_ID 20 unique IDs 10 are populated per warehouse

D_W_ID 2*W unique IDs

D_NAME variable text, size 10

D_STREET_1 variable text, size 20

D_STREET_2 variable text, size 20

D_CITY variable text, size 20

D_STATE fixed text, size 2

D_ZIP fixed text, size 9

D_TAX signed numeric(4,4) Sales tax

D_YTD signed numeric(12,2) Year to date balance

D_NEXT_O_ID 10,000,000 unique IDs Next available Order number

Primary Key: (D_W_ID, D_ID)

D_W_ID Foreign Key, references W_ID

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 14 of 130

 CUSTOMER Table Layout

Field Name Field Definition Comments

C_ID 96,000 unique IDs 3,000 are populated per district

C_D_ID 20 unique IDs

C_W_ID 2*W unique IDs

C_FIRST variable text, size 16

C_MIDDLE fixed text, size 2

C_LAST variable text, size 16

C_STREET_1 variable text, size 20

C_STREET_2 variable text, size 20

C_CITY variable text, size 20

C_STATE fixed text, size 2

C_ZIP fixed text, size 9

C_PHONE fixed text, size 16

C_SINCE date and time

C_CREDIT fixed text, size 2 "GC"=good, "BC"=bad

C_CREDIT_LIM signed numeric(12, 2)

C_DISCOUNT signed numeric(4, 4)

C_BALANCE signed numeric(12, 2)

C_YTD_PAYMENT signed numeric(12, 2)

C_PAYMENT_CNT numeric(4)

C_DELIVERY_CNT numeric(4)

C_DATA variable text, size 500 Miscellaneous information

Primary Key: (C_W_ID, C_D_ID, C_ID)

(C_W_ID, C_D_ID) Foreign Key, references (D_W_ID, D_ID)

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 15 of 130

 HISTORY Table Layout

Field Name Field Definition Comments

H_C_ID 96,000 unique IDs

H_C_D_ID 20 unique IDs

H_C_W_ID 2*W unique IDs

H_D_ID 20 unique IDs

H_W_ID 2*W unique IDs

H_DATE date and time

H_AMOUNT signed numeric(6, 2)

H_DATA variable text, size 24 Miscellaneous information

Primary Key: none

(H_C_W_ID, H_C_D_ID, H_C_ID) Foreign Key, references (C_W_ID, C_D_ID, C_ID)

(H_W_ID, H_D_ID) Foreign Key, references (D_W_ID, D_ID)

Comment: Rows in the History table do not have a primary key as, within the context of the

benchmark, there is no need to uniquely identify a row within this table.

Note: The TPC-C application does not have to be capable of utilizing the increased range of C_ID

values beyond 6,000.

 NEW-ORDER Table Layout

Field Name

Field Definition Comments

NO_O_ID 10,000,000 unique IDs

NO_D_ID 20 unique IDs

NO_W_ID 2*W unique IDs

Primary Key: (NO_W_ID, NO_D_ID, NO_O_ID)

(NO_W_ID, NO_D_ID, NO_O_ID) Foreign Key, references (O_W_ID, O_D_ID, O_ID)

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 16 of 130

 ORDER Table Layout

Field Name Field Definition Comments

O_ID 10,000,000 unique IDs

O_D_ID 20 unique IDs

O_W_ID 2*W unique IDs

O_C_ID 96,000 unique IDs

O_ENTRY_D date and time

O_CARRIER_ID 10 unique IDs, or null

O_OL_CNT numeric(2) Count of Order-Lines

O_ALL_LOCAL numeric(1)

Primary Key: (O_W_ID, O_D_ID, O_ID)

(O_W_ID, O_D_ID, O_C_ID) Foreign Key, references (C_W_ID, C_D_ID, C_ID)

 ORDER-LINE Table Layout

Field Name Field Definition Comments

OL_O_ID 10,000,000 unique IDs

OL_D_ID 20 unique IDs

OL_W_ID 2*W unique IDs

OL_NUMBER 15 unique IDs

OL_I_ID 200,000 unique IDs

OL_SUPPLY_W_ID 2*W unique IDs

OL_DELIVERY_D date and time, or null

OL_QUANTITY numeric(2)

OL_AMOUNT signed numeric(6, 2)

OL_DIST_INFO fixed text, size 24

Primary Key: (OL_W_ID, OL_D_ID, OL_O_ID, OL_NUMBER)

(OL_W_ID, OL_D_ID, OL_O_ID) Foreign Key, references (O_W_ID, O_D_ID, O_ID)

(OL_SUPPLY_W_ID, OL_I_ID) Foreign Key, references (S_W_ID, S_I_ID)

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 17 of 130

 ITEM Table Layout

Field Name Field Definition Comments

I_ID 200,000 unique IDs 100,000 items are populated

I_IM_ID 200,000 unique IDs Image ID associated to Item

I_NAME variable text, size 24

I_PRICE numeric(5, 2)

I_DATA variable text, size 50 Brand information

Primary Key: I_ID

 STOCK Table Layout

Field Name Field Definition Comments

S_I_ID 200,000 unique IDs 100,000 populated per warehouse

S_W_ID 2*W unique IDs

S_QUANTITY signed numeric(4)

S_DIST_01 fixed text, size 24

S_DIST_02 fixed text, size 24

S_DIST_03 fixed text, size 24

S_DIST_04 fixed text, size 24

S_DIST_05 fixed text, size 24

S_DIST_06 fixed text, size 24

S_DIST_07 fixed text, size 24

S_DIST_08 fixed text, size 24

S_DIST_09 fixed text, size 24

S_DIST_10 fixed text, size 24

S_YTD numeric(8)

S_ORDER_CNT numeric(4)

S_REMOTE_CNT numeric(4)

S_DATA variable text, size 50 Make information

Primary Key: (S_W_ID, S_I_ID)

S_W_ID Foreign Key, references W_ID

S_I_ID Foreign Key, references I_ID

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 18 of 130

1.4 Implementation Rules

1.4.1 The physical clustering of records within the database is allowed .

1.4.2 A view which represents the rows to avoid logical read / writes is excluded .

Comment: The intent of this clause is to insure that the application implements the number of logical operations

defined in the transaction profiles w ithout combining several operations in one, via the use of a view.

1.4.3 All tables must have the properly scaled number of rows as defined by the database population

requirements (see Clause 4.3).

1.4.4 Horizontal partitioning of tables is allowed . Groups of rows from a table may be assigned to d ifferent

files, d isks, or areas. If implemented , the details of such partitioning must be d isclosed .

1.4.5 Vertical partitioning of tables is allowed . Groups of attributes (columns) of one table may be assigned

to files, d isks, or areas d ifferent from those storing the other attributes of that table. If implemented , the details of

such partitioning must be d isclosed (see Clause 1.4.9 for limitations).

Comment: in the two clauses above (1.4.4 and 1.4.5) assignment of data to d ifferent files, d isks, or areas not based on

knowledge of the logical structure of the data (e.g., knowledge of row or attribute boundaries) is not considered

partitioning. For example, d istribution or stripping over multiple d isks of a physical file which stores one or more

logical tables is not consid ered partitioning as long as this d istribution is done by the hardware or the operating

system without knowledge of the logical structure stored in the physical file.

1.4.6 Replication is allowed for all tables. All copies of tables which a re replicated must meet all

requirements for atomicity, consistency, and isolation as defined in Clause 3. If implemented , the details of such

replication must be d isclosed .

Comment: Only one copy of a replicated table needs to meet the durability requirements defined in Clause 3.

1.4.7 Attributes may be added and/ or duplicated from one table to another as long as these changes do not

improve performance.

1.4.8 Each attribute, as described in Clause 1.3.1, must be logically d iscrete and independently accessible by

the data manager. For example, W_STREET_1 and W_STREET_2 cannot be implemented as two sub -parts of a

d iscrete attribute W_STREET.

1.4.9 Each attribute, as described in Clause 1.3.1, must be accessible by the data manager as a single

attribute. For example, S_DATA cannot be implemented as two d iscrete attributes S_DATA_1 and S_DATA_2

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 19 of 130

1.4.10 The primary key of each table must not d irectly represent the physical d isk ad dresses of the row or

any offsets thereof. The application may not reference rows using relative addressing since they are simply offsets

from the beginning of the storage space. This does not preclude hashing schemes or other file organizations which

have provisions for add ing, deleting, and modifying records in the ord inary course of processing. Exception: The

History table can use relative addressing but all other requirements apply.

Comment 1: It is the intent of this clause that the application program (see Clause 2.1.7) executing the transaction, or

submitting the transaction request, not use physical id entifiers, but logical identifiers for all accesses, and contain no

user written code which translates or aids in the translation of a logical key to the location within the table of the

associated row or rows. For example, it is not legitimate for the application to build a "translation t able" of logical-to-

physical addresses and use it to enhance performance.

Comment 2: Internal record or row identifiers, for example, Tuple IDs or cursors, may be used under the following

conditions:

1. For each transaction executed , initial access to any row must be via the key(s) specified in the transaction

profile and no other attributes. Initial access includes insertion, deletion, retrieval, and update of any row.

2. Clause 1.4.10 may not be violated .

1.4.11 While inserts and deletes are not performed on all tables, the system must not be configured to take

special advantage of this fact during the test. Although inserts are inherently limited by the storage space available

on the configured system, there must be no restriction on inserting in any of the tables a minimum number of rows

equal to 5% of the table card inality and with a key value of at least double the range of key values present in that

table.

Comment: It is required that the space for the add itional 5% table card inality be configured for the test run and

priced (as static space per Clause 4.2.3) accord ingly. For systems where space is configured and dynamically

allocated at a later time, this space must be considered as allocated and included as static space when priced .

1.4.12 The minimum decimal precision for any computation performed as part of the application program

must be the maximum decimal precision of all the ind ividual items in that calculation.

1.4.13 Any other rules specified elsewhere in this document apply to the implementation (e.g., the

consistency rules in Clause 3.3).

1.4.14 The table attributes variable text, fixed text, date and time, and numeric must be implemented using

native data types of the data management system (i.e., not the application program) whose documented purpose is

to store data of the type defined for the attribute. For example, date and time must be implemented with a native

data type designed to store date and time information.

1.5 Integrity Rules

1.5.1 In any committed state, the primary key values must be unique within each table. For example, in the

case of a horizontally partitioned table, primary key values of rows across all partitions must be unique.

1.5.2 In any committed state, no ill-formed rows may exist in the database. An ill-formed row occurs when

the value of any attributes cannot be determined . For example, in the case of a vertically partitioned table, a row

must exist in all the partitions.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 20 of 130

1.6 Data Access Transparency Requirements

Data Access Transparency is the property of the system which removes from the application program any

knowledge of the location and access mechanisms of partitioned data. An implementation which uses vertical

and / or horizontal partitioning must meet the requirements for transparent data access described here.

No finite series of test can prove that the system supports complete data access transparency. The requirements

below describe the minimum capabilities needed to establish that the system provides transparent data access.

Comment: The intent of this clause is to require that access to physically and / or logically partitioned data be

provided d irectly and transparently by services implemented by commercially available layers below the application

program such as the data/ file manager (DBMS), the operating system , the hardware, or any combination of these.

1.6.1 Each of the nine tables described in Clause 1.3 must be identifiable by names which have no

relationship to the partitioning of tables. All data manipulation operations in the application program (see Clause

2.1.7) must use only these names.

1.6.2 The system must prevent any data manipulation operation performed using the names described in

Clause 1.6.1 which would result in a violation of the integrity rules (see Clause 1.5). For example: the system must

prevent a non-TPC-C application from committing the insertion of a row in a vertically partitioned table unless all

partitions of that row have been inserted .

1.6.3 Using the names which satisfy Clause 1.6.1, any arbitrary non-TPC-C application must be able to

manipulate any set of rows or columns:

• Identifiable by any arbitrary condition supported by the underlying DBMS

• Using the names described in Clause 1.6.1 and using the same data manipulation semantics and syntax for all

tables.

For example, the semantics and syntax used to update an arbit rary set of rows in any one table must also be usable

when updating another arbitrary set of rows in any other table.

Comment: The intent is that the TPC-C application program uses general purpose mechanisms to manipulate data

in the database.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 21 of 130

Clause 2: TRANSACTION and TERMINAL PROFILES

2.1 Definition of Terms

2.1.1 The term select as used in this specification refers to the action of identifying (e.g., referencing,

pointing to) a row (or rows) in the database without requiring retrieval of the actual content of the identified row(s).

2.1.2 The term retrieve as used in this specification refers to the action of accessing (i.e., fetching) the value

of an attribute from the database and passing this value to the application program.

Note: Field s that correspond to database attributes are in UPPERCASE. Other fields, such as fields used by the SUT,

or the RTE, for computations, or communication with the terminal, but not stored in the database, are in lowercase

italics.

2.1.3 The term database transaction as used is this specification refers to a unit of work on the database

with full ACID properties as described in Clause 3. A business transaction is comprised of one or more database

transactions. When used alone, the term transaction refers to a business transaction.

2.1.4 The term [x .. y] represents a closed range of values starting with x and end ing with y.

2.1.5 The term randomly selected within [x .. y] means independently selected at random and uniformly

d istributed between x and y, inclusively, with a mean of (x+y)/ 2, and with the same number of d igits of precision as

shown. For example, [0.01 .. 100.00] has 10,000 unique values, whereas [1 ..100] has only 100 un ique values.

2.1.6 The term non-uniform random, used only for generating customer numbers, customer last names,

and item numbers, means an independently selected and non -uniformly d istributed random number over the

specified range of values [x .. y]. This number must be generated by using the function NURand which produces

positions within the range [x .. y]. The results of NURand might have to be converted to produce a name or a

number valid for the implementation.

 NURand(A, x, y) = (((random (0, A) | random(x, y)) + C) % (y - x + 1)) + x

where:

 exp-1 | exp-2 stands for the bitwise logical OR operation between exp -1 and exp-2

 exp-1 % exp-2 stands for exp -1 modulo exp-2

 random(x, y) stands for randomly selected within [x .. y]

 A is a constant chosen accord ing to the size of the range [x .. y]

 for C_LAST, the range is [0 .. 999] and A = 255

 for C_ID, the range is [1 .. 3000] and A = 1023

 for OL_I_ID, the range is [1 .. 100000] and A = 8191

 C is a run-time constant random ly chosen within [0 .. A] that can be varied without altering performance.

The same C value, per field (C_LAST, C_ID, and OL_I_ID), must be used by all emulated terminals.

2.1.6.1 In order that the value of C used for C_LAST does not alter performance the following must be true:

 Let C-Load be the value of C used to generate C_LAST when populating the database. C-Load is a value

in the range of [0..255] includ ing 0 and 255.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 22 of 130

 Let C-Run be the value of C used to generate C_LAST for the measurement run.

 Let C-Delta be the absolute value of the d ifference between C-Load and C-Run. C-Delta must be a value in

the range of [65..119] includ ing the values of 65 and 119 and exclud ing the value of 96 and 112.

2.1.7 The term application program refers to code that is not part of the commercially available components

of the system, but produced specifically to implement the transaction profiles (see Clauses 2.4.2, 2.5.2, 2.6.2, 2.7.4,

and 2.8.2) of this benchmark. For example, stored procedures, triggers, and r eferential integrity constraints are

considered part of the application program when used to implement any portion of the transaction profiles, but are

not considered part of the application program when solely used to enforce integrity rules (see Clause 1.5) or

transparency requirements (see Clause 1.6) independently of any transaction profile.

2.1.8 The term terminal as used in this specification refers to the interface device capable of entering and

d isplaying characters from and to a u ser with a minimum display of 24x80. A terminal is defined as the components

that facilitate end -user input and the d isplay of the output as defined in Clause 2. The terminal may not contain any

knowledge of the application except field format, type, and position.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 23 of 130

2.2 General Requirements for Terminal I/O

2.2.1 Input/Output Screen Definitions

2.2.1.1 The layout (position on the screen and size of titles and fields) of the input/ output screens, as defined

in Clauses 2.4.3.1, 2.5.3.1, 2.6.3.1, 2.7.3.1, and 2.8.3.1, must be reproduced by the test sponsor as closely as possible

given the features and limitations of the implemented system. Any deviation from the input/ outpu t screens must be

explained .

2.2.1.2 Input/ ou tput screens may be altered to circumvent limitations of the implementation provid ing that

no performance advantage is gained . However, the following rules apply:

1. Titles can be translated into any language.

2. The semantic content cannot be altered .

3. The number of ind ividual fields cannot be altered .

4. The number of characters within the fields (i.e., field wid th) cannot be decreased.

5. Reordering or repositioning of fields is allowed .

6. A copy of the new screen specifications and layout must be included in the Full Disclosure Report .

2.2.1.3 The amount and price fields defined in Clause 2 are formatted for U.S. currency. These formats can be

modified to satisfy d ifferent currency representation (e.g., use another currency sign, move the decimal point

retaining at least one d igit on its right).

2.2.1.4 For input/ ou tput screens with unused fields (or groups of fields), it is not required to enter or d isp lay

these fields. For example, when an order has less than 15 items, the groups of fields corresponding to the remaining

items on the input/ output screen are unused and need not be entered or d isplayed after being cleared . Similarly,

when selecting a customer using its last name, the customer number field is unused and need not be entered or

d isplayed after being cleared .

2.2.1.5 All input and output fields that may change must be cleared at the beginning of each transaction even

when the same transaction type is consecutively selected by a given terminal. Fields should be cleared by d isplaying

them as spaces or zeros.

Comment: In Clauses 2.2.1.4 and 2.2.1.5, if the test sponsor does not promote using space or zero as a clear character

for its implementation, other clear characters can be used as long as a given field always uses the same clear

character.

2.2.1.6 A menu is used to select the next transaction type. The menu, consisting of one or more lines, must be

d isplayed at the very top or at the very bottom of the input/ output screen. If an input field is needed to enter the

menu selection, it must be located on the line(s) reserved for the menu.

Comment: The menu is in add ition to the screen formats defined in the terminal I/ O Clause for each transaction

type.

2.2.1.7 The menu must d isplay explicit text (i.e., it must contain the full name of each transaction and the

action to be taken by the user to select each transaction). A minimum of 60 characters (exclud ing space s) must be

d isplayed on the menu.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 24 of 130

2.2.1.8 Any input and outpu t field (s), other than the mandatory fields specified in the input/ output screens

as defined in Clauses 2.4.3.1, 2.5.3.1, 2.6.3.1, 2.7.3.1, and 2.8.3.1, must be d isclosed , and the purpose of such field (s)

explained .

2.2.2 Entering and Displaying Fields

2.2.2.1 A field is said to be entered once all the significant characters that compose the inpu t data for that field

have been communicated to the SUT by the emulated terminal.

2.2.2.2 A field is said to be d isp layed once all significant characters that compose the d ata for that field have

been communicated by the SUT to the emulated terminal for d isplay.

2.2.2.3 Communicating input and outpu t data does not require transferring any specific number of bytes.

Methods for optimizing this communication, such as message compression and data caching , are allowed .

2.2.2.4 The following features must be provided to the emulated user:

1. The input characters appear on the input/ output screen (i.e., are echoed) as they are keyed in. This

requirement can be satisfied by visual inspection at full load where there are no perceivable delays.

Otherwise, it is required that the character echoing be verified by actual measurements. For example, that can

be done using a protocol analyzer, RTE measurement, etc. to show that the echo response time is less than 1

second . If local echo or block mode devices are used then verification is not required .

Comment: A web browser implementation, or a terminal or PC emulating a terminal in either local echo or block

mode, will meet the echo response time requ irement of one second , so there is no need for an echo test.

2. Input is allowed only in the positions of an input field (i.e., output -only fields, labels, and blanks spaces on

the input/ output screen are protected from input).

3. Input-capable fields are d esignated by some method of clearly identifying them (e.g., highlighted areas,

underscores, reverse video, column d ividers, etc.).

4. It must be possible to key in only significant characters into fields. For alphanumeric fields, non -keyed

positions must be translated to blanks or nulls. For numeric fields, keyed input of less than the maximum

allowable d igits must be presented right justified on the output screen.

5. All fields for which a value is necessary to allow the application to complete are required to contain input

prior to the start of the measurement of the transaction RT, or the application must contain a set of error -

handling routines to inform the user that required fields have not been entered .

6. Fields can be keyed and re-keyed in any order. Specifically:

• The emulated user must be able to move the input cursor forward and backward d irectly to the input

capable fields.

• The application cannot rely on fields being entered in any particu lar order.

• The user can return to a field that has been keyed in and change its value prior to the start of the

measurement of the transaction RT.

7. Numeric fields must be protected from non -numeric input. If one or more non -numeric characters is entered

in a numeric field , a data entry error must be signaled to the user.

 Comment: Input validation may either be performed by the terminal, by the application , or a combination of

both. Input validation required by Item 5 and Item 7 must occur prior to starting a database transaction .

Specifically, invalid data entry may not result in a rolled back transaction.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 25 of 130

2.2.2.5 All output fields that d isplay values that are updated in the database by the current business

transaction must d isplay the "new" (i.e., committed) values for those fields.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 26 of 130

2.3 General Requirements for Transaction Profiles

Each transaction must be implemented accord ing to the specified transaction profiles . In add ition:

2.3.1 The order of the data manipulation s within the transaction bounds is immaterial (unless otherwise

specified , see Clause 2.4.2.3), and is left to the latitud e of the test sponsor , as long as the implemented transactions

are functionally equivalent to those specified in the transaction profiles .

2.3.2 The transaction profiles specify minimal data retrieval and update requirements for the transactions.

Additional navigational steps or data manipulation operations implemented within the database transactions must

be d isclosed , and the purpose of such addition(s) must be explained .

2.3.3 Each attribute must be obtained from the designated table in the transaction profiles .

Comment: The intent of this clause is to prevent reducing the number of logical database operations required to

implement each transaction.

2.3.4 No data manipulation operation from the transaction profile can be performed before all input data

have been communicated to the SUT, or after any output data have been communicated by the SUT to the emulated

terminal.

Comment: The intent of this clause is to ensure that, for a given business transaction , no data manipulation

operation from the transaction profile is performed prior to the timestamp taken at the beginning of the Transaction

RT or after the timestamp taken at the end of the Transaction RT (see Clause 5.3). For example, in the New -Order

transaction the SUT is not allowed to fetch the matching row from the CUSTOMER table until all input d ata have

been communicated to the SUT, even if this row is fetched again later during the execution of that same transaction.

2.3.5 If transactions are routed or organized within the SUT, a commercially available transaction

processing m onitor or equivalent commercially available software (hereinafter referred to as TM) is required with

the following features/ functionality:

Operation - The TM must allow for:

• request/ service prioritization

• multiplexing/ de multiplexing of requests/ services

• automatic load balancing

• reception, queuing, and execution of multip le requests/ services concurrently

Security - The TM must allow for:

• the ability to validate and authorize execution of each service at the time the service is requested .

• the restriction of administrative functions to authorized users.

Administration/Maintenance - The TM must have the predefined capability to perform centralized , non

programmatic (i.e., must be implemented in the standard product and not require programming) and

dynamic configuration management of TM resources includ ing hardware , network, services (single or

group), queue management prioritization rules, etc.

Recovery - The TM must have the capability to:

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 27 of 130

• post error codes to an application

• detect and terminate long-running transactions based on predefined time-out intervals

Application Transparency - The message context(s) that exist between the client and server application

programs must be managed solely by the TM. The client and server application programs must not ha ve any

knowledge of the message context or the underlying communication mechanisms that support that context.

Comment 1: The following are examples of implementations that are non -compliant with the Application

Transparency requirement.

1. Client and server application programs use the same identifier (e.g., handle or pointer) to maintain the

message context for multiple transactions.

2. Change and/ or recompilation of the client and / or server application programs is required when the

number of queues or equivalent data structures used by the TM to maintain the message context between

the client and server application programs is changed by TM administra tion.

Comment 2: The intent of this clause is to encourage the use of general purpose, commercially available transaction

monitors, and to exclude special purpose software developed for benchmark ing or other limited use. It is

recognized that implementations of features and functionality described above vary across vendors' architectures.

Such d ifferences do not preclude compliance with the requirements of this clause.

Comment 3: Functionality of TM or equivalent software is not required if the DBMS maintains an ind ividual context

for each emulated user.

2.3.6 Any error that would result in an invalid TPC-C transaction must be detected and reported . An

invalid TPC-C transaction includes transactions that, if committed , would violate the level of database

consistency defined in Clause 3.3. These transactions must be rolled back. The detection of these

invalid transactions must be reported to the user as part of the ou tput screen or, in the case of the

deferred portion of the delivery transaction, the delivery log.

Comment 1: Some examples of the types of errors which could result in an invalid transaction are:

 Select or update of a non-existent record

 Failure on insert of a new record

 Failure to delete an existing record

 Failure on select or update of an existing record

Comment 2: The exact information reported when an error occurs is implementation specific and not defined

beyond the requirement that an error be reported .

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 28 of 130

2.4 The New-Order Transaction

The New-Order business transaction consists of entering a complete order through a single database transaction . It

represents a mid-weight, read -write transaction with a high frequency of execution and stringent response time

requirements to satisfy on -line users. This transaction is the backbone of the workload . It is designed to place a

variable load on the system to reflect on -line database activity as typ ically found in production environments.

2.4.1 Input Data Generation

2.4.1.1 For any given terminal, the home warehouse number (W_ID) is constant over the whole measurement

interval (see Clause 5.5).

2.4.1.2 The d istrict number (D_ID) is random ly selected within [1 .. 10] from the home warehouse (D_W_ID =

W_ID). The non-uniform random customer number (C_ID) is selected using the NURand (1023,1,3000) function from

the selected d istrict number (C_D_ID = D_ID) and the home warehouse number (C_W_ID = W_ID).

2.4.1.3 The number of items in the order (ol_cnt) is random ly selected within [5 .. 15] (an average of 10). This

field is not entered . It is generated by the terminal emulator to determine the size of the order. O_OL_CNT is later

d isplayed after being computed by the SUT.

2.4.1.4 A fixed 1% of the New -Order transactions are chosen at random to simulate user data entry errors and

exercise the performance of rolling back update transactions. This must be implemented by generating a random

number rbk within [1 .. 100].

Comment: All New-Order transactions must have ind ependently generated input data. The input data from a rolled

back transaction cannot be used for a subsequent transaction.

2.4.1.5 For each of the ol_cnt items on the order:

1. A non-uniform random item number (OL_I_ID) is selected using the NURand (8191,1,100000) function. If this

is the last item on the order and rbk = 1 (see Clause 2.4.1.4), then the item number is set to an unused value.

 Comment: An unused value for an item number is a value not found in the database such that its use will

produce a "not-found" condition within the application program. This condition should resu lt in rolling back

the current database transaction .

2. A supplying warehouse number (OL_SUPPLY_W_ID) is selected as the home warehouse 99% of the time and

as a remote warehouse 1% of the time. This can be implemented by generating a random number x within [1

.. 100];

 - If x > 1, the item is supplied from the home warehouse (OL_SUPPLY_W_ID = W_ID).

 - If x = 1, the item is supplied from a remote warehouse (OL_SUPPLY_W_ID is random ly selected within the

range of active warehouses (see Clause 4.2.2) other than W_ID).

 Comment 1: With an average of 10 items per order, approximately 90% of all orders can be supplied in full by

stocks from the home warehouse.

 Comment 2: If the system is configured for a single warehouse, then all items are supplied from that single

home warehouse.

3. A quantity (OL_QUANTITY) is random ly selected within [1 .. 10].

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 29 of 130

2.4.1.6 The order entry date (O_ENTRY_D) is generated within the SUT by using the current system date and

time.

2.4.1.7 An order-line is said to be home if it is supplied by the home warehouse (i.e., when

OL_SUPPLY_W_ID equals O_W_ID).

2.4.1.8 An order-line is said to be remote when it is supplied by a remote warehouse (i.e., when

OL_SUPPLY_W_ID does not equal O_W_ID).

2.4.2 Transaction Profile

2.4.2.1 Entering a new order is done in a single database transaction with the following steps:

1. Create an order header, comprised of:

 2 row selections with data retrieval,

 1 row selection with data retrieval and update,

 2 row insertions.

2. Order a variable number of items (average ol_cnt = 10), comprised of:

 (1 * ol_cnt) row selections with data retrieval,

 (1 * ol_cnt) row selections with data retrieval and update,

 (1 * ol_cnt) row insertions.

Note: The above summary is provided for information only. The actual requ irement is defined by the detailed

transaction profile below.

2.4.2.2 For a given warehouse number (W_ID), d istrict number (D_W_ID , D_ID), customer number (C_W_ID

, C_D_ID , C_ ID), count of items (ol_cnt, not communicated to the SUT), and for a given set of items (OL_I_ID),

supplying warehouses (OL_SUPPLY_W_ID), and quantities (OL_QUANTITY):

• The input data (see Clause 2.4.3.2) are communicated to the SUT.

• A database transaction is started .

• The row in the WAREHOUSE table with matching W_ID is selected and W_TAX, the warehouse tax r ate, is

retrieved .

• The row in the DISTRICT table with matching D_W_ID and D_ ID is selected , D_TAX, the d istrict tax rate, is

retrieved , and D_NEXT_O_ID, the next available order number for the d istrict, is retrieved and incremented

by one.

• The row in the CUSTOMER table with matching C_W_ID, C_D_ID, and C_ID is selected and C_DISCOUNT,

the customer's d iscount rate, C_LAST, the customer's last name, and C_CREDIT, the customer's cred it sta tus,

are retrieved .

• A new row is inserted into both the NEW-ORDER table and the ORDER table to reflect the creation of the

new order. O_CARRIER_ID is set to a null value. If the order includes only home order -lines, then

O_ALL_LOCAL is set to 1, otherwise O_ALL_LOCAL is set to 0.

• The number of items, O_OL_CNT, is computed to match ol_cnt.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 30 of 130

• For each O_OL_CNT item on the order:

- The row in the ITEM table with matching I_ID (equals OL_I_ID) is selected and I_PRICE, the pri ce of the

item, I_NAME, the name of the item, and I_DATA are retrieved . If I_ID has an unused value (see Clause

2.4.1.5), a "not-found" condition is signaled , resulting in a rollback of the database transaction (see Clause

2.4.2.3).

- The row in the STOCK table with matching S_I_ID (equals OL_I_ID) and S_W_ID (equals

OL_SUPPLY_W_ID) is selected . S_QUANTITY, the quantity in stock, S_DIST_xx, where xx represents the

d istrict number, and S_DATA are retrieved . If the retrieved value for S_QUANTITY exceeds

OL_QUANTITY by 10 or more, then S_QUANTITY is decreased by OL_QUANTITY; otherwise

S_QUANTITY is updated to (S_QUANTITY - OL_QUANTITY)+91. S_YTD is increased by

OL_QUANTITY and S_ORDER_CNT is incremented by 1. If the ord er-line is remote, then

S_REMOTE_CNT is incremented by 1.

- The amount for the item in the order (OL_AMOUNT) is computed as:

 OL_QUANTITY * I_PRICE

- The strings in I_DATA and S_DATA are examined . If they both include the string "ORIGINAL", the brand-

generic field for that item is set to "B", otherwise, the brand-generic field is set to "G".

- A new row is inserted into the ORDER-LINE table to reflect the item on the order. OL_DELIVERY_D is set

to a null value, OL_NUMBER is set to a unique value within all the ORDER-LINE rows that have the same

OL_O_ID value, and OL_DIST_INFO is set to the content of S_DIST_xx, where xx represents the d istrict

number (OL_D_ID)

• The total-amount for the complete order is comp uted as:

 sum(OL_AMOUNT) * (1 - C_DISCOUNT) * (1 + W_TAX + D_TAX)

• The database transaction is committed , unless it has been rolled back as a result of an unused value for the last

item number (see Clause 2.4.1.5).

• The output data (see Clause 2.4.3.3) are communicated to the terminal.

2.4.2.3 For transactions that rollback as a result of an unused item number, the complete transaction profile

must be executed with the exception that the following steps need not be done:

• Selecting and retrieving the row in the STOCK table with S_I_ID matching the unused item number.

• Examining the strings I_DATA and S_DATA for the unused item.

• Inserting a new row into the ORDER-LINE table for the unused item.

• Adding the amount for the unused item to the sum of all OL_AMOUNT.

The transaction is not committed . Instead , the transaction is rolled back.

Comment 1: The intent of this clause is to ensure that within the New -Order transaction all valid items are p rocessed

prior to processing the unused item. Knowledge that an item is unused , resulting in rolling back the transaction, can

only be used to skip execution of the above steps. No other op timization can result from this knowled ge (e.g.,

skipping other steps, changing the execution of other steps, using a d ifferent type of transaction, etc.).

Comment 2: This clause is an exception to Clause 2.3.1. The order of data manipulation s prior to signaling a "not

found" condition is immaterial.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 31 of 130

2.4.3 Terminal I/O

2.4.3.1 For each transaction the originating terminal must d isplay the following input/ output screen with all

input and output field s cleared (with either spaces or zeros) except for the Warehouse field which has not changed

and must d isplay the fixed W_ID value associated with that terminal.

 New Order
Warehouse: 9999 District: 99 Date: DD-MM-YYYY hh:mm:ss
Customer: 9999 Name: XXXXXXXXXXXXXXXX Credit: XX %Disc: 99.99
Order Number: 99999999 Number of Lines: 99 W_tax: 99.99 D_tax: 99.99

 Supp_W Item_Id Item Name Qty Stock B/G Price Amount
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
 9999 999999 XXXXXXXXXXXXXXXXXXXXXXXX 99 999 X $999.99 $9999.99
Execution Status: XXXXXXXXXXXXXXXXXXXXXXXX Total: $99999.99

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

2.4.3.2 The emulated user must enter, in the appropriate fields of the input/ outpu t screen, th e required input

data which is d ivided in two groups and organized as follows:

• Two fields: D_ID and C_ID.

 Comment: The value for ol_cnt cannot be entered , but must be determined by the application upon

processing of the input data.

• One repeating group of fields: OL_I_ID, OL_SUPPLY_W_ID and OL_QUANTITY. The group is repeated

ol_cnt times (once per item in the order). The values of these fields are chosen as per Clause 2.4.1.5.

 Comment: In order to maintain a reasonable amount of keyed input, the supply warehouse fields must be

filled in for each item, even when the supply warehouse is the home warehouse.

2.4.3.3 The emulated terminal must d isplay, in the appropriate fields of the input/ output screen, all input

data and the output data resulting from the execution of the transaction. The d isplay field s are d ivided in two

groups as follows:

• One non-repeating group of fields: W_ID, D_ID, C_ID, O_ID, O_OL_CNT, C_LAST, C_CREDIT,

C_DISCOUNT, W_TAX, D_TAX, O_ENTRY_D, total_amount, and an optional execution status message other

than "Item number is not valid".

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 32 of 130

• One repeating group of fields: OL_SUPPLY_W_ID, OL_I_ID, I_NAME, OL_QUANTITY, S_QUANTITY,

brand_generic, I_PRICE, and OL_AMOUNT. The group is repeated O_OL_CNT times (once per item in the

order), equal to the computed value of ol_cnt.

2.4.3.4 For transactions that are rolled back as a result of an unused item number (1% of all New -Order

transactions), the emulated terminal must d isplay in the appropriate fields of the input/ outpu t screen the fields:

W_ID, D_ID, C_ID, C_LAST, C_CREDIT, O_ID, and the execution status message "Item number is not valid". Note

that no execution status message is required for successfully committed transactions. However, this field may not

d isplay "Item number is not valid" if the transaction is successful.

Comment: The number of the rolled back order, O_ID, must be d isplayed to verify that part of t he transaction was

processed .

2.4.3.5 The following table summarizes the terminal I/ O requirements for the New -Order transaction:

 Enter Display Display Coord inates

 After rollback Row/ Column

Non-repeating W_ID W_ID 2/ 12

Group D_ID D_ID D_ID 2/ 29

 C_ID C_ID C_ID 3/ 12

 C_LAST C_LAST 3/ 25

 C_CREDIT C_CREDIT 3/ 52

 C_DISCOUNT 3/ 64

 W_TAX 4/ 51

 D_TAX 4/ 67

 O_OL_CNT 4/ 42

 O_ID O_ID 4/ 15

 O_ENTRY_D 2/ 61

 total-amount 22/ 71

 "Item number 22/ 19

 is not valid"

Repeating Group OL_SUPPLY_W_ID OL_SUPPLY_W_ID 7-22/ 3

 OL_I_ID OL_I_ID 7-22/ 10

 I_NAME 7-22/ 20

 OL_QUANTITY OL_QUANTITY 7-22/ 45

 S_QUANTITY 7-22/ 51

 brand-generic 7-22/ 58

 I_PRICE 7-22/ 63

 OL_AMOUNT 7-22/ 72

2.4.3.6 For general terminal I/ O requirements, see Clause 2.2.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 33 of 130

2.5 The Payment Transaction

The Payment business transaction updates the customer's balance and reflects the payment on the d istrict and

warehouse sales statistics. It represents a light-weight, read -write transaction with a high frequency of execution and

stringent response time requirements to satisfy on -line users. In add ition, this transaction includes non -primary key

access to the CUSTOMER table.

2.5.1 Input Data Generation

2.5.1.1 For any given terminal, the home warehouse number (W_ID) is constant over the whole measurement

interval.

2.5.1.2 The d istrict number (D_ID) is random ly selected within [1 ..10] from the home warehouse (D_W_ID) =

W_ID). The customer is randomly selected 60% of the time by last name (C_W_ID , C_D_ID, C_LAST) and 40% of

the time by number (C_W_ID , C_D_ID , C_ID). Independent of the mode of selection, the customer resident

warehouse is the home warehouse 85% of the time and is a randomly selected remote warehouse 15% of the time.

This can be implemented by generating two random numbers x and y within [1 .. 100];

• If x <= 85 a customer is selected from the selected d istrict number (C_D_ID = D_ID) and the home warehouse

number (C_W_ID = W_ID). The customer is paying through h is/ her own warehouse.

• If x > 85 a customer is selected from a random d istrict number (C_D_ID is randomly selected within [1 .. 10]),

and a random remote warehouse number (C_W_ID is randomly selected within the range of act ive

warehouses (see Clause 4.2.2), and C_W_ID ≠ W_ID). The customer is paying through a warehouse and a

d istrict other than his/ her own.

• If y <= 60 a customer last name (C_LAST) is generated accord ing to Clause 4.3.2.3 from a non-uniform

random value using the NURand (255,0,999) function. The customer is using his/ her last name and is one of

the possibly several customers with that last name.

 Comment: This case illustrates the situation when a customer does not use his/ her unique customer number.

• If y > 60 a non-uniform random customer number (C_ID) is selected using the NURand (1023,1,3000) function.

The customer is using his/ her customer number.

Comment: If the system is configured for a single warehouse, then all customers are selected from that single home

warehouse.

2.5.1.3 The payment amount (H_AMOUNT) is random ly selected within [1.00 .. 5,000.00].

2.5.1.4 The payment date (H_DATE) in generated within the SUT by using the current system date and time.

2.5.1.5 A Payment transaction is said to be home if the customer belongs to the warehouse from which the

payment is entered (when C_W_ID = W_ID).

2.5.1.6 A Payment transaction is said to be remote if the warehouse from which the payment is entered is not

the one to which the customer belongs (when C_W_ID does not equal W_ID).

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 34 of 130

2.5.2 Transaction Profile

2.5.2.1 The Payment transaction enters a customer's payment with a single database transaction and is

comprised of:

Case 1, the customer is selected based on customer number:

 3 row selections with data retrieval and update,

 1 row insertion.

Case 2, the customer is selected based on customer last name:

 2 row selections (on average) with data retrieval,

 3 row selections with data retrieval and update,

 1 row insertion.

Note: The above summary is provided for information only. The actual requ irement is defined by the detailed

transaction profile below.

2.5.2.2 For a given warehouse number (W_ID), d istrict number (D_W_ID , D_ID), customer numbe r (C_W_ID

, C_D_ID , C_ ID) or customer last name (C_W_ID , C_D_ID , C_LAST), and payment amount (H_AMOUNT):

• The input data (see Clause 2.5.3.2) are communicated to the SUT.

• A database transaction is started .

• The row in the WAREHOUSE table with matching W_ID is selected . W_NAME, W_STREET_1,

W_STREET_2, W_CITY, W_STATE, and W_ZIP are retrieved and W_YTD, the warehouse's year -to-date

balance, is increased by H_ AMOUNT.

• The row in the DISTRICT table with matching D_W_ID and D_ID is selected . D_NAME, D_STREET_1,

D_STREET_2, D_CITY, D_STATE, and D_ZIP are retrieved and D_YTD, the d istrict's year -to-date balance, is

increased by H_AMOUNT.

• Case 1, the customer is selected based on customer number: the row in the CUSTOMER table with matching

C_W_ID, C_D_ID and C_ID is selected . C_FIRST, C_MIDDLE, C_LAST, C_STREET_1, C_STREET_2, C_CITY,

C_STATE, C_ZIP, C_PHONE, C_SINCE, C_CREDIT, C_CREDIT_LIM, C_DISCOUNT, and C_BALAN CE are

retrieved . C_BALANCE is decreased by H_AMOUNT. C_YTD_PAYMENT is increased by H_AMOUNT.

C_PAYMENT_CNT is incremented by 1.

 Case 2, the customer is selected based on customer last name: all rows in the CUSTOMER table with

matching C_W_ID, C_D_ID and C_LAST are selected sorted by C_FIRST in ascending order. Let n be the

number of rows selected . C_ID, C_FIRST, C_MIDDLE, C_STREET_1, C_STREET_2, C_CITY, C_STATE,

C_ZIP, C_PHONE, C_SINCE, C_CREDIT, C_CREDIT_LIM, C_DISCOUNT, and C_BALAN CE are retrieved

from the row at position (n/ 2 rounded up to the next integer) in the sorted set of selected rows from the

CUSTOMER table. C_BALANCE is decreased by H_AMOUNT. C_YTD_PAYMENT is increased by

H_AMOUNT. C_PAYMENT_CNT is incremented by 1.

• If the value of C_CREDIT is equal to "BC", then C_DATA is also retrieved from the selected customer and the

following history information: C_ID, C_D_ID, C_W_ID, D_ID, W_ID, and H_AMOUNT, are inserted at the

left of the C_DATA field by shifting the existing content of C_DATA to the right by an equal number of bytes

and by d iscard ing the bytes that are shifted out of the right side of the C_DATA field . The content of the

C_DATA field never exceeds 500 characters. The selected customer is updated with the new C_DATA field . If

C_DATA is implemented as two field s (see Clause 1.4.9), they must be treated and operated on as one single

field .

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 35 of 130

 Comment: The format used to store the history information must be such that its d isplay on the input/ output

screen is in a readable format. (e.g. the W_ID portion of C_DATA must use the same d isplay format as the

output field W_ID).

• H_DATA is built by concatenating W_NAME and D_NAME separated by 4 spaces.

• A new row is inserted into the HISTORY table with H_C_ID = C_ID, H_C_D_ID = C_D_ID, H_C_W_ID =

C_W_ID, H_D_ID = D_ID, and H_W_ID = W_ID.

• The database transaction is committed .

• The output data (see Clause 2.5.3.3) are communicated to the terminal.

2.5.3 Terminal I/O

2.5.3.1 For each transaction the originating terminal must d isplay the following input/ output screen with all

input and output field s cleared (with either spaces or zeros) except for the Warehouse field which has not changed

and must d isplay the fixed W_ID value associated with that terminal. In add ition, all address fields (i.e.,

W_STREET_1, W_STREET_2, W_CITY, W_STATE, and W_ZIP) of the warehouse may d isp lay the fixed values for

these fields if these values were already retrieved in a previous transaction.

 Payment
Date: DD-MM-YYYY hh:mm:ss

Warehouse: 9999 District: 99
XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX XX XXXXX-XXXX XXXXXXXXXXXXXXXXXXXX XX XXXXX-XXXX

Customer: 9999 Cust-Warehouse: 9999 Cust-District: 99
Name: XXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXX Since: DD-MM-YYYY
 XXXXXXXXXXXXXXXXXXXX Credit: XX
 XXXXXXXXXXXXXXXXXXXX %Disc: 99.99
 XXXXXXXXXXXXXXXXXXXX XX XXXXX-XXXX Phone: XXXXXX-XXX-XXX-XXXX

Amount Paid: $9999.99 New Cust-Balance: $-9999999999.99
Credit Limit: $9999999999.99

Cust-Data: XX
 XX
 XX
 XX

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

2.5.3.2 The emulated user must enter, in the appropriate fields of the input/ outpu t screen, the requi red input

data which is organized as the d istinct fields: D_ID, C_ID or C_LAST, C_D_ID, C_W_ID, and H_AMOUNT.

Comment: In order to maintain a reasonable amount of keyed input, the customer warehouse field must be filled in

even when it is the same as the home warehouse.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 36 of 130

2.5.3.3 The emulated terminal must d isplay, in the appropriate fields of the input/ output screen, all input

data and the output data resulting from the execution of the transaction. The following fields are d i splayed : W_ID,

D_ID, C_ID, C_D_ID, C_W_ID, W_STREET_1, W_STREET_2, W_CITY, W_STATE, W_ZIP, D_STREET_1,

D_STREET_2, D_CITY, D_STATE, D_ZIP, C_FIRST, C_MIDDLE, C_LAST, C_STREET_1, C_STREET_2, C_CITY,

C_STATE, C_ZIP, C_PHONE, C_SINCE, C_CREDIT, C_CREDIT_LIM, C_DISCOUNT, C_BALAN CE, the first 200

characters of C_DATA (only if C_CREDIT = "BC"), H_AMOUNT, and H_DATE.

2.5.3.4 The following table summarizes the terminal I/ O requirements for the Payment transaction :

 Enter Display Coord inates

 Row/ Column

Non-repeating Group W_ID 4/ 12

 D_ID D_ID 4/ 52

 C_ID 1 C_ID 9/ 11

 C_D_ID C_D_ID 9/ 54

 C_W_ID C_W_ID 9/ 33

 H_AMOUNT H_AMOUNT 15/ 24

 H_DATE 2/ 7

 W_STREET_1 5/ 1

 W_STREET_2 6/ 1

 W_CITY 7/ 1

 W_STATE 7/ 22

 W_ZIP 7/ 25

 D_STREET_1 5/ 42

 D_STREET_2 6/ 42

 D_CITY 7/ 42

 D_STATE 7/ 63

 D_ZIP 7/ 66

 C_FIRST 10/ 9

 C_MIDDLE 10/ 26

 C_LAST 2 C_LAST 10/ 29

 C_STREET_1 11/ 9

 C_STREET_2 12/ 9

 C_CITY 13/ 9

 C_STATE 13/ 30

 C_ZIP 13/ 33

 C_PHONE 13/ 58

 C_SINCE 10/ 58

 C_CREDIT 11/ 58

 C_CREDIT_LIM 16/ 18

 C_DISCOUNT 12/ 58

 C_BALANCE 15/ 56

 C_DATA 3 18-21/ 12

 1 Enter only for payment by customer number 2

Enter only for payment by customer last name 3

Display the first 200 characters only if C_CREDIT = "BC"

2.5.3.5 For general terminal I/ O requirements, see Clause 2.2.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 37 of 130

2.6 The Order-Status Transaction

The Order-Status business transaction queries the status of a customer's last order. It represents a mid -weight read -

only database transaction with a low frequency of execution and response time requirement to satisfy on -line users.

In add ition, this table includes non -primary key access to the CUSTOMER table.

2.6.1 Input Data Generation

2.6.1.1 For any given terminal, the home warehouse number (W_ID) is constant over the whole measurement

interval.

2.6.1.2 The d istrict number (D_ID) is random ly selected within [1 ..10] from the home warehouse. The

customer is randomly selected 60% of the time by last name (C_W_ID, C_D_ID, C_LAST) and 40% of the time by

number (C_W_ID, C_D_ID, C_ID) from the selected d istrict (C_D_ID = D_ID) and the home warehouse number

(C_W_ID = W_ID). This can be implemented by generating a random number y within [1 .. 100];

• If y <= 60 a customer last name (C_LAST) is generated accord ing to Clause 4.3.2.3 from a non -uniform

random value using the N URand(255,0,999) function. The customer is using his/ her last name and is one of

the, possibly several, customers with that last name.

 Comment: This case illustrates the situation when a customer does not use his/ her unique customer number.

• If y > 60 a non-uniform random customer number (C_ID) is selected using the NURand (1023,1,3000) function.

The customer is using his/ her customer number.

2.6.2 Transaction Profile

2.6.2.1 Querying for the status of an order is done in a single database transaction with the following steps:

1. Find the customer and his/ her last order, comprised of:

 Case 1, the customer is selected based on customer number:

 2 row selections with data retrieval.

 Case 2, the customer is selected based on customer last name:

 4 row selections (on average) with data retrieval.

2. Check status (delivery date) of each item on the order (average items-per-order = 10), comprised of:

 (1 * items-per-order) row selections with data retrieval.

Note: The above summary is provided for information only. The actual requ irement is defined by the detailed

transaction profile below.

2.6.2.2 For a given customer number (C_W_ID , C_D_ID , C_ ID):

• The input data (see Clause 2.6.3.2) are communicated to the SUT.

• A database transaction is started .

• Case 1, the customer is selected based on customer number: the row in the CUSTOMER table with matching

C_W_ID, C_D_ID, and C_ID is selected and C_BALAN CE, C_FIRST, C_MIDDLE, and C_LAST are retrieved .

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 38 of 130

 Case 2, the customer is selected based on customer last name: all rows in the CUSTOMER table with

matching C_W_ID, C_D_ID and C_LAST are selected sorted by C_FIRST in ascending order. Let n be the

number of rows selected . C_BALAN CE, C_FIRST, C_MIDDLE, and C_LAST are retrieved from the row at

position n/ 2 rounded up in the sorted set of selected rows from the CUSTOMER table.

• The row in the ORDER table with matching O_W_ID (equals C_W_ID), O_D_ID (equals C_D_ID), O_C_ID

(equals C_ID), and with the largest existing O_ID, is selected . This is the most recent order placed by that

customer. O_ID, O_ENTRY_D, and O_CARRIER_ID are retrieved .

• All rows in the ORDER-LINE table with matching OL_W_ID (equals O_W_ID), OL_D_ID (equals O_D_ID),

and OL_O_ID (equals O_ID) are selected and the corresponding sets of OL_I_ID, OL_SUPPLY_W_ID,

OL_QUANTITY, OL_AMOUNT, and OL_DELIVERY_D are retrieved .

• The database transaction is committed .

 Comment: a commit is not required as long as all ACID properties are satisfied (see Clause 3).

• The output data (see Clause 2.6.3.3) are communicated to the terminal.

2.6.3 Terminal I/O

2.6.3.1 For each transaction the originating terminal must d isplay the follow ing input/ output screen with all

input and output field s cleared (with either spaces or zeros) except for the Warehouse field which has not changed

and must d isplay the fixed W_ID value associated with that terminal.

 Order-Status
Warehouse: 9999 District: 99
Customer: 9999 Name: XXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXX
Cust-Balance: $-99999.99

Order-Number: 99999999 Entry-Date: DD-MM-YYYY hh:mm:ss Carrier-Number: 99
Supply-W Item-Id Qty Amount Delivery-Date
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY
 9999 999999 99 $99999.99 DD-MM-YYYY

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

2.6.3.2 The emulated user must enter, in the appropriate field of the input/ output screen, the required input

data which is organized as the d istinct fields: D_ID and either C_ID or C_LAST.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 39 of 130

2.6.3.3 The emulated terminal must d isplay, in the approp riate fields of the input/ output screen, all input

data and the output data resulting from the execution of the transaction. The d isplay field s are d ivided in two

groups as follows:

• One non-repeating group of fields: W_ID, D_ID, C_ID, C_FIRST, C_MIDDLE, C_LAST, C_BALANCE, O_ID,

O_ENTRY_D, and O_CARRIER_ID;

• One repeating group of fields: OL_SUPPLY_W_ID, OL_I_ID, OL_QUANTITY, OL_AMOUNT, and

OL_DELIVERY_D. The group is repeated O_OL_CNT times (once per item in the order).

Comment 1: The order of items shown on the Order-Status screen does not need to match the order in which the

items were entered in its corresponding New -Order screen.

Comment 2: If OL_DELIVERY_D is null (i.e., the order has not been delivered), the terminal must d isplay an

implementation specific null date representation (e.g., blanks, 99-99-9999, etc.). The chosen null date representation

must not change during the test.

2.6.3.4 The following table summarizes the terminal I/ O requirements for the Order-Status transaction:

 Enter Display Coord inates

 Row/ Column

Non-repeating Group W_ID 2/ 12

 D_ID D_ID 2/ 29

 C_ID 1 C_ID 3/ 11

 C_FIRST 3/ 24

 C_MIDDLE 3/ 41

 C_LAST 2 C_LAST 3/ 44

 C_BALANCE 4/ 16

 O_ID 6/ 15

 O_ENTRY_D 6/ 38

 O_CARRIER_ID 6/ 76

Repeating Group OL_SUPPLY_W_ID 8-22/ 3

 OL_I_ID 8-22/ 14

 OL_QUANTITY 8-22/ 25

 OL_AMOUNT 8-22/ 33

 OL_DELIVERY_D 8-22/ 47

 1 Enter only for query by customer number. 2

Enter only for query by customer last name.

2.6.3.5 For general terminal I/ O requirements, see Clause 2.2.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 40 of 130

2.7 The Delivery Transaction

The Delivery business transaction consists of processing a batch of 10 new (not yet delivered) orders. Each order is

processed (delivered) in full within the scope of a read -write database transaction . The number of orders delivered

as a group (or batched) within the same database transaction is implementation specific. The business transaction,

comprised of one or more (up to 10) database transactions, has a low frequency of execution and must complete

within a relaxed response time requirement.

The Delivery transaction is intended to be executed in deferred mode through a queuing mechanism, rather than

interactively, with terminal response ind icating transaction completion. The result of the deferred execution is

recorded into a result file.

2.7.1 Input Data Generation

2.7.1.1 For any given terminal, the home warehouse number (W_ID) is constant over the whole measurement

interval.

2.7.1.2 The carrier number (O_CARRIER_ID) is random ly selected within [1 .. 10].

2.7.1.3 The delivery date (OL_DELIVERY_D) is generated within the SUT by using the current system date

and time.

2.7.2 Deferred Execution

2.7.2.1 Unlike the other transactions in this benchmark, the Delivery transaction must be executed in deferred

mode. This mode of execution is primarily characterized by queuing the transaction for defe rred execution,

returning control to the originating terminal independently from the completion of the transaction, and record ing

execution information into a result file.

2.7.2.2 Deferred execution of the Delivery transaction must adhere to the following rules:

1. The business transaction is queued for deferred execution as a result of entering the last input character.

2. The deferred execution of the business transaction must follow the profile defined in Clause 2.7.4 with the

input data defined in Clause 2.7.1 as entered through the input/ output screen and communicated to the

deferred execution queue.

3. At least 90% of the business transaction s must complete within 80 seconds of their being queued for

execution.

4. Upon completion of the business transaction , the following information must have been recorded into a resu lt

file:

• The time at which the business transaction was queued .

• The warehouse number (W_ID) and the carried number (O_CARRIER_ID) associated with the business

transaction.

• The d istrict number (D_ID) and the order number (O_ID) of each order delivered by the business

transaction.

• The time at which the business transaction completed .

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 41 of 130

2.7.2.3 The result file associated with the deferred execution of the Delivery business transaction is only for

the purpose of record ing information about that transaction and is not relevant to the business function being

performed. The result file must adhere to the following rules:

1. All events must be completed before the related information is recorded (e.g., the record ing of a d istrict

and order number must be done after the database transaction , within which this order was delivered , has

been committed);

2. No ACID property is required (e.g., the record ing of a d istrict and order number is not required to be

atomic with the actual delivery of that order) as the result file is used for benchmarking purposes only.

3. During the measurement interval the result file must be located either on a durable medium (see clause

3.5.1) or in the internal memory of the SUT. In this last case, the result file must be transferred onto a

durable medium after the last measurement interval of the test run (see Clause 5.5).

2.7.3 Terminal I/O

2.7.3.1 For each transaction the originating terminal must d isplay the following input/ output screen with all

input and output field s cleared (with either spaces or zeros) except for the Warehouse field which has not changed

and must d isplay the fixed W_ID value associated with that terminal.

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 Delivery
Warehouse: 9999

Carrier Number: 99

Execution Status: XXXXXXXXXXXXXXXXXXXXXXXXX

2.7.3.2 The emulated user must enter, in the appropriate input field of the input/ output screen, the required

input data which is organized as one d istinct field : O_CARRIER_ID.

2.7.3.3 The emulated terminal must d isplay, in the appropriate output field of the input/ output screen, all

input data and the output data which results from the queuing of the transaction. The following fields are d isplayed :

W_ID, O_CARRIER_ID, and the status message "Delivery has been queued".

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 42 of 130

2.7.3.4 The following table summarizes the terminal I/ O requirements for the Delivery transaction :

 Enter Display Coord inates

 Row/ Column

Non-repeating Group W_ID 2/ 12

 O_CARRIER_ID O_CARRIER_ID 4/ 17

 "Delivery has been queued" 6/ 19

2.7.3.5 For general terminal I/ O requirements, see Clause 2.2.

2.7.4 Transaction Profile

2.7.4.1 The deferred execution of the Delivery transaction delivers one outstand ing order (average items-per-

order = 10) for each one of the 10 d istricts of the selected warehouse using one or more (up to 10) d atabase

transactions. Delivering each order is done in the following steps:

1. Process the order, comprised of:

 1 row selection with data retrieval,

 (1 + items-per-order) row selections with data retrieval and update.

2. Update the customer's balance, comprised of:

 1 row selections with data update.

3. Remove the order from the new -order list, comprised of:

 1 row deletion.

Comment: This business transaction can be done within a single database transaction or broken down into up to 10

database transactions to allow the test sponsor the flexibility to implement the business transaction with the most

efficient number of database transactions.

Note: The above summary is provided for information only. The actual requ irement is defined by the detailed

transaction profile below.

2.7.4.2 For a given warehouse number (W_ID), for each of the 10 d istricts (D_W_ID , D_ID) within that

warehouse, and for a given carrier number (O_CARRIER_ID):

• The input data (see Clause 2.7.3.2) are retrieved from the deferred execution queue.

• A database transaction is started unless a database transaction is already active from being started as par t of

the delivery of a previous order (i.e., more than one order is delivered within the same database transaction).

• The row in the NEW-ORDER table with matching NO_W_ID (equals W_ID) and NO_D_ID (equals D_ID)

and with the lowest NO_O_ID value is selected . This is the oldest undelivered order of that d istrict.

NO_O_ID, the order number, is retrieved . If no matching row is found , then the delivery of an order for this

d istrict is skipped . The condition in which no ou tstand in g order is present at a given d istrict must be handled

by skipping the delivery of an order for that d istrict only and resuming the delivery of an order from all

remaining d istricts of the selected warehouse. If this condition occurs in more than 1%, or in more than one,

whichever is greater, of the business transaction s, it must be reported . The result file must be organized in

such a way that the percentage of skipped deliveries and skipped d istricts can be determined .

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 43 of 130

• The selected row in the NEW-ORDER table is deleted .

• The row in the ORDER table with matching O_W_ID (equals W_ ID), O_D_ID (equals D_ID), and O_ID

(equals NO_O_ID) is selected , O_C_ID, the customer number, is retr ieved , and O_CARRIER_ID is updated .

• All rows in the ORDER-LINE table with matching OL_W_ID (equals O_W_ID), OL_D_ID (equals O_D_ID),

and OL_O_ID (equals O_ID) are selected . All OL_DELIVERY_D, the delivery dates, are updated to the

current system time as returned by the operating system and the sum of all OL_AMOUNT is retrieved .

• The row in the CUSTOMER table with matching C_W_ID (equals W_ID), C_D_ID (equals D_ID), and C_ID

(equals O_C_ID) is selected and C_BALANCE is increased by the sum of all order -line amounts

(OL_AMOUNT) previously retrieved . C_DELIVERY_CNT is incremented by 1.

• The database transaction is committed unless more ord ers w ill be delivered within this database transaction.

• Information about the delivered order (see Clause 2.7.2.2) is recorded into the result file (see Clause 2.7.2.3).

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 44 of 130

2.8 The Stock-Level Transaction

The Stock-Level business transaction determines the number of recently sold items that have a stock level below a

specified threshold . It represents a heavy read -only database transaction with a low frequency of execution, a

relaxed response time requirement, and relaxed consistency requirements.

2.8.1 Input Data Generation

2.8.1.1 Each terminal must use a unique value of (W_ID, D_ID) that is constant over the whole

measurement, i.e., D_IDs cannot be re-used within a warehouse.

2.8.1.2 The threshold of minimum quantity in stock (threshold) is selected at random within [10 .. 20].

2.8.2 Transaction Profile

2.8.2.1 Examining the level of stock for items on the last 20 orders is done in one or more database

transactions with the following steps:

1. Examine the next available order number, comprised of:

 1 row selection with data retrieval.

2. Examine all items on the last 20 orders (average items-per-order = 10) for the d istrict, comprised of:

 (20 * items-per-order) row selections with data retrieval.

3. Examine, for each d istinct item selected , if the level of stock available at the home warehouse is be low the

threshold , comprised of:

 At most (20 * items-per-order) row selections with data retrieval.

Note: The above summary is provided for information only. The actual requ irement is defined by the detailed

transaction profile below.

2.8.2.2 For a given warehouse number (W_ID), d istrict number (D_W_ID , D_ID), and stock level threshold

(threshold):

• The input data (see Clause 2.8.3.2) are communicated to the SUT.

• A database transaction is started .

• The row in the DISTRICT table with matching D_W_ID and D_ID is selected and D_NEXT_O_ID is retrieved .

• All rows in the ORDER-LINE table with matching OL_W_ID (equals W_ID), OL_D_ID (equals D_ID), and

OL_O_ID (lower than D_NEXT_O_ID and greater than or equal to D_NEXT_O_ID minus 20) are selected .

They are the items for 20 recent orders of the d istrict.

• All rows in the STOCK table with matching S_I_ID (equals OL_I_ID) and S_W_ID (equals W_ID) from the list

of d istinct item numbers and with S_QUANTITY lower than threshold are counted (giving low_stock).

 Comment: Stocks must be counted only for d istinct items. Thus, items that have been ordered more than once

in the 20 selected orders must be aggregated into a single summary count for t hat item.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 45 of 130

• The current database transaction is committed .

 Comment: A commit is not needed as long as all the required ACID properties are satisfied (see Clause

2.8.2.3).

• The output data (see Clause 2.8.3.3) are communicated to the terminal.

2.8.2.3 Full serializability and repeatable reads are not required for the Stock -Level business transaction . All

data read must be committed and no older than the most recently committed d ata prior to the time this business

transaction was initiated . All other ACID properties must be maintained .

Comment: This clause allows the business transaction to be broken down into more than one database transaction .

2.8.3 Terminal I/O

2.8.3.1 For each transaction the originating terminal must d isplay the following input/ output screen with all

input and output field s cleared (with either spaces or zeros) except for the Warehouse and District fields which have

not changed and must d isp lay the fixed W_ID and D_ID values associated with that terminal.

 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 Stock-Level
Warehouse: 9999 District: 99

Stock Level Threshold: 99

low stock: 999

2.8.3.2 The emulated user must enter, in the appropriate field of the input/ output screen, the required input

data which is organized as the d istinct field : threshold.

2.8.3.3 The emulated terminal must d isplay, in the appropriate field of the input/ output screen, all input data

and the output data which results from the execution of the transaction. The following fields are d isplayed : W_ID,

D_ID, threshold, and low_stock.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 46 of 130

2.8.3.4 The following table summarizes the terminal I/ O requirements for the Stock-Level transaction:

 Enter Display Coord inates

 Row/ Column

Non-repeating Group W_ID 2/ 12

 D_ID 2/ 29

 threshold threshold 4/ 24

 low_stock 6/ 12

2.8.3.5 For general terminal I/ O requirements, see Clause 2.2.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 47 of 130

Clause 3: TRANSACTION and SYSTEM PROPERTIES

3.1 The ACID Properties

It is the intent of this section to informally define the ACID properties and to sp ecify a series of tests that must be

performed to demonstrate that these properties are met.

3.1.1 The ACID (Atomicity, Consistency, Isolation, and Durability) properties of transaction processing

systems must be supported by the system under test during the running of this benchmark. The only exception to

this rule is to allow non-repeatable reads for the Stock-Level transaction (see Clause 2.8.2.3).

3.1.2 No finite series of tests can prove that the ACID properties are fully supported . Passing the specified

tests is a necessary, but not sufficient, condition for meeting the ACID requirements. However, for fairness of

reporting, only the tests specified here are required and must appear in the Full Disclosure Report for this

benchmark.

Comment: These tests are intended to demonstrate that the ACID principles are supported by the SUT and enabled

during the performance measurement interval. They are not intended to be an exhaustive quality assurance test.

3.1.3 All mechanisms needed to insure full ACID properties must be enabled during both the test period

and the 8 hours of steady state. For example, if the system under test relies on undo logs, then logging must be

enabled for all transactions includ ing those which d o not include rollback in the transaction profile. When this

benchmark is implemented on a d istributed system, tests must be performed to verify that home and remote

transactions, includ ing remote transactions that are processed on two or more nodes, satisfy the ACID properties

(See Clauses 2.4.1.7, 2.4.1.8, 2.5.1.5, and 2.5.1.6 for th e definition of home and remote transactions).

3.1.4 Although the ACID tests d o not exercise all transaction types of TPC-C, the ACID properties must be

satisfied for all the TPC-C transactions.

3.1.5 Test sponsors reporting TPC results may perform ACID tests on any one system for which results

have been d isclosed , provided that they use the same software execu tables (e.g., operating system , data manager,

transaction programs). For example, this clause would be applicable when results are reported for multiple systems

in a product line. However, the durability tests described in Clauses 3.5.3.2 and 3.5.3.3 must be run on all the systems

that are measured . All Full Disclosure Reports must identify the systems which were used to verify ACID

requirements and full details of the ACID tests conducted and results obtained .

Comment: All required ACID tests must be performed on newly optimized binaries even if there have not been any

source code changes.

3.2 Atomicity Requirements

3.2.1 Atomicity Property Definition

The system under test must guarantee that database transactions are atomic; the system will either perform all

ind ividual operations on the data, or will assure that no partially -completed operations leave any effects on the data.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 48 of 130

3.2.2 Atomicity Tests

3.2.2.1 Perform the Payment transaction for a random ly selected warehouse, d istrict, and customer (by

customer number as specified in Clause 2.5.1.2) and verify that the records in the CUSTOMER, DISTRICT, and

WAREHOUSE tables have been changed appropriately.

3.2.2.2 Perform the Payment transaction for a random ly selected warehouse, d istrict, and customer (by

customer number as specified in Clause 2.5.1.2) and substitute a ROLLBACK of the transaction for the COMMIT of

the transaction. Verify that the records in the CUSTOMER, DISTRICT, and WAREHOUSE tables have NOT been

changed .

3.3 Consistency Requirements

3.3.1 Consistency Property Definition

Consistency is the property of the application that requires any execution of a database transaction to take the

database from one consistent state to another, assuming that the database is initially in a consistent state .

3.3.2 Consistency Conditions

Twelve consistency conditions are defined in the following clauses to specify the level of database consistency

required across the mix of TPC-C transactions. A database, when populated as defined in Clause 4.3, must meet all

of these conditions to be consistent. If data is replicated , each copy must meet these conditions. Of the twelve

conditions, explicit demonstration that the conditions are satisfied is required for the first four only. Demonstration

of the last eight consistency conditions is not required because of the lengthy tests which would be necessary.

Comment 1: The consistency conditions were chosen so that they would remain valid within the context of a larger

order-entry application that includes the five TPC-C transactions (See Clause 1.1.). They are designed to be

independent of the length of time for which such an application would be e xecuted . Thus, for example, a condition

involving I_PRICE was not included here since it is conceivable that within a larger application I_PRICE is modified

from time to time.

Comment 2: For Consistency Conditions 2 and 4 (Clauses 3.3.2.2 and 3.3.2.4), sam pling the first, last, and two

random warehouses is sufficient.

3.3.2.1 Consistency Condition 1

Entries in the WAREHOUSE and DISTRICT tables must satisfy the relationship:

 W_YTD = sum(D_YTD)

for each warehouse defined by (W_ID = D_W_ID).

3.3.2.2 Consistency Condition 2

Entries in the DISTRICT, ORDER, and NEW-ORDER tables must satisfy the relationship:

 D_NEXT_O_ID - 1 = max(O_ID) = max(NO_O_ID)

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 49 of 130

for each d istrict defined by (D_W_ID = O_W_ID = NO_W_ID) and (D_ID = O_D_ID = NO_D_ID). This condition

does not app ly to the NEW-ORDER table for any d istricts which have no ou tstand ing new orders (i.e., the number of

rows is zero).

3.3.2.3 Consistency Condition 3

Entries in the NEW-ORDER table must satisfy the relationship:

 max(NO_O_ID) - min(NO_O_ID) + 1 = [number of rows in the NEW-ORDER table for this d istrict]

for each d istrict defined by NO_W_ID and NO_D_ID. This condition does not apply to any d istricts which have no

outstand ing new orders (i.e., the number of rows is zero).

3.3.2.4 Consistency Condition 4

Entries in the ORDER and ORDER-LINE tables must satisfy the relationship:

 sum(O_OL_CNT) = [number of rows in the ORDER-LINE table for this d istrict]

for each d istrict defined by (O_W_ID = OL_W_ID) and (O_D_ID = OL_D_ID).

3.3.2.5 Consistency Condition 5

For any row in the ORDER table, O_CARRIER_ID is set to a null value if and only if there is a corresponding row in

the NEW-ORDER table defined by (O_W_ID, O_D_ID, O_ID) = (NO_W_ID, NO_D_ID, NO_O_ID).

3.3.2.6 Consistency Condition 6

For any row in the ORDER table, O_OL_CNT must equal the number of rows in the ORDER-LINE table for the

corresponding order defined by (O_W_ID, O_D_ID, O_ID) = (OL_W_ID, OL_D_ID, OL_O_ID).

3.3.2.7 Consistency Condition 7

For any row in the ORDER-LINE table, OL_DELIVERY_D is set to a null date/ time if and only if the corresponding

row in the ORDER table defined by (O_W_ID, O_D_ID, O_ID) = (OL_W_ID, OL_D_ID, OL_O_ID) has

O_CARRIER_ID set to a null value.

3.3.2.8 Consistency Condition 8

Entries in the WAREHOUSE and HISTORY tables must satisfy the relationship:

 W_YTD = sum(H_AMOUNT)

for each warehouse defined by (W_ID = H_W_ID).

3.3.2.9 Consistency Condition 9

Entries in the DISTRICT and HISTORY tables must satisfy the relationship:

 D_YTD = sum(H_AMOUNT)

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 50 of 130

for each d istrict defined by (D_W_ID, D_ID) = (H_W_ID, H_D_ID).

3.3.2.10 Consistency Condition 10

Entries in the CUSTOMER, HISTORY, ORDER, and ORDER-LINE tables must satisfy the relationship:

 C_BALANCE = sum(OL_AMOUNT) - sum(H_AMOUNT)

where:

 H_AMOUNT is selected by (C_W_ID, C_D_ID, C_ID) = (H_C_W_ID, H_C_D_ID, H_C_ID)

and

 OL_AMOUNT is selected by:

 (OL_W_ID, OL_D_ID, OL_O_ID) = (O_W_ID, O_D_ID, O_ID) and

 (O_W_ID, O_D_ID, O_C_ID) = (C_W_ID, C_D_ID, C_ID) and

 (OL_DELIVERY_D is not a null value)

3.3.2.11 Consistency Condition 11

Entries in the CUSTOMER, ORDER and NEW-ORDER tables must satisfy the relationship:

 (count(*) from ORDER) - (count(*) from NEW-ORDER) = 2100

for each d istrict defined by (O_W_ID, O_D_ID) = (NO_W_ID, NO_D_ID) = (C_W_ID, C_D_ID).

3.3.2.12 Consistency Condition 12

Entries in the CUSTOMER and ORDER-LINE tables must satisfy the relationship:

 C_BALANCE + C_YTD_PAYMENT = sum(OL_AMOUNT)

for any random ly selected customers and where OL_DELIVERY_D is not set to a null date/ time.

3.3.3 Consistency Tests

3.3.3.1 Verify that the database is initially consistent by verifying that it meets the consistency conditions

defined in Clauses 3.3.2.1 to 3.3.2.4. Describe the steps used to do this in sufficient detail so that the steps ar e

independently repeatable.

3.3.3.2 Immediately after performing the verification process described in Clause 3.3.3.1, do the following:

1. Use the standard driving mechanism to submit transactions to the SUT. The transaction rate must be at

least 90% of the reported tpmC rate and meet all other requirements of a reported measurement interval

(see Clause 5.5). The test sponsor must include at least one check -point (as defined in Clause 5.5.2.2)

within this interval. The SUT must be run at this rate for a t least 5 minutes.

2. Stop submitting transactions to the SUT and then repeat the verification steps done for Clause 3.3.3.1. The

database must still be consistent after applying transactions. Consistency Condition 4 need only be

verified for rows added to the ORDER and ORDER-LINE tables since the previous verification.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 51 of 130

3.4 Isolation Requirements

3.4.1 Isolation Property Definition

Isolation can be defined in terms of phenomena that can occur during the execution of concurrent d atabase

transactions. The following phenomena are possible:

P0 ("Dirty Write"): Database transaction T1 reads a data element and modifies it. Database transaction T2 then

modifies or deletes that data element, and performs a COMMIT. If T1 were to attempt to re-read the data

element, it may receive the modified value from T2 or d iscover that the data element has been deleted .

P1 ("Dirty Read "): Database transaction T1 modifies a data element. Database transaction T2 then reads that data

element before T1 performs a COMMIT. If T1 were to perform a ROLLBACK, T2 will have read a value that

was never committed and that may thus be considered to have never existed .

P2 ("Non-repeatable Read "): Database transaction T1 reads a data element. Database transaction T2 then modifies

or deletes that data element, and performs a COMMIT. If T1 were to attempt to re-read the data element, it

may receive the modified value or d iscover that the data element has been deleted.

P3 ("Phantom "): Database transaction T1 reads a set of values N that satisfy some <search condition>. Database

transaction T2 then executes statements that generate one or more data elements that sa tisfy the <search

condition> used by database transaction T1. If database transaction T1 were to repeat the initial read with

the same <search condition>, it obtains a d ifferent set of values.

Each database transaction T1 and T2 above must be executed completely or not at all.

The following table defines four isolation levels with respect to the phenomena P0, P1, P2, and P3.

Isolation

Level

P0 P1 P2 P3

0 Not Possible Possible Possible Possible

1 Not Possible Not Possible Possible Possible

2 Not Possible Not Possible Not Possible Possible

3 Not Possible Not Possible Not Possible Not Possible

The following terms are defined :

T1 = New-Order transaction

T2 = Payment transaction

T3 = Delivery transaction

T4 = Order-Status transaction

T5 = Stock-Level transaction

Tn = Any arbitrary transaction

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 52 of 130

Although arbitrary, the transaction Tn may not do d irty writes.

The following table defines the isolation requirements which must be met by the TPC -C transactions.

Req.

For transactions

in this set:

these

phenomena:

must NOT be seen

by this transaction:

Textual Description:

1. {Ti, Tj}

1 ≤ i,j ≤ 4

P0, P1, P2, P3 Ti Level 3 isolation between New -

Order, Payment, Delivery, and

Order-Status transactions.

2. {Ti, Tn}

1 ≤ i ≤ 4

P0, P1, P2 Ti Level 2 isolation for New -Order,

Payment, Delivery, and Order-

Status transactions relative to any

arbitrary transaction.

3. {Ti, T5}

1 ≤ i ≤ n

P0, P1 T5 Level 1 isolation for Stock-Level

transaction relative to TPC-C

transactions and any arbitrary

transaction.

Sufficient conditions must be enabled at either the system or application level to ensure the required isolation

defined above is obtained .

3.4.2 Isolation Tests

For conventional locking schemes, isolation should be tested as described below. Systems that implement other

isolation schemes may require d ifferent validation techniques. It is the responsibility of the test sponsor to d isclose

those techniques and the tests for them. If isolation schemes other than conventional locking are used , it is

permissible to implement these tests d ifferently provided full details are d isclosed . (Examples of d ifferent validation

techniques are shown in Isolation Test 7, Clause 3.4.2.7).

3.4.2.1 Isolation Test 1

This test demonstrates isolation for read -write conflicts of Order-Status and New-Order transactions. Perform the

following steps:

1. Start a New-Order transaction T1.

2. Stop transaction T1 immediately prior to COMMIT.

3. Start an Order-Status transaction T2 for the same customer used in T1. Transaction T2 attempts to read the

data for the order T1 has created .

4. Verify that transaction T2 waits.

5. Allow transaction T1 to complete. T2 should now complete.

6. Verify that the results from T2 match the data entered in T1.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 53 of 130

3.4.2.2 Isolation Test 2

This test demonstrates isolation for read -write conflicts of Order-Status and New -Order transactions when the New-

Order transaction is ROLLED BACK. Perform the following steps:

1. Perform an Ord er-Status transaction T0 for some customer. Let T0 complete.

2. Start a New-Order transaction T1 for the same customer used in T0.

3. Stop transaction T1 immediately prior to COMMIT.

4. Start an Order-Status transaction T2 for the same customer used in T0. Transaction T2 attempts to read the

data for the order T1 has created .

5. Verify that transaction T2 waits.

6. ROLLBACK transaction T1. T2 should now complete.

7. Verify that the data returned from T2 match the data returned by T0.

3.4.2.3 Isolation Test 3

This test demonstrates isolation for write-write conflicts of two New -Order transactions. Perform the following

steps:

1. Start a New-Order transaction T1.

2. Stop transaction T1 immediately prior to COMMIT.

3. Start another New -Order transaction T2 for the same customer as T1.

4. Verify that transaction T2 waits.

5. Allow transaction T1 to complete. T2 should now complete.

6. Verify that the order number returned for T2 is one greater than the order number for T1. Verify that the

value of D_NEXT_O_ID reflects the results of both T1 and T2, i.e., it has been incremented by two and is

one greater than the order number for T2.

3.4.2.4 Isolation Test 4

This test demonstrates isolation for write-write conflicts of two New -Order transactions when one transaction is

ROLLED BACK. Perform the following steps:

1. Start a New-Order transaction T1 which contains an invalid item number.

2. Stop transaction T1 immediately prior to ROLLBACK.

3. Start another New-Order transaction T2 for the same customer as T1.

4. Verify that transaction T2 waits.

5. Allow transaction T1 to complete. T2 should now complete.

6. Verify that the order number returned for T2 is one greater than the p revious order number. Verify that

the value of D_NEXT_O_ID reflects the result of only T2, i.e., it has been incremented by one and is one

greater than the order number for T2.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 54 of 130

3.4.2.5 Isolation Test 5

This test demonstrates isolation for write-write conflicts of Payment and Delivery transaction s. Perform the

following steps:

1. Start a Delivery transaction T1.

2. Stop transaction T1 immediately prior to COMMIT.

3. Start a Payment transaction T2 for the same customer as one of the new orders being delivered by T1.

4. Verify that transaction T2 waits.

5. Allow transaction T1 to complete. T2 should now complete.

6. Verify that C_BALAN CE reflects the results of both T1 and T2.

Comment: If the Delivery business transaction is execu ted as multiple database transaction s, then the transaction T1,

in bullet 6 above, can be chosen to be one of these database transactions.

3.4.2.6 Isolation Test 6

This test demonstrates isolation for write-write conflicts of Payment and Delivery transaction s when the Delivery

transaction is ROLLED BACK. Perform the following steps:

1. Start a Delivery transaction T1.

2. Stop transaction T1 immediately prior to COMMIT.

3. Start a Payment transaction T2 for the same customer as one of the new orders being delivered by T1.

4. Verify that transaction T2 waits.

5. ROLLBACK transaction T1. T2 should now complete.

6. Verify that C_BALAN CE reflects the results of only transaction T2.

3.4.2.7 Isolation Test 7

This test demonstrates repeatable reads for the New -Order transaction while an interactive transaction updates the

price of an item. Given two random item number x and y, perform the following steps:

1. Start a transaction T1. Query I_PRICE from items x and y. COMMIT transaction T1.

2. Start a New-Order transaction T2 for a group of items includ ing item x twice and item y.

3. Stop transaction T2 after querying the pr ice of item x a first time and immediately before querying the

prices of item y and of item x a second time.

4. Start a transaction T3. Increase the price of items x and y by 10 percent.

Case A, if transaction T3 stalls:

5A. Continue transaction T2 and verify that the price of items x (the second time) and y match the values read

by transaction T1. COMMIT transaction T2.

6A. Transaction T3 should now complete and be COMMITTED.

7A. Start a transaction T4. Query I_PRICE from items x and y. COMMIT transaction T4.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 55 of 130

8A. Verify that the prices read by transaction T4 match the values set by transaction T3.

Case B, if transaction T3 does not stall and transaction T2 ROLLS BACK:

5B. Transaction T3 has completed and has been COMMITTED.

6B. Continue transaction T2 and verify that it is instructed to ROLL BACK by the data manager.

7B. Start a transaction T4. Query I_PRICE from items x and y. COMMIT transaction T4

8B. Verify that the prices read by transaction T4 match the values set by transaction T3.

Case C, if transaction T3 ROLLS BACK:

5C. Verify that transaction T3 is instructed to ROLL BACK by the data manager.

6C. Continue transaction T2 and verify that the price of items x (the second tim e) and y match the values read

by transaction T1. COMMIT transaction T2.

7C. Start a transaction T4. Query I_PRICE from items x and y. COMMIT transaction T4

8C. Verify that the prices read by transaction T4 match the values read by transactions T1 and T2.

Case D , if transaction T3 does not stall and no transaction is ROLLED BACK:

5D. Transaction T3 has completed and has been COMMITTED.

6D. Continue transaction T2 and verify that the price of items x (the second time) and y match the values read

by transaction T1. COMMIT transaction T2.

7D. Start a transaction T4. Query I_PRICE from items x and y. COMMIT transaction T4

8D. Verify that the prices read by transaction T4 match the values set by transaction T3.

Comment 1: This test is successfully executed if either case A, B, C or D of the above steps are followed . The test

sponsor must d isclose the case followed during the execution of this test.

Comment 2: If the implementation uses replication on the ITEM table and all transactions in Isolation Test 7 use the

same copy of the ITEM table, updates to the ITEM table are not required to be propagated to other copies of the

ITEM table. This relaxation of ACID properties on a replicated table is only valid under the above conditions and in

the context of Isolation Test 7.

Comment 3: Transactions T1, T2, and T4 are not used to measure throughput and are only used in the context of

Isolation Test 7.

3.4.2.8 Isolation Test 8

This test demonstrates isolation for Level 3 (phantom) protection between a Delivery and a New -Order transaction.

Perform the following steps:

1. Remove all rows for a random ly selected d istrict and warehouse from the NEW-ORDER table.

2. Start a Delivery transaction T1 for the selected warehouse.

3. Stop T1 immediately after read ing the NEW-ORDER table for the selected d istrict. No qualifying row

should be found .

4. Start a New-Order transaction T2 for the same warehouse and d istrict.

Case A, if transaction T2 stalls:

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 56 of 130

5A. Continue transaction T1 by repeating the read of the NEW-ORDER table for the selected d istrict.

6A. Verify that there is still no qualifying row found .

7A. Complete and COMMIT transaction T1.

8A. Transaction T2 should now complete.

Case B, if transaction T2 does not stall:

5B. Complete and COMMIT transaction T2.

6B. Continue transaction T1 by repeating th e read of the NEW-ORDER table for the selected d istrict.

7B. Verify that there is still no qualifying row found .

8B. Complete and COMMIT transaction T1.

Comment: Note that other cases, besides A and B, are possible. The intent of this test is to demonstrate that in all

cases when T1 repeats the read of the NEW-ORDER table for the selected d istrict, there is still no qualifying row

found .

3.4.2.9 Isolation Test 9

This test demonstrates isolation for Level 3 (phantom) protection between an Order -Status and a New -Order

transaction. Perform the following steps:

1. Start an Order-Status transaction T1 for a selected customer.

2. Stop T1 immediately after read ing the ORDER table for the selected customer. The most recent order for

that customer is found .

3. Start a New-Order transaction T2 for the same customer.

Case A, if transaction T2 stalls:

5A. Continue transaction T1 by repeating the read of the ORDER table for the selected customer.

6A. Verify that the order found is the same as in step 2.

7A. Complete and COMMIT transaction T1.

8A. Transaction T2 should now complete.

Case B, if transaction T2 does not stall.

5B. Complete and COMMIT transaction T2.

6B. Continue transaction T1 by repeating the read of the ORDER table for the selected d istrict.

7B. Verify that the order found is the same as in step 2.

8B. Complete and COMMIT transaction T1.

Comment: Note that other cases, besides A and B, are possible. The intent of this test is to demonstrate that in all

cases when T1 repeats the read of the ORDER table for the selected customer, the order found is the same as in step

3.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 57 of 130

3.5 Durability Requirements

The tested system must guarantee durability: the ability to preserve the effects of committed transactions and ensure

database consistency after recovery from any one of the failures listed in Clause 3.5.3.

Comment 1: No system provides complete durability (i.e., durability under all possible types of failures). The

specific set of single failures addressed in Clause 3.5.3 is deemed sufficiently significant to justify demonstration of

durability across such failures. However, the limited nature of the tests listed must not be interpreted to allow othe r

unrecoverable single points of failure.

Comment 2: The durability requirement does not include the ability to protect against the effect of multiple failures

as described in Clause 3.5.3 even if those multiple failures are the result of a single incident .

3.5.1 Durable Medium is a Field Replaceable Unit (FRU) data storage medium that is either:

1. An inherently non-volatile medium (e.g., magnetic d isk, magnetic tape, optical d isk, etc.) or

2. A volatile medium that will ensure the transfer of data automatically, before any data is lost, to an

inherently non-volatile medium after the failure of external power independently of reapplication of

external power.

 A configured and priced Uninterruptible Power Supply (UPS) is not considered external power.

Comment: A durable medium can fail; this is usually protected against by replication on a second durable medium

(e.g., mirroring) or logging to another durable medium. Memory can be considered a durable medium if it can

preserve data long enough to satisfy the requirement stated in item 2 above, for example, if it is accompanied by an

Uninterruptible Power Supply, and the contents of memory can be transferred to an inherently non -volatile medium

during the failure. Note that no d istinction is made between main memory and memory performing similar

permanent or temporary data storage in other parts of the system (e.g., d isk controller caches).

3.5.2 Committed Property Definition

A transaction is considered committed when the transaction manager component of the system h as either written

the log or written the data for the committed updates associated with the transaction to a durable medium.

Comment 1: Transactions can be committed without the user subsequently receiving notification of that fact, since

message integrity is not required for TPC-C.

Comment 2: Although the order of operations in the transaction profiles (Clause 2) is immaterial, the actual

communication of the output data cannot begin until the commit operation has successfully completed .

3.5.3 List of single failures

The Single Points of Failure apply to components of the SUT that contribute to the durability requirement. In

configurations where more than one instance of an operating system performs an identica l benchmark function, the

tests for the failures listed here must be completed on at least one such instance. In add ition, if multiple instances of

an operating system manage data that is maintained as a single image for the benchmark application (e.g., a

database cluster), then the Power Failure test must also be performed simultaneously on all such instances.

Comment 1: An example of multiple systems performing an identical function is a single database image on a

clustered system in TPC-C.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 58 of 130

Comment 2: A single test can adequately satisfy the requirements of multiple single points of failure (e.g., A single

"system crash test" could be used for clauses 3.5.3.2, 3.5.3.3, and 3.5.3.4.)

Comment 3: The term "simultaneously" as applied to a power failure of multiple instances within the SUT is

interpreted to mean within 3 seconds to allow for variances in a manual procedure that may be used to accomplish

the test.

3.5.3.1 Permanent irrecoverable failure of any single durable medium during the Measurement Interval

containing TPC-C database tables or recovery log data.

Comment: If main memory is used as a durable medium, then it must be considered as a potential single point of

failure. Sample mechanisms to survive single durable medium failures are database archiving in conjunction with a

redo (after image) log, and mirrored durable media. If memory is the durable medium and mirroring is the

mechanism used to ensure durability, then the mirrored memories must be independently powere d .

3.5.3.2 Instantaneous interruption (system or subsystem crash/ system hang) in processing which causes all

or part of the processing of atomic transactions to halt.

Comment 1: This may imply abnormal system shutdown which requires load ing of a fresh copy of the operating

system from the boot device. It does not necessarily imply loss of volatile memory . When the recovery mechanism

relies on the pre-failure contents of volatile memory, the means used to avoid the loss of volatile memory (e.g., an

Uninterruptible Power Supply) must be included in the system cost calcu lation. A sample mechanism to survive an

instantaneous interruption in processing is an undo/ redo log.

Comment 2: In configurations where more than one instance of an operating system can participate in an atomic

transaction and are connected via a physical medium other than an integrated bus (e.g., bus extender cable, high

speed LAN, or other connection methods between the multiple instances of the operating system that could be

vulnerable to a loss from physical d isruption), the instantaneous interruption of this communication is included in

this definition as an item that needs to be tested . Interruption of one instance of redundant connections is required .

Comment 3: It is not the intention of this clause to require interruption of communication to d isk towers or a d isk

subsystem where redundancy exists. For example, log d isks can be assumed to provide redundancy for d ata d isks.

3.5.3.3 Failure of all or parts of memory (loss of contents).

Comment: This implies that all or part of memory has failed . This may be caused by a loss of external power or the

permanent failure of a memory board .

3.5.3.4 Power Failure

Comment 1: Loss of all external power to the SUT for an indefinite time period . This must include at least all

portions of the SUT that participate in the database portions of transactions.

Comment 2: The power failure requirement can be satisfied by pricing sufficient UPS‟ s to guarantee system

availability of all components that fall under the power failure requirement for a period of at least 30 minutes. Use

of a UPS protected configuration must not introduce new single points of failure that are not protected by other parts

of the configuration. The 30-minute requirement may be proven either through a measurement or through a

calculation of the 30-minute power requirements (in watts) for the portion of the SUT that is protected mu ltip lied by

1.4.

Comment 3: The contribution of the UPS in satisfying this durability requirement does not need to be tested .

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 59 of 130

3.5.4 Durability Tests

The intent of these tests is to demonstrate that all transactions whose output messages have been received at the

terminal or RTE have in fact been committed in spite of any single failure from the list in Clause 3.5.3 and that all

consistency conditions are still met after the database is recov ered .

It is required that the system crash test(s) and the loss of memory test(s) described in Clauses 3.5.3.2 and 3.5.3.3 be

performed under full terminal load and a fully scaled database. The tpmC of the test run(s) for Clauses 3.5.3.2 and

3.5.3.3 must be at least 90% of the tpmC reported for the benchmark.

The durable media failure test(s) described in Clause 3.5.3.1 may be performed on a subset of the SUT configuration

and database. The tpmC of the test run for Clause 3.5.3.1 must be at least 10% of the tomC reported for the

benchmark.

For the SUT subset, all multiple hardware components, such as processors and d isk/ controllers in the full SUT

configuration, must be represented by the greater of 10% of the configuration or two of each of the multiple

hardware components. The database must be scaled to at least 10% of the fu lly scaled database, with a minimum of

two warehouses. An exception to the configuration requirements stated above may be allowed by the TPC Auditor

in order to reduce benchmark complexity. Any such exception must be documented in the attestation letter from the

Auditor. Furthermore, the standard driving mechanism must be used in this test. The test spon sor must state that to

the best of their knowledge, a fully scaled test would also pass all durability tests.

For each of the failure types defined in Clause 3.5.3, perform the following steps:

1. Compute the sum of D_NEXT_O_ID for all rows in the DISTRICT table to determine the current count of

the total number of orders (count1).

2. Start submitting TPC-C transactions. The transaction rate must be that described above and meet all other

requirements of a reported measurement interval (see Clause 5.5), exclud ing the requirement that the

interval contain at least four checkpoint (see Clause 5.5.2.2). The SUT must be run at this rate for at least 5

minutes. On the Driver System, record committed and rolled back New -Order transactions in a "success"

file.

3. Cause the failure selected from the list in Clause 3.5.3.

4. Restart the system under test using normal recovery procedures.

5. Compare the contents of the "success" file and the ORDER table to verify that every record in the "success"

file for a committed New-Order transaction has a corresponding record in the ORDER table and that no

entries exist for rolled back transactions.

 Repeat step 1 to determine the total number of orders (count2). Verify that count2-count1 is greater or

equal to the number of records in the "success" file for committed New-Order transactions. If there is an

inequality, the ORDER table must contain add itional records and the d ifference must be less than or equal

to the number of terminals simulated .

 Comment: This d ifference should be d ue only to transactions which were committed on the system under

test, but for which the output data was not d isplayed on the input/ output screen before the failure.

6. Verify Consistency Condition 3 as specified in Clause 3.3.2.3.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 60 of 130

3.5.5 Additional Requirements

3.5.5.1 The recovery mechanism cannot use the contents of the HISTORY table to support the durability

property.

3.5.5.2 Roll-forward recovery from an archive database copy (e.g., a copy taken prior to the run) using redo

log data is not acceptable as the recovery mechanism in the case of failures listed in Clause 3.5.3.2 and 3.5.3.3. Note

that "checkpoints", "control points", "consistency points", etc. of the database taken during a run are not considered

to be archives.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 61 of 130

Clause 4: SCALING and DATABASE POPULATION

4.1 General Scaling Rules

The throughput of the TPC-C benchmark is d riven by the activity of the terminals connected to each warehouse. To

increase the throughput, more warehouses and their associated terminals must be configured . Each warehouse

requires a number of rows to populate the database along with some storage space to maintain the data generated

during a defined period of activity called 60-day period. These requirements define how storage space and database

population scale with throughput.

4.1.1 The intent of the scaling requirements is to maintain the ratio between the transaction load presented

to the system under test, the card inality of the tables accessed by the transactions, the required space for storage, and

the number of terminals generating the transaction load .

4.1.2 Should any scaling value in Clause 4.2 be exceeded , the others must be increased proportionally to

maintain the same ratios among them as in Clause 4.2.

4.1.3 The reported throughput may not exceed the maximum allowed by the scaling requirements in Clause

4.2 and the pacing requirements in Clause 5.2. While the reported throughput may fall short of the maximum

allowed by the configured system, the price/ performance computation (see Clause 7.1) must report the price for the

system as actually configured . To prevent over -scaling of systems, the reported throughput cannot fall short of 9

tpmC per configured warehouse.

Comment: The maximum throughput is achieved with infinitely fast transactions resulting in a null response time

and minimum required wait times. The intent of this clause is to prevent reporting a throughput that exceeds this

maximum, which is computed to be 12.86 tpmC per warehouse. The above 9 tpmC represents 70% of the computed

maximum throughput.

4.2 Scaling Requirements

4.2.1 The WAREHOUSE table is used as the base unit of scaling. The card inality of all other tables (except

for ITEM) is a function of the number of configured warehou ses (i.e., card inality of the WAREHOUSE table). This

number, in turn, determines the load applied to the system under test which results in a reported throughput (see

Clause 5.4).

Comment 1: The card inality of the HISTORY, NEW-ORDER, ORDER, and ORDER-LINE tables will naturally vary

as a result of repeated test executions. The initial database population and the transaction profiles are designed to

minimize the impact of this variation on performance and maintain repeatability between subsequent test results.

Comment 2: The card inality of the ITEM table is constant regard less of the number of configured warehouses, as all

warehouses maintain stocks for the same catalog of items.

4.2.2 Configuration

The following scaling requirements represent the initial configuration for the test described in Clause 5:

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 62 of 130

1. For each active warehouse in the database, the SUT must accept requests for transactions from a

population of 10 terminals.

2. For each table that composes the database, the card inality of the initial population per warehouse is

specified as follows:

 Table Name Card inality Typical 3 Row Typical 3 Table

 (in rows) Length (in bytes) Size (in 1,000 bytes)

 WAREHOUSE 1 89 0.089

 DISTRICT 10 95 0.950

 CUSTOMER 30k 655 19,650

 HISTORY 1 30k 46 1,380

 ORDER 4 30k 24 720

 NEW-ORDER 4 9k 8 72

 ORDER-LINE 4 300k 54 16,200

 STOCK 100k 306 30,600

 ITEM 2 100k 82 8,200

1 Small variations: subject to test execution as rows may be inserted and deleted by transaction ac tivity

from test executions.

2 Fixed card inality: does not scale with number of warehouses.

3 Typical lengths and sizes given here are examples, not requirements, of what could result from an

implementation (sizes do not include storage/ access overheads).

4 One percent (1%) variation in row card inality is allowed to account for the random variation

encountered during the initial data load ing of the database.

Note: The symbol "k" used in the card inality column means one thousand

3. Storage must be priced for sufficient space to store and maintain the data generated during a period of 60

days of activity with an average of 8 hours per day at the reported th roughput called the 60-day period).

This space must be computed accord ing to Clause 4.2.3 and must be usable by the data manager to store

and maintain the rows that would be added to the HISTORY, ORDER, and ORDER-LINE tables during

the 60-day period .

4. The increment (granularity) for scaling the database and the terminal population is one warehouse,

comprised of one WAREHOUSE row, 10 DISTRICT rows, their associated CUSTOMER, HISTORY,

ORDER, NEW-ORDER, and ORDER-LINE rows, 100,000 STOCK rows, 10 terminals, and priced storage

for the 60-day period .

Comment: Over-scaling the database, i.e., configuring a larger number of warehouses and associated tables (Wc)

than what is actually accessed during the measurement (Wa) is permitted , provided the following conditions are

met:

Let, Wc = number of warehouses configured at database generation,

 Wa = number of warehouses accessed during the measurement (active warehouses),

 Wi = number of warehouses not accessed during the measurement (inactive warehouses).

 It can be demonstrated that inactive warehouses are not a ccessed during the measurement. This fact must be

demonstrated in one of the following ways:

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 63 of 130

1. rows in the WAREHOUSE table that pertain to the inactive warehouses (Wi) must be deleted prior to the

measurement,

2. show that the sum of D_NEXT_O_ID for each of the inactive warehouses does not change during the

measurement, and that W_YTD for each of the inactive warehouses does not change during the measurement.

• the reported throughput cannot fall short of 9 tpmC per configured warehouse (Wc -see Clause 4.1.3),

• the 60-day space computations must be computed based on Wc, the number of warehouses configured at

database generation.

4.2.3 60-Day Space Computation

The storage space required for the 60-day period must be determined as follows:

1. The test database must be built includ ing the initial database population (see Clause 4.3) and all ind ices

present during the test.

2. The test database must be built to sustain th e reported throughput during an eight hour period . This

excludes performing on the database any operation that does not occur during the measurement interval

(see Clause 5.5).

3. The total storage space allocated for the test database must be decomposed into the following:

• Free-Space: any space allocated to the test database and which is available for future use. It is

comprised of all database storage space not used to store a database entity (e.g., a row, an index, a

metadatum) or not used as formatting overhead by the data manager.

• Dynamic-Space: any space used to store existing rows from th e dynamic tables (i.e., the HISTORY,

ORDER, and ORDER-LINE tables). It is comprised of all database storage space used to store rows and

row storage overhead for the dynamic tables. It includes any data that is added to the database as a

result of inserting a new row independently of all ind ices. It does not include index data or other

overheads such as index overhead , page overhead , block overhead , and table overhead .

• Static-Space: any space used to store static information and ind ices. It is comprised of all space

allocated to the test database and which does not qualify as either Free -Space or Dynamic-Space.

4. Given that the system must be configured to sustain the reported throughput during an eight hour period ,

the database must allow the dynamic tables to grow accord ingly for at least eight hours without impacting

performance. Free-Space used to allow growth of the d ynamic tables for an eight hour day at the reported

throughput is called the Daily-Growth. Given W, the number of configured warehouses on the test

system, the Daily-Growth must be computed as:

 Daily-Growth = (dynamic-Space / (W * 62.5)) * tpmC

 Note: In the formula above, 62.5 is used as a normalizing factor since the initial database population for

each warehouse holds the Dynamic-Space required for an eight hour day of activity at 62.5 tpmC.

5. Any Free-Space beyond 150% of the Daily-Growth is called Daily-Spread, and must be added to the

Dynamic-Space when computing the storage requirement for the 60-day period . The Daily-Spread must be

computed as:

 Daily-Spread = Free-Space - 1.5 * Daily-Growth

 If the computed Daily-Spread is negative, then a null value must be used for Daily -Spread .

6. The 60-Day-Space must be computed as:

 60-Day-Space = Static-Space + 60 * (Daily-Growth + Daily-Spread)

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 64 of 130

7. The Dynamic-Space present in the test database is considered as part of the 60-Day-Space.

4.3 Database Population

4.3.1 The test described in Clause 5 requires that the properly scaled population be present in the test

database. Each table must contain the number of rows defined in Clause 4.2.2 prior to test execution (e.g., the New -

Order table must contain 2,000 rows per warehouse).

4.3.2 Definition of Terms

4.3.2.1 The term random means independently selected and uniformly d istributed over the specified range of

values.

Comment: For the purpose of populating the initial d atabase only, random numbers can be generated by selecting

entries in sequence from a set of at least 10,000 pregenerated random numbers. This technique cannot be used for the

field O_OL_CNT.

4.3.2.2 The notation random a-string [x .. y] (respectively, n-string [x .. y]) represents a string of random

alphanumeric (respectively, numeric) characters of a random length of minimum x, maximum y, and mean (y+x)/ 2.

Comment: The character set used must be able to represent a minimum of 128 d ifferent characters. The character set

used must include at least 26 lower case letters, 26 upper case letter s, and the d igits „0‟ to „9‟ .

4.3.2.3 The customer last name (C_LAST) must be generated by the concatenation of three variable length

syllables selected from the following list:

 0 1 2 3 4 5 6 7 8 9

 BAR OUGHT ABLE PRI PRES ESE ANTI CALLY ATION EING

Given a number between 0 and 999, each of the three syllables is determined by the corresponding d igit in the three

d igit representation of the number. For example, the number 371 generates the name PRICALLYOUGHT, and the

number 40 generates the name BARPRESBAR.

4.3.2.4 The notation unique within [x] represents any one value within a set of x contiguous values, unique

within the group of rows being populated . When several groups of rows of the same type are populat ed (e.g., there

is one group of customer type rows for each d istrict type row), each group must use the same set of x contiguous

values.

4.3.2.5 The notation random within [x .. y] represents a random value independently selected and uniform ly

d istributed between x and y, inclusively, with a mean of (x+y)/ 2, and with the same number of d igits of precision as

shown. For example, [0.01 .. 100.00] has 10,000 unique values, whereas [1 ..100] has only 100 unique va lues.

4.3.2.6 The notation random permutation of [x .. y] represents a sequence of numbers from x to y arranged

into a random order. This is commonly known as a permutation (or selection) without replacement.

4.3.2.7 The warehouse zip code (W_ZIP), the d istrict zip code (D_ZIP) and the customer zip code (C_ZIP) must be

generated by the concatenation of:

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 65 of 130

1. A random n-string of 4 numbers, and

2. The constant string '11111'.

Given a random n-string between 0 and 9999, the zip codes are determined by concatenating the n -string and the

constant '11111'. This will create 10,000 unique zip codes. For example, the n -string 0503 concatenated with 11111,

will make the zip code 050311111.

Comment: With 30,000 customers per warehouse and 10,000 zip codes available, there will be an average of 3

customers per warehouse with the same zip code.

4.3.3 Table Population Requirements

4.3.3.1 The initial database population must be comprised of:

• 100,000 rows in the ITEM table with:

 I_ID unique within [100,000]

 I_IM_ID random within [1 .. 10,000]

 I_NAME random a-string [14 .. 24]

 I_PRICE random within [1.00 .. 100.00]

 I_DATA random a-string [26 .. 50]. For 10% of the rows, selected at random, the string "ORIGINAL" must

be held by 8 consecutive characters starting at a random position within I_DATA

• 1 row in the WAREHOUSE table for each configured warehouse with:

 W_ID unique within [number_of_configured_warehouses]

 W_NAME random a-string [6 .. 10]

 W_STREET_1 random a-string [10 .. 20]

 W_STREET_2 random a-string [10 .. 20]

 W_CITY random a-string [10 .. 20]

 W_STATE random a-string of 2 letters

 W_ZIP generated accord ing to Clause 4.3.2.7

 W_TAX random within [0.0000 .. 0.2000]

 W_YTD = 300,000.00

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 66 of 130

 For each row in the WAREHOUSE table:

o 100,000 rows in the STOCK table with:

 S_I_ID unique within [100,000]

 S_W_ID = W_ID

 S_QUANTITY random within [10 .. 100]

 S_DIST_01 random a-string of 24 letters

 S_DIST_02 random a-string of 24 letters

 S_DIST_03 random a-string of 24 letters

 S_DIST_04 random a-string of 24 letters

 S_DIST_05 random a-string of 24 letters

 S_DIST_06 random a-string of 24 letters

 S_DIST_07 random a-string of 24 letters

 S_DIST_08 random a-string of 24 letters

 S_DIST_09 random a-string of 24 letters

 S_DIST_10 random a-string of 24 letters

 S_YTD = 0

 S_ORDER_CNT = 0

 S_REMOTE_CNT = 0

 S_DATA random a-string [26 .. 50]. For 10% of the rows, selected at random, the string

 "ORIGINAL" must be held by 8 consecutive characters starting at a rand om position within

 S_DATA

o 10 rows in the DISTRICT table with:

 D_ID unique within [10]

 D_W_ID = W_ID

 D_NAME random a-string [6 .. 10]

 D_STREET_1 random a-string [10 .. 20]

 D_STREET_2 random a-string [10 .. 20]

 D_CITY random a-string [10 .. 20]

 D_STATE random a-string of 2 letters

 D_ZIP generated accord ing to Clause 4.3.2.7

 D_TAX random within [0.0000 .. 0.2000]

 D_YTD = 30,000.00

 D_NEXT_O_ID = 3,001

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 67 of 130

 For each row in the DISTRICT table:

* 3,000 rows in the CUSTOMER table with:

 C_ID unique within [3,000]

 C_D_ID = D_ID

 C_W_ID = D_W_ID

 C_LAST generated accord ing to Clause 4.3.2.3, itera ting through the range of [0 .. 999] for the first

1,000 customers, and generating a non -uniform random number using the function

NURand(255,0,999) for each of the remaining 2,000 customers. The run -time constant C (see Clause

2.1.6) used for the database population must be randomly chosen independently from the test

run(s).

 C_MIDDLE = "OE"

 C_FIRST random a-string [8 .. 16]

 C_STREET_1 random a-string [10 .. 20]

 C_STREET_2 random a-string [10 .. 20]

 C_CITY random a-string [10 .. 20]

 C_STATE random a-string of 2 letters

 C_ZIP generated accord ing to Clause 4.3.2.7

 C_PHONE random n-string of 16 numbers

 C_SINCE date/ time given by the operating system when the CUSTOMER table was populated .

 C_CREDIT = "GC". For 10% of the rows, selected at random , C_CREDIT = "BC"

 C_CREDIT_LIM = 50,000.00

 C_DISCOUNT random within [0.0000 .. 0.5000]

 C_BALANCE = -10.00

 C_YTD_PAYMENT = 10.00

 C_PAYMENT_CNT = 1

 C_DELIVERY_CNT = 0

 C_DATA random a-string [300 .. 500]

 For each row in the CUSTOMER table:

- 1 row in the HISTORY table with:

 H_C_ID = C_ID

 H_C_D_ID = H_D_ID = D_ID

 H_C_W_ID = H_W_ID = W_ID

 H_DATE current date and time

 H_AMOUNT = 10.00

 H_DATA random a-string [12 .. 24]

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 68 of 130

* 3,000 rows in the ORDER table with:

 O_ID unique within [3,000]

 O_C_ID selected sequentially from a random permutation of [1 .. 3,000]

 O_D_ID = D_ID

 O_W_ID = W_ID

 O_ENTRY_D current date/ time given by the operating system

 O_CARRIER_ID random within [1 .. 10] if O_ID < 2,101, null otherwise

 O_OL_CNT random within [5 .. 15]

 O_ALL_LOCAL = 1

 For each row in the ORDER table:

- A number of rows in the ORDER-LINE table equal to O_OL_CNT, generated accord ing to the rules

for input data generation of the New -Order transaction (see Clause 2.4.1) with:

 OL_O_ID = O_ID

 OL_D_ID = D_ID

 OL_W_ID = W_ID

 OL_NUMBER unique within [O_OL_CNT]

 OL_I_ID random within [1 .. 100,000]

 OL_SUPPLY_W_ID = W_ID

 OL_DELIVERY_D = O_ENTRY_D if OL_O_ID < 2,101, null otherwise

 OL_QUANTITY = 5

 OL_AMOUNT = 0.00 if OL_O_ID < 2,101, random within [0.01 .. 9,999.99] otherwise

 OL_DIST_INFO random a-string of 24 letters

* 900 rows in the NEW-ORDER table corresponding to the last 900 rows in the ORDER table for that

d istrict (i.e., with NO_O_ID between 2,101 and 3,000), with:

 NO_O_ID = O_ID

 NO_D_ID = D_ID

 NO_W_ID = W_ID

Comment: Five percent (5%) variation from the target card inality of S_DATA with ” ORGINAL” , I_DATA with

“ ORIGINAL” , and C_CREDIT with “ BC” is allowed to account for the random variation encountered d uring the

initial data load ing of the database.

4.3.3.2 The implementation may not take advantage of the fact that some fields are initially populated with a

fixed value. For example, storage space cannot be saved by defining a default value for the field C_CREDIT_LIM

and storing this value only once in the database.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 69 of 130

Clause 5: PERFORMANCE METRICS and RESPONSE TIME

5.1 Definition of Terms

5.1.1 The term measurement interval refers to a steady state period during the execution of the benchmark

for which the test sponsor is reporting a throughput rating (see Clause 5.5 for detailed requirements).

5.1.2 The term completed transactions refers to any business transaction (see Clause 2.1.3) that has been

successfully committed at the SUT and whose ou tput data has been d isplayed by the Remote Terminal Emulator (in

case of a New-Order, Payment, Order-Status, or Stock-Level transaction) or for which a complete entry has been

written into a result file (in case of a Delivery transaction). New-Order transactions that are rolled back, as required

by Clause 2.4.1.4, are considered as completed transactions.

5.2 Pacing of Transactions by Emulated Users

5.2.1 The figure below illustrates the cycle executed by each emulated user (see Clause 5.2.2). The active

portion of the screen is represented with bold face text:

Prev ious

Screen

menu

Input

Screen

menu

Output

Screen

1 - Select transaction ty pe

3 - Measure Menu RT

2 - Display Screen

4 - Wait (Key ing Time)

6 - Measure Txn. RT

5 - Display Data

7 - Wait (Think Time)

menu

5.2.2 Each emulated user executes a cycle comprised of screens, wait times, and response times (RTs) as

follows:

1. Selects a transaction type from the menu accord ing to a weighted d istribution (see Clause 5.2.3).

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 70 of 130

2. Waits for the Input/ Output Screen to be d isplayed .

3. Measures the Menu RT (see Clause 5.3.3).

4. Enters the required number of input fields (see Clause 2) over the defined minimum Keying Time (see

Clause 5.2.5.2).

5. Waits for the required number of output field s (see Clause 2) to be d isplayed on the Input/ Output Screen.

6. Measures the Transaction RT (see Clause 5.3.4).

7. Waits for the defined minimum Think Time (see Clause 5.2.5.4) while the input/ ou tput screen remains

d isplayed .

At the end of the Think Time (Step 7) the emulated user loops back to select a transaction type from the menu (Step

1).

Comment: No action is required on the part of the SUT to cycle from Step 7 back to Step 1.

5.2.3 Each transaction type (i.e., business transaction) is available to each terminal through the Menu. Over

the measurement interval, the terminal population must maintain a minimum percentage of mix for each transaction

type as follows:

 Transaction Type Minimum % of mix

 New-Order 1 n/ a

 Payment 43.0

 Order-Status 4.0

 Delivery 4.0

 Stock-Level 4.0

 1 There is no minimum for the New -Order transaction as its measured rate is the reported throughput .

Comment 1: The intent of the minimum percentage of mix for each transaction type is to execu te approximately one

Payment transaction for each New-Order transaction and approximately one Order-Status transaction , one Delivery

transaction, and one Stock-Level transaction for every 10 New -Order transactions. This mix results in the complete

business processing of each order.

Comment 2: The total number of transactions, from which the minimum percentages of mix are derived, may be

calculated in either of two ways:

 Based on all transactions that were selected from the Menu and completed (see Clause 5.1.2) within the

measurement interval.

 Based on all transactions whose Transaction RT (see Clause 5.3.4) was completely measured at the RTE

during the measurement interval.

Comment 3: As an ease of benchmarking issue, the approach in Clause 5.4.2 may be used to compute the transaction

mix percentage and throughput data.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 71 of 130

5.2.4 Regulation of Transaction Mix

Transaction types must be selected uniformly at random while maintaining the required minimum percentage of

mix for each transaction type over the measurement interval. This must be done using one of the techniques

described in Clauses 5.2.4.1 and 5.2.4.2.

5.2.4.1 A weight is associated to each transaction type on the menu . The required mix is achieved by selecting

each new transaction uniformly at random from a weighted d istribution. The following requirements must be

satisfied when using this technique:

1. The actual weights are chosen by the test sponsor and must result in meeting the required minimum

percentages of mix in Clause 5.2.3.

2. For the purpose of achieving the required transaction mix, the RTE can dynamically ad just the weight

associated to each transaction type during the measurement interval. These ad justments must be limited

so as to keep the weights w ithin 5% on either side of their respective initial value.

5.2.4.2 One or more cards in a deck are associated to each transaction type on the Menu. The required mix is

achieved by selecting each new transaction uniformly at random from a deck whose content guarantees the required

transaction mix. The following requirements must be satisfied when using this technique:

1. Any number of terminals can share the same deck (includ ing but not limited to one deck per terminal or

one deck for all terminals).

2. A deck must be comprised of one or more sets of 23 cards (i.e., 10 New -Order cards, 10 Payment cards,

and one card each for Order-Status, Delivery, and Stock-level). The minimum size of a deck is one set per

terminal sharing this deck. If more than one deck is used , then all decks must be of equal sizes.

 Comment: Generating the maximum percentage of New -Order transactions while achieving the required

mix can be done for example by sharing a deck of 230 cards between 10 terminals.

3. Each pass through a deck must be made in a d ifferent uniformly random order. If a deck is accessed

sequentially, it must be randomly shuffled each time it is exhau sted . If a deck is accessed at random, cards

that are selected cannot be placed back in the deck until it is exhausted .

Comment: All terminals must select transactions using the same technique. Gaining a performance or a

price/ performance advantage by driving one or more terminals d ifferently than the rest of the terminal population

is not allowed .

5.2.5 Wait Times and Response Time Constraints

5.2.5.1 The Menu step is transaction independent. At least 90% of all Menu selections must have a Menu RT

(see Clause 5.3.3) of less than 2 seconds.

5.2.5.2 For each transaction type, the Keying Time is constant and must be a minimum of 18 seconds for New -

Order, 3 seconds for Payment, and 2 second s each for Order-Status, Delivery, and Stock-Level.

5.2.5.3 At least 90% of all transactions of each type must have a Transaction RT (see Clause 5.3.4) of less than

5 seconds each for New -Order, Payment, Order-Status, and Delivery, and 20 seconds for Stock-Level.

Comment: The total number of transactions, from which the Transaction RT of New-Order is computed , includes

New-Order transactions that rollback as required by Clause 2.4.1.4.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 72 of 130

5.2.5.4 For each transaction type, think time is taken independently from a negative exponential d istribution.

Think time, Tt, is computed from the following equation:

Tt = -log(r) * 

where: log = natural log (base e)

 Tt = think time

 r = random number uniformly d istributed between 0 and 1

  = mean think time

Each d istribution may be truncated at 10 times its mean value

5.2.5.5 The beginning of all wait times (Keying Times and Think Times) are to be taken after the last character

of outpu t has been d isplayed (see Clause 2.2.2) by the emulated terminal .

5.2.5.6 The 90th percentile response time for the New-Order, Payment, Order-Status, Stock-Level and the

interactive portion of the Delivery transactions must be greater than or equal to the average response time of that

transaction. If the 90th and the average response times are d ifferent by less that 100ms (.1 seconds), then they are

considered equal. This requirement is for the terminal response times only and does not apply to the deferred

portion of the Delivery transaction or to the menu step .

5.2.5.7 The following table summarizes the tran saction mix, wait times, and response time constraints:

 90th Percentile Minimum Mean

 Transaction Minimum Minimum Response Time of Think Time

 Type % of mix Keying Time Constraint Distribution

 New-Order n/ a 18 sec. 5 sec. 12 sec.

 Payment 43.0 3 sec. 5 sec. 12 sec.

 Order-Status 4.0 2 sec. 5 sec. 10 sec.

 Delivery 1 4.0 2 sec. 5 sec. 5 sec.

 Stock-Level 4.0 2 sec. 20 sec. 5 sec.

 1 The response time is for the terminal response (acknowledging that the transaction has been queued), not

for the execution of the transaction itself. At least 90% of the transactions must complete within 80 seconds

of their being queued (see Clause 2.7.2.2).

Comment 1: The response time constraints are set such that the throughput of the system is expected to be

constrained by the response time requirement for the New -Order transaction . Response time constraints for other

transactions are relaxed for that purpose.

Comment 2: The keying times for the transactions are chosen to be approximately proportional to the number of

characters input, and the think times are chosen to be approximately proportional to the number of charact ers

output.

5.2.5.8 For each transaction type, all configured terminals of the tested systems must use the same target

Keying Time and the same target mean of Think Time. These times must comply with the requirements summarized

in Clause 5.2.5.7.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 73 of 130

5.3 Response Time Definition

5.3.1 Each completed transaction submitted to the SUT must be ind ividually timed .

5.3.2 Response Times must be measured at the RTE. A Response Time (or RT) is defined by:

 RT = T2 - T1

where:

 T1 and T2 are measured at the RTE and defined as:

 T1 = timestamp taken before the last character of input data is entered by the emulated user.

 T2 = timestamp taken after the last character of output is received by the emulated terminal .

The resolution of the timestamp s must be at least 0.1 seconds.

Comment: The intent of the benchmark is to measure response time as experienced by the emulated user.

5.3.3 The Menu Response Time (Menu RT) is the time between the timestamp taken before the last

character of the Menu selection has been entered and the timestamp taken after th e last character of the

Input/ Output Screen has been received (includ ing clearing all input and output fields and d isplaying fixed fields,

see Clause 2).

Comment: Systems that do not require SUT/ RTE interaction for the Menu selection and the screen d isplay can

assume a null Menu RT and the components that provide the response for the Menu request (e.g. screen caching

terminals) must be included in the SUT and therefore must be priced .

5.3.4 The Transaction Response Time (Transaction RT) is the time between the timestamp taken before the

last character of the required input data has been sent from the RTE (see Clause 2) and the timestamp taken after the

last character of the required output data has been received by the RTE (see Clause 2) resulting from a transaction

execution.

Comment: If the emulated terminal must process the data being entered or d isplayed , the time for this processing

must be d isclosed and taken into account when calculating the Transaction RT.

5.4 Computation of Throughput Rating

The TPC-C transaction mix represents a complete business cycle. It consists of multiple business transaction s which

enter new orders, query the status of existing orders, deliver outstand ing orders, enter payments from customers,

and monitor warehouse stock levels.

5.4.1 The metric used to report Maximum Qualified Throughput (MQTh) is a number of orders processed

per minute. It is a measure of "business throughput" rather than a transaction execution rate. It implicitly takes into

account all transactions in the mix as their ind ividual throughput is controlled by the weighted Menu selection and

the minimum percentages of mix defined in Clause 5.2.3.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 74 of 130

5.4.2 The reported MQTh is the total number of completed New -Order transactions (see Clause 5.1.2),

where the Transaction RT (see Clause 5.3.4) was completely measured at the RTE during the measurement interval,

d ivided by the elapsed time of the interval. New -Order transactions that rollback, as required by Clause 2.4.1.4, must

be included in the reported MQTh.

5.4.3 The name of the metric used to report the MQTh of the SUT is tpmC.

5.4.4 All reported MQTh must be measured , rather than interpola ted or extrapolated , and truncated to

exactly zero decimal places. For example, suppose 105.548 tpmC is measured on a 100 terminal test for which 90% of

the New-Order transactions completed in less than 4.8 seconds and 117.572 tpmC is measured on a 110 terminal test

for which 90% of the transactions completed in less than 5.2 seconds. Then the reported tpmC is 105.

5.4.5 To be valid , the measurement interval must contain no more than 1% or no more than one (1),

whichever is greater, of the Delivery transaction s skipped because there were fewer than necessary orders present in

the New-Order table.

5.5 Measurement Interval Requirements

5.5.1 Steady State

5.5.1.1 The test must be conducted in a steady state condition that represents the true sustainable throughput

of the SUT.

5.5.1.2 Although the measurement interval may be as short as 120 minutes, the system under test must be

configured to run the test at the reported tpmC for a continuous period of at least eight hours without operator

intervention, maintaining full ACID properties. For example, the media used to store at least 8 hours of log data

must be configured if required to recover from any single point of failure (see Clause 3.5.3.1).

Comment 1: An example of a configuration that would not comply is one where a log file is allocated such that

better performance is achieved during the measured portion of the test than during the remaining portion of an eight

hour test, perhaps because a ded icated device was used initially but space on a shared device is used later in the full

eight hour test.

Comment 2: Steady state is easy to define (e.g., sustainable throughput) but d ifficult to prove. The test sponsor

(and / or the aud itor) is requ ired to report the method used to verify steady state sustainable throughput. The aud itor

is encouraged to use available monitoring tools to help determine the steady state.

Comment 3: Some aspects of an implementation can result in systematic but small va riations in sustained

throughput over an 8 hour period . The cumulative effect of such variations may be up to 2% of the reported

throughput. There is no requirement for an 8 hour run.

5.5.1.3 In the case where a ramp-up period is used to reach steady state, the properly scaled initial database

population is required at the beginning of the ramp up period . The transaction mix and the requirements

summarized in Clause 5.2.5.7 must be followed during the ramp-up as well as steady state period .

Comment: The intent of this clause is to prevent significant alteration to the properly scaled initial database

population during the ramp -up period .

5.5.1.4 A separate measurement to demonstrate reproducibility is not required .

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 75 of 130

5.5.1.5 While variability is allowed , the RTE cannot be artificially weighted to generate input data d ifferent

from the requirements described in Clauses 2.4.1, 2.5.1, 2.6.1, 2.7.1, and 2.8.1. To be valid , the input data generat ed

during a reported measurement interval must not exceed the following variability:

1. At least 0.9% and at most 1.1% of the New -Order transactions must roll back as a result of an unused item

number.

2. The average number of order-lines per order must be in the range of 9.5 to 10.5 and the number of order -

lines per order must be uniformly d istribu ted from 5 to 15 for the New -Order transactions that are

submitted to the SUT during the measurement interval.

3. The number of remote order-lines must be at least 0.95% and at most 1.05% of the number of order -lines

that are filled in by the New -Order transactions that are submitted to the SUT during the measurement

interval.

4. The number of remote Payment transaction s must be at least 14% and at most 16% of the number of

Payment transactions that are submitted to the SUT during the measurement interval.

5. The number of customer selections by customer last name in the Payment transaction must be at least 57%

and at most 63% of the number of Payment transactions that are submitted to the SUT during the

measurement interval.

6. The number of customer selections by customer last name in the Order-Status transaction must be at least

57% and at most 63% of the number of Order -Status transactions that are submitted to the SUT during the

measurement interval.

5.5.1.6 To be valid , the measurement interval must contain no more than 1% or no more than one (1),

whichever is greater, of the Delivery transaction s skipped because there were fewer than necessary orders present in

the New-Order table.

5.5.2 Duration

5.5.2.1 The measurement interval must:

1. Begin after the system reaches steady state.

2. Be long enough to generate reproducible th roughput results which are representative of the performance

which would be achieved during a sustained eight hour period .

3. Extend uninterrupted for a minimum of 120 minutes.

5.5.2.2 Some systems do not write modified database records/ pages to durable media at the time of

modification, but instead defer these writes. At some subsequent time, the modified records/ pages are written to

make the durable copy current. This process is defined as a checkpoint in this docum ent.

For systems which defer database write to durable media, it is a requirement that:

1. The time between check points (known as the Checkpoint Interval (CI)), must be less than or equal to 30

minutes. The Checkpoint Duration , time required by the DBMS to write modified database records/ pages

to durable media, must be less than or equal to the Checkpoint Interval.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 76 of 130

 Comment: For systems which recover from instantaneous interruptions by applying recovery data to the

database stored on durable media (database systems that do not perform checkpoints), it is a requirement

that no recovery data older than 30 minutes prior to the interruption be used . The consequence of this

requirement is that the database contents stored on durable media cannot at any time during the

Measurement Interval (MI) be more than 30 minutes older than the most current state of the database

(±5%).

2. All work required to perform a checkpoint must occur at least once before, during steady state, and at least

four times during the Measurement Interval. The start time and duration in seconds of at least the four

longest checkpoints during the Measurement Interval must be d isclosed ..

5.6 Required Reporting

5.6.1 The frequency d istribution of response times of all transactions, started and completed during the

measurement interval, must be reported independently for each of the five transaction types (i.e., New -Order,

Payment, Order-Status, Delivery, and Stock-Level). The x-axis represents the transaction RT and must range from 0

to four times the measured 90th percentile RT (N) for that transaction. The y -axis represents the frequency of the

transactions at a given RT. At least 20 d ifferent intervals, of equal length, must be reported . The maximum, average,

and 90th percentile response times must also be reported . An example of such a graph is shown below.

0 N 4N

Number of

T ransactions

Respons e Time (sec .)

Average Res ponse T ime

90th Percentile

Respons e Time

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 77 of 130

5.6.2 A graph of response times versus throughput for the New-Order transaction, run within the mix

required in Clause 5.2.3, must be reported . The x-axis represents the measured New-Order throughput. The y-axis

represents the corresponding 90th percentile of response times. A graph must be plotted at approximately 50%, 80%,

and 100% of reported throughput rate (add itional data points are optional). The 50% and 80% data p oints are to be

measured on the same configuration as the 100% run, for a minimum interval of 20 minutes, varying either the

Think Time of one or more transaction types or the number of active terminals. Interpolation of the graph between

these data points is permitted . Deviations from the required transaction mix are permitted for the 50% and 80% data

points. An example of such a graph is shown below.

5s ec.

90th Percentile

Respons e Time

0 50% 80% 100%

Reported MQTh

MQT h

5.6.3 The frequency d istribution of Think Times for the New-Order transaction, started and completed

during the measurement interval, must be reported . The x-axis represents the Think Time and must range from 0 to

four times the actual mean of Think Time for that transaction. The y -axis represents the frequency of the transactions

with a given Think Time. At least 20 d ifferent intervals, of equal length, must be reported . The mean Think Time

must also be reported . An example of such a graph is shown below.

0

T
h

in
k

T
im

e
 F

re
q
u
e

n
cy

T hink Time (sec .)

Mean T hink T ime

12.5 50

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 78 of 130

5.6.4 A graph of the throughput of the New-Order transaction versus elapsed time (i.e., wall clock) must be

reported for both ramp -up time and measurement interval. The x-axis represents the elapsed time from the start of

the run. The y-axis represents the throughput in tpmC. At least 240 d ifferent intervals should be used with a

maximum interval size of 30 seconds. The opening and the closing of the measurement interval must also be

reported and shown on the graph. The start time for each of the checkpoints must be ind icated on the graph. An

example of such a graph is shown below.

Ramp-up Steady State Ramp-down

Elapsed Time (sec.)
0

MQTh

Measurement Interval
Start

Measurement Interval
End

5.7 Primary Metrics

5.7.1 To be compliant with the TPC-C standard and the TPC‟ s Fair Use Policies and Guidelines, all public

references to TPC-C results for a configuration must include the following components which will be

known as the Primary Metrics.

 The TPC-C Maximum Qualified Throughput (MQTh) rating expressed in tpmC. This is known as the

Performance Metric. (See Clause 5.4.)

 The TPC-C total 3-year pricing d ivided by the MQTh and expressed as price/ tpmC. This is also known

as the Price/ Performance metric. (See Clause 7.3.)

 The date when all products necessary to achieve the stated performance will be available (stated as a

single date on the executive summary). This is known as the availability date. (See Clause 8.1.8.3.)

 When the optional TPC-Energy standard is used, the add itional primary metric expressed as

watts/ KtpmC must be reported . In add ition, the requirements of the TPC-Energy Specification, located

at www.tpc.org, must be met.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 79 of 130

Clause 6: SUT, DRIVER, and COMMUNICATIONS DEFINITION

6.1 Models of the Target System

Some examples of a system which represents the target (object) of this benchmark are shown pictorially below. By

way of illustration, the figures also depict the RTE/ SUT boundary (see Clauses 6.3 and 6.4) where the response time

is measured .

Example 2

WS - S

Network*

SUTRTE

wsK/D

 *

K/D ws

S - S

Network*

Serv er Sy stem(s)

S

E

R

V

E

R

Legend: C = Client

K/D = Key board/Display

RTE = Remote Terminal Emulator

S = Serv er

SUT = Sy stem Under Test

T = Terminal

WS = Workstation

* = Optional

Response Time Measured Here

SUT

Example 1

T

Network*

RTE

T

T

Terminal Network

S - S

Network*

SUT

S

E

R

V

E

R

Serv er Sy stem(s)

Example 3

RTE

T

T

Terminal Network

T

Network*
C - S

Network*

SUT

Client Sy stem(s)

C

L

I

E

N

T

*

S

E

R

V

E

R

Serv er Sy stem(s)

S - S

Network*

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 80 of 130

6.2 Test Configuration

The test configuration consists of the following elements:

• System Under Test (SUT)

• Driver System(s)

• Driver/ SUT Communications Interface(s)

If one of the networks is a WAN, the tested configurations need not include the WAN long -haul communications

lines.

6.3 System Under Test (SUT) Definition

6.3.1 The SUT consists of:

• One or more processing units (e.g., host, front-ends, workstations, etc.) which w ill run the transaction mix

described in Clause 5.2.3, and whose aggregate performance (total Maximum Qualified Throughput) w ill be

described by the metric tpmC.

• Any front-end systems are considered to be part of the SUT. Examples of front-end systems are front-end

data communication processors, cluster controllers, database clients (as in the client/ server model), and

workstations.

• The host system(s), includ ing hardware and software, supporting the database employed in the benchmark.

• The hardware and software components of all networks required to connect and support the SUT

components.

• Data storage media sufficient to satisfy both the scaling requirements in Clause 4.2 and the ACID properties

of Clause 3.

6.3.2 A single benchmark result may be used for multiple SUTs provided the following conditions are met:

• Each SUT must have the same hardware and software architecture and configuration.

• The only exception allowed are for elements not involved in the processing logic of the SUT (e.g., number of

peripheral slots, power supply, cabinetry, fans, etc.)

• Each SUT must support the priced configuration.

6.4 Driver Definition

6.4.1 An external Driver System(s), which provides Remote Terminal Emulator (RTE) functionality, must be

used to emulate the target terminal population and their emulated users during the benchmark run.

6.4.2 The RTE performs the following functions:

• Emulates a user entering input data on the input/ ou tput screen of an emulated terminal by generating and

sending transactional messages to the SUT;

• Emulates a terminal d isplaying ou tput messages on an input/ output scr een by receiving response messages

from the SUT;

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 81 of 130

• Records response times;

• Performs conversion and / or multip lexing into the communications protocol used by the communications

interface between the d river and the SUT ;

• Performs statistical accounting (e.g., 90th percentile response time measurement, throughput calculation, etc.)

is also considered an RTE function.

6.4.3 Normally, the Driver System is expected to perform RTE functions only. Work done on the Driver

System in add ition to the RTE as specified in Clause 6.4.2 must be thoroughly justified as specified in Clause 6.6.3.

6.4.4 The intent is that the Driver System must reflect the proposed terminal configuration and cannot add

functionality or performance above the priced network components in the SUT. It must be demonstrated that

performance results are not enhanced by using a Driver System.

6.4.5 Software or hardware which resides on the Driver which is not the RTE is to be considered as part of

the SUT. For example, in a "client/ server" model, the client softw are may be run or be simulated on the Driver

System (see Clause 6.6.3).

6.5 Communications Interface Definitions

6.5.1 I/O Channel Connections

6.5.1.1 All protocols used must be commercially available.

Comment: It is the intention of this definition to exclude non -standard I/ O channel connections. The following

situations are examples of acceptable channel connections:

• Configurations or architectures where terminals or terminal controllers are normally and routinely connected

to an I/ O channel of a processor.

• Where the processor(s) in the SUT is/ are connected to the local communications network via a front -end

processor, which is channel connected . The front-end processor is priced as part of the SUT.

6.5.2 Driver/SUT Communications Interface

6.5.2.1 The communications interface between the Driver System(s) and the SUT must be the mechanism by

which the system would be connected with the terminal (see Clause 2.1.8) in the proposed configuration.

6.6 Further Requirements on the SUT and Driver System

6.6.1 Restrictions on Driver System

Copies of any part of the tested database or file system or its data structures, ind ices, etc. may not be present on the

Driver System during the test.

Comment: Synchronization between RTE and SUT is d isallowed .

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 82 of 130

6.6.2 Individual Contexts for Emulated Terminals

The SUT must contain context for each terminal emulated , and must maintain that context for the duration of that

test. That context must be identical to the one which would support a real terminal. A terminal which sends a

transaction cannot send another until the completion of that transaction, with the exception of the deferred execution

of the Delivery transaction .

Comment: The context referred to in this clause should consist of information such as terminal identification,

network identification, and other information necessary for a real terminal to be known to (i.e., configured on) the

SUT. The intention is to allow pseudo-conversational transactions. The intent of this clause is simply to prevent a test

sponsor from multiplexing messages from a very large number of emulated terminals into a few input lines and

claiming or implying that the tested system supports that number of users regardless of whether the system actually

supports that number of real terminals. It is allowab le for a terminal to lose its connection to the SUT during the

Measurement Interval as long as its context is not lost and it is reconnected within 90 seconds using the same

context. The loss and re-entry of a user must be logged and the total number reported .

6.6.3 Driver System Doing More Than RTE Function

In the event that a Driver System must be used to emulate add itional functionality other than that described in

Clause 6.4, then this must be justified as follows:

6.6.3.1 It must be demonstrated that the architecture of the proposed solu tion makes it uneconomical to

perform the benchmark without performing the work in question on the d river (e.g., in a "client/ server" d atabase

implementation, where the client software would run on a large number of workstations).

6.6.3.2 Rule 6.6.1 must not be violated .

6.6.3.3 It must be demonstrated that executables placed on the Driver System are functionally equivalent to

those on the proposed (target) system.

6.6.3.4 It must be demonstrated that performance results are not enhanced by performing the work in

question on the Driver System. The intent is that a test should be run to d emonstrate that the functionality,

performance, and connectivity of the emulated solution is the same as that for the priced system. These test data

must be included in the Full Disclosure Report .

For example, if the Driver System emulates the function of a terminal concentrator, there must be test data to

demonstrate that a real concentrator configured with the claimed number of attached devices would deliver the

same (or better) response time as is measured with the Driver System. The t erminal concentrator must be configured

as it would be in the priced system and loaded to the maximum number of lines used in the priced configuration.

The demonstration test must be run as part of the SUT configuration that is running a full load on a properly scaled

database. The following d iagram illustrates the configuration of a possible demonstration test:

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 83 of 130

RTE RTE

Terminal

Concentrator

SUT

Side-A Side-B

In the above example, the d ifference in the measured response time between Side -A and Side-B should be less than

or equal to any ad ju stments to the response time reported in the Full Disclosure Report .

If the response time delay generated from a demonstration test is to be used in multiple benchmark tests, the

demonstration must be performed on a SUT generating the highest tpmC rate on the terminal concentrator.

6.6.3.5 Ind ividual contexts must continue to be maintained from the RTE through to the SUT.

6.6.3.6 A complete functional d iagram of both the benchmark configuration and the configuration of the

proposed (target) system must be d isclosed . A detailed list of all software and hardware functionality being

performed on the Driver System, and its interface to the SUT, must be d isclosed .

6.6.3.7 When emulating end -user devices utilizing a web browser, the implementor shall include a 0.1 second

response time delay in the emulation to compensate for the delay encountered in the propo sed end-to-end

configuration for the browser delay.

Comment: The use of a measured delay is not allowed on this non -priced component.

6.6.4 Disclosure of Network Configuration and Emulated Portions

The test sponsor shall describe completely the network configurations of both the tested services and the proposed

real (target) services which are being represented . A thorough explanation of exactly which parts of the proposed

configuration are being replaced by the Driver System must be given.

6.6.5 Limits on Concentration

The level of concentration of messages between the Driver System(s) and the SUT in the benchmark configuration

must not exceed that which would occur in the proposed (target) configuration. In particular, the number of

communications packets which can be concentrated must not exceed the number of terminals which would be

d irectly connected to that concentrator in the proposed configuration.

Comment: The intent is to allow only first level concentration on the RTE, but does not preclude add itional levels of

concentration on the SUT.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 84 of 130

6.6.6 Limits on Operator Intervention

Systems must be able to run for at least 8 hours without operator intervention.

6.6.7 Limits on Profile-Directed Software Optimizations

Special rules apply to the use of so-called profile-d irected optimization (PDO), in which binary executables are

reordered or otherwise op timized to best suit the needs of a particular workload . These rules do not apply to the

routine use of PDO by a d atabase vendor in the course of build ing commercially available and supported database

products; such use is not restricted . Rather, the rules apply to the use of PDO by a test sponsor to optimize

executables of a database product for a particular workload . Such optimization is permissible if all of the following

conditions are satisfied :

1. The use of PDO or similar procedures by the test sponsor must be d isclosed .

2. The procedure and any scripts used to perform the optimization must be d isclosed .

3. The procedure used by the test sponsor cou ld reasonably be used by a customer on a shipped database

executable.

4. The optimized database executables resulting form the application of the procedure must be supported by

the database software vendor.

5. The same set of DBMS executables must be used for all aud ited phases of the benchmark.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 85 of 130

Clause 7: PRICING

Rules for pricing the Priced Configuration and associated software and maintenance are included in the current

revision of the TPC Pricing Specification, located at www.tpc.org.

7.1 Pricing Methodology

7.1.1 The intent of this section is to define the methodology to be used in calculating the 3-year pricing and the

price/ performance (price/ tpmC). The fundamental premise is that what is tested and / or emulated is priced and

what is priced is tested and / or emulated . Exceptions to this premise are noted below.

7.1.2 The proposed system to be priced is the aggregation of the SUT and network components that would be

offered to achieve the reported performance level. Calculation of the priced system consists of:

• Price of the SUT as tested and defined in Clause 6. This excludes terminals and the terminal network (see

Clause 6.1).

• Price of all emulated components exclud ing terminals and the terminal network (see Clause 6.1).

• Price of on-line storage for the database population, 8 hours of processing at the reported tpmC , data

generated by 60 8-hour days of processing at the reported tpmC, and the system software necessary to create,

operate, administer, and maintain the application .

• Price of add itional products that are required for the op eration, administration or maintenance of the priced

system.

• Price of add itional products required for application development.

Comment: Any component, for example a Network Interface Card (NIC), must be included in the price of the

SUT if it d raws resources for its own operation from the SUT. This includes, but is not limited to, power and

cooling resources. In add ition, if the component performs any of the function defined in the TPC -C

specification it must be priced regard less of where is d raws its resources.

7.1.3 In add ition to the pricing methodology required by the current revision of the TPC Pricing Specification ,

terminals and the terminal network (see d iagram in Clause 6.1) are excluded from the priced system. For end -user

devices provid ing more function, monitors, and keyboards need not be pr iced if capable of being priced separately.

7.2 Priced System

7.2.1 The number of users for TPC-C is defined to be equal to the number of terminals emulated in the tested

configuration. Any usage pricing for the above number of users should be based on the pricing policy of the

company supplying the priced component.

7.2.2 Terminals and Network Pricing

7.2.2.1 The price of the Driver System is not included in the calculation. In the case where the Driver System

provide functionality in add ition to the RTE described in Clause 6, then the price of the emulated

hardware/ software components are to be included , except terminals and the terminal network.

http://www.tpc.org/

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 86 of 130

7.2.2.2 The terminals must be commercially available products capable of entering via a keyboard all

alphabetic and numeric characters and capable of d isplaying simu ltaneously the data and the fields described in

Clause 2.

7.2.2.3 For WAN configurations, the number of devices to be connected to a single line must be no greater

than that emulated per Clause 6.

7.2.3 Database Storage and Recovery Log Pricing

7.2.3.1 Within the priced system, there must be sufficient on -line storage to support any expanding system

files and the durable database population resulting from executing the TPC -C transaction mix for 60 eight-hour days

at the reported tpmC (see Clause 4.2.3). Storage is considered on -line, if any record can be accessed random ly and

updated within 1 second . On-line storage may include magnetic d isks, optical d isks, solid -state storage or any

combination of these, provided that the above mentioned access criteria is met.

Comment 1: The intent of this clause is to consider as on -line any storage device capable of provid ing an access time

to data, for random read or update, of one second or less, even if this access time requires the creation of a logical

access path not present in the tested database. For example, a d isk based sequential file might require the creation of

an index to satisfy the access time requirement.

Comment 2: During the execution of the TPC-C transaction mix, the ORDER, NEW-ORDER, ORDER-LINE, and

HISTORY tables grow beyond the initial database population requirements of the benchmark as specified in Clause

4. Because these tables grow naturally, it is intended that 60 days of growth beyond the specified initial database

population also be taken into account when pricing the system.

7.2.3.2 Recovery data must be maintained in such a way that the published tpmC transaction rate could be

sustained for an 8-hour period . Roll-back recovery data must be either in memory or in on-line storage at least until

transactions are committed . Roll-forward recovery data may be stored on an off-line device, provid ing the following:

• The process which stores the roll-forward data is active during the measurement interval.

• The roll-forward data which is stored off-line during the measurement interval (see Clause 5.5) must be at

least as great as the roll-forward recovery data that is generated during the period (i.e., the data may be first

created in on-line storage and then moved to off-line storage, but the creation and the movement of the data

must be in steady state).

• All ACID properties must be retained .

7.2.3.3 It is permissible to not have the storage required for the 60-day space on the tested system. However,

any add itional storage device included in the priced system but not configured on the tested system must be of the

type(s) actually used during the test and must satisfy normal system configuration rules.

Comment: Storage devices are considered to be of the same type if they are identical in all aspects of their product

description and technical specifications.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 87 of 130

7.2.3.4 The requirement to support eight hours of recovery log data can be met with storage on any durable

media (see Clause 3.5.1) if all data required for recovery from failures listed in Clauses 3.5.3.2 and 3.5.3.3 are on-line.

7.2.4 Additional Operational Components

7.2.4.1 Additional products that might be included on a customer installed configuration, such as operator

consoles and magnetic tape drives, are also to be included in the priced sys tem if explicitly required for the

operation, administration, or maintenance, of the priced system.

7.2.4.2 Copies of the software, on appropriate media, and a software load device, if required for initial load or

maintenance updates, must be included .

7.2.4.3 The price of an Uninterruptible Power Supply , specifically contributing to a durability solution, must

be included (see Clause 3.5.1).

7.2.4.4 The price of all components, includ ing cables, used to interconnect com ponents of the SUT must be

included .

7.2.5 Additional Software

7.2.5.1 The price must include the software licenses necessary to create, compile, link, and execute this

benchmark application as well as all run-time licenses required to execute on host system(s), client system(s) and

connected workstation(s) if used .

7.2.5.2 In the event the application program is developed on a system other than the SUT, the price of that

system and any compilers and other software used must also be included as part of the priced system.

7.2.6 Component Substitution

7.2.6.1 As per the current revision of the TPC Pricing Specification, the following components in the

measured configuration may be substituted if they are no longer orderable by the publication date:

 front-end systems

 disks, d isk enclosures, external storage controllers

 terminal servers

 network adapters

 routers, bridges, repeaters, switches

 cables

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 88 of 130

7.2.6.2 Substitu tion of the Server or the Host system, OS, DBMS or TP Monitor is not allowed under any

circumstances.

7.3 Required Reporting

7.3.1 Two metrics will be reported with regard to pricing. The first is the total 3-year p ricing as described in

the previous clauses. The second is the total 3-year pricing d ivided by the reported Maximum Qualified Throughput

(tpmC), as defined in Clause 5.4.

7.3.2 The 3-year pricing metric must be fully reported in the basic monetary unit of the local currency

rounded up and the price/ performance metric must be reported to a minimum precision of three significant d igits

rounded up. Neither metric may be interpolated or extrapolated . For example, if the total price i s $ 5,734,417.89USD

and the reported throughput is 105 tpmC, then the 3-year pricing is $ 5,734,418USD and the price/ performance is $

54,700USD/ tpmC (5,734,418/ 105).

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 89 of 130

Clause 8: FULL DISCLOSURE

Requirements for pricing-related items in the Full Disclosure Report are included in the current revision of the TPC

Pricing Specification, located at www.tpc.org.

8.1 Full Disclosure Report Requirements

A Full Disclosure report is required in order for results to be considered compliant with the TPC -C benchmark

specification.

Comment: The intent of this d isclosure is for a customer to be able to replicate the results of this benchmark given

the appropriate documentation and products.

This section includes a list of requirements for the Full Disclosure report .

8.1.1 General Items

8.1.1.1 The order and titles of sections in the Test Sponsor‟ s Full Disclosure report must correspond with the

order and titles of sections from the TPC-C standard specification (i.e., this document). The intent is to make it as

easy as possible for readers to compare and contrast material in d ifferent Full Disclosure reports.

8.1.1.2 The TPC Executive Summary Statement must be included near the beginning of the Full Disclosure

report describing the components of the priced configuration that are required to achieve the performance result . An

example of the Executive Summary Statement is presented in Appendix B. The latest version of the required format

is available from the TPC Administrator. When the optional TPC-Energy standard is u sed , the add itional

requirements and formatting of TPC-Energy related items in the executive summary must be reported and used . In

add ition, the requirements of the TPC-Energy Specification, located at www.tpc.org, must be met.

Comment 1: The processor information to be included is as follows:

 Node count if applicable

 For each processor type, total enabled processor count, total enabled processor core count, total enabled

processor thread count and processor model and speed in Hz. If more than one proces sor type is used , they

must be described on separate lines

 The number reported in the "Database Processors" box in the Executive Summary must specify the total

processor/ core/ thread information for all the enabled processors in the database server(s).

Processor information for all servers in the SUT is reported in the "System Components" box and not in the

“ Processors” box

Comment 2: If a package is priced bu t all of its components are not used in the p riced benchmark configuration, the

package must be listed in the pricing spreadsheet, includ ing any purchased components not used in running the

benchmark. However, only the components actually needed to produce the reported performance metric should

appear in the Executive Summary configuration information.

http://www.tpc.org/

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 90 of 130

8.1.1.3 The numerical quantities listed below must be summarized near the beginning of the Full Disclosure

report:

• computed Maximum Qualified Throughput in tpmC,

• ninetieth percentile, average and maximum response times for the New -Order, Payment, Order-Status, Stock-

Level, Delivery (deferred and interactive) and Menu transactions,

• time in seconds added to response time to compensate for delays associated with emulated components,

• percentage of transaction mix for each transaction type,

• minimum, average, and maximum key and think times for the New -Order, Payment, Order-Status, Stock-

Level, and Delivery (interactive),

• ramp-up time in minutes,

• measurement interval in minutes,

• number of checkpoints in the measurement interval,

• checkpoint interval in minutes,

• number of transactions (all types) completed within the measurement interval,

Comment: Appendix C contains an example of such a summary. The intent is for data to be conveniently and easily

accessible in a familiar arrangement and style. It is not required to precisely mimic the layout shown in Appendix C.

8.1.1.4 The application program (as defined in Clause 2.1.7) must be d isclosed . This includes, but is not

limited to, the code implementing the five transactions and the terminal input and output functions.

8.1.1.5 A statement identifying the benchmark sponsor(s) and other participating companies must be

provided .

8.1.1.6 Settings must be provided for all customer-tunable parameters and options which have been changed

from the defaults found in actual products, includ ing but not limited to:

• Database tuning options.

• Recovery/ commit op tions.

• Consistency/ locking options.

• Operating system and application configuration parameters.

• Compilation and linkage options and run -time optimizations used to create/ install application s, OS, and / or

databases.

Comment 1: This requirement can be satisfied by provid ing a full list of all parameters and options.

Comment 2: The intent of the above clause is that anyone attempting to recreate the benchmark environment has

sufficient information to compile, link, optimize, and execute all software used to produce the d isclosed benchmark

result.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 91 of 130

8.1.1.7 Diagrams of both measured and priced configurations must be provided , accompanied by a

description of the d ifferences. This includes, but is not limited to:

• Number and type of processors/ cores/ threads.

• Size of allocated memory, and any specific mapping/ partitioning of memory unique to the test.

• Number and type of d isk units (and controllers, if applicable).

• Number of channels or bus connections to d isk units, includ ing their protocol type.

• Number of LAN (e.g., Ethernet) connections, includ ing routers, workstations, terminals, etc., that were

physically used in the test or are incorporated into the pricing structure (see Clause 8.1.8).

• Type and the run-time execution location of software components (e.g., DBMS, client processes, transaction

monitors, software d rivers, etc.).

Comment: Detailed d iagrams for system configurations and architectures can widely vary, an d it is impossible to

provide exact guidelines suitable for all implementations. The intent here is to describe the system components and

connections in sufficient detail to allow independent reconstruction of the measurement environment.

The following sample d iagram illustrates a workstation/ router/ server benchmark (measured) configuration using

Ethernet and a single processor. Note that this d iagram does not depict or imply any op timal configuration for the

TPC-C benchmark measurement.

C
o
n
c

e
n
tra

to
r

C
o
n
c

e
n
tra

to
r

C
o
n

c
e

n
tra

to
r

CPU

128Mby tes

4 I/O cards

1 Ethernet

adapter

16 1.2 Gby te Disk Units

Model xxx

Concentrators: System_WW with 10 d iskless workstations each

LAN: Ethernet using NET_XX routers

CPU: Model_YY with 128 Mbytes of main memory, 4 I/ O cards with SCSI II protocol support

Disk: Vendor_ZZ 1.2 Gbyte d rives

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 92 of 130

8.1.2 Logical Database Design Related Items:

8.1.2.1 Listings must be provided for all table definition statements and all other statements used to set -up

the database.

8.1.2.2 The physical organization of tables and ind ices, within the database, must be d isclosed .

Comment: The concept of physical organization includes, but is not limited to: record clustering (i.e., rows from

d ifferent logical tables are co-located on the same physical data page), index clustering (i.e., rows and leaf nodes of

an index to these rows are co-located on the same physical data page), and partial fill-factors (i.e., physical data

pages are left partially empty even though additional rows are available to fill them).

8.1.2.3 It must be ascertained that insert and / or delete operations to any of the tables can occur concurrently

with the TPC-C transaction mix. Furthermore, any restriction in the SUT database implementation that precludes

inserts beyond the limits defined in Clause 1.4.11 must be d isclosed . This includes the maximum number of rows

that can be inserted and the maximum key value for these new rows.

8.1.2.4 While there are a few restrictions placed upon horizontal or vertical partitioning of tables and rows in

the TPC-C benchmark (see Clause 1.6), any such partitioning must be d isclosed . Using the CUSTOMER table as an

example, such partitioning could be denoted as:

 C_part_1 C_ID

 C_D_ID

 C_W_ID

 ------------------------ vertical partition----------------

 C_part_2 C_FIRST

 C_MIDDLE

 C_LAST

 C_STREET_1

 C_STREET_2

 C_CITY

 C_STATE

 C_ZIP

 C_PHONE

 C_SINCE

 ------------------------ vertical partition----------------

 C_part_3 C_CREDIT

 C_CREDIT_LIM

 C_DISCOUNT

 C_BALANCE

 C_YTD_PAYMENT

 C_PAYMENT_CNT

 C_DELIVERY_CNT

 ------------------------ vertical partition----------------

 C_part_4 C_DATA

Once the partitioned database elements have been so identified , they can be referred to by, for example, their

T_part_N notation when describing the physical allocation of database files (see Clause 8.1.5), where T ind icates the

table name and N ind icates the partition segment number.

8.1.2.5 Replication of tables, if used , must be d isclosed (see Clause 1.4.6).

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 93 of 130

8.1.2.6 Additional and / or duplicated attributes in any table must be d isclosed along with a statement on the

impact on performance (see Clause 1.4.7).

8.1.3 Transaction and Terminal Profiles Related Items

8.1.3.1 The method of verification for the random number generation must be described .

8.1.3.2 The actual layouts of the terminal input/ output screens must be d isclosed .

8.1.3.3 The method used to verify that the emulated terminals provide all the features described in Clause

2.2.2.4 must be explained . Although not specifically priced , the type and model of the terminals used for the

demonstration in 8.1.3.3 must be d isclosed and commercially available (includ ing supporting software and

maintenance).

8.1.3.4 Any usage of presentation managers or intelligent terminals must be explained .

Comment 1: The intent of this clause is to describe any special manipulations performed by a local terminal or

workstation to off-load work from the SUT. This includes, but is not limited to: screen presentations, message

bundling, and local storage of TPC-C rows.

Comment 2: This d isclosure also requires that all data manipulation functions performed by the local terminal to

provide navigational aids for transaction(s) must also be described . Within this d isclosure, the purpose of such

additional function(s) must be explained .

8.1.3.5 The percentage of home and remote order-lines in the New-Order transactions must be d isclosed .

8.1.3.6 The percentage of New-Order transactions that were rolled back as a result of an unused item number

must be d isclosed .

8.1.3.7 The number of items per orders entered by New -Order transactions must be d isclosed .

8.1.3.8 The percentage of home and remote Payment transaction s must be d isclosed .

8.1.3.9 The percentage of Payment and Order-Status transactions that used non-primary key (C_LAST) access

to the database must be d isclosed .

8.1.3.10 The percentage of Delivery transaction s that were skipped as a result of an insufficient number of

rows in the NEW-ORDER table must be d isclosed .

8.1.3.11 The mix (i.e., percentages) of transaction types seen by the SUT must be d isclosed .

8.1.3.12 The queuing mechanism used to defer the execution of the Delivery transaction must be d isclosed .

8.1.4 Transaction and System Properties Related Items

8.1.4.1 The results of the ACID tests must be d isclosed along with a description of how the ACID

requirements were met. This includes d isclosing which case was followed for the execution of Isolation Test 7.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 94 of 130

8.1.5 Scaling and Database Population Related Items

8.1.5.1 The card inality (e.g., the number of rows) of each table, as it existed at the start of the benchmark run

(see Clause 4.2), must be disclosed . If the database was over -scaled and inactive rows of the WAREHOUSE table

were deleted (see Clause 4.2.2), the card inality of the WAREHOUSE table as initially configu red and the number of

rows deleted must be d isclosed .

8.1.5.2 The d istribution of tables and logs across all media must be explicitly depicted for the tested and

priced systems.

CPU

Disk name: WDC01

For each disk WDC01 to WDC05

20% of each WAREHOUSE, DISTRICT, CUSTOMER,

NEW_ORDER, ORDER, ORDER-LINE, ITEM and STOCK

database tables and indexes

Disk name: WDC05

Disk name: HIST01

History 100%

Disk name: LOG01

Phy sical log: 100%

Logical log: 100%

Disk name: LOG02

Logical log: 100%

(mirrored w/LOG01)

Two additional v olumes were used

Operating sy stem root disk

Operating sy stem user disk

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 95 of 130

root /usr

page1

10% of

WAREHOUSE

CUSTOMER

DISTRICT

NEW_ORDER

ORDER

ORDER_LINE

tables

db01

db02

db03

db04

db05

db06

db07

db08

db09

db10

ITEM

STOCK

tables

100%

phy sical

log f ile

100%

10%

10%

10%

10%

10%

10%

10%

10%

10%

HISTORY

f ile

100%

Sy stem

page

v olume

Operating

Sy stem

root

v olume

Operating

Sy stem

/user

f iles

CPU

hist

log item

Comment: Detailed d iagrams for layout of database files on d isks can widely vary, and it is d ifficult to provide exact

guideline su itable for all implementations. The intent is to provide sufficient detail to allow independent

reconstruction of the test d atabase. The two figures below are examples of database layout descriptions and are not

intended to depict or imply any optimal layout for the TPC-C database.

8.1.5.3 A statement must be provided that describes:

1. The data model implemented by the DBMS used (e.g., relational, network, hierarchical)

2. The database interface (e.g., embedded , call level) and access language (e.g., SQL, DL/ 1, COBOL read / write)

used to implement the TPC-C transactions. If more than one interface/ access language is used to implement

TPC-C, each interface/ access language must be described and a list of which interface/ access language is

used with which transaction type must be d isclosed .

8.1.5.4 The mapping of database partitions/ rep lications must be explicitly described .

Comment: The intent is to provide sufficient detail about partitioning and replication to allow ind ependent

reconstruction of the test database.

An description of a database partitioning scheme is presented below as an example. The nomenclature of this

example was outlined using the CUSTOMER table (in Clause 8.1.2.1), and has been extended to use the ORDER and

ORDER_LINE tables as well.

C_part_1 C_ID O_part_1 O_ID OL_part_1 OL_O_ID

 C_D_ID O_D_ID OL_D_ID

 C_W_ID O_W_ID OL_W_ID

--------- partition------- O_C_ID OL_NUMBER

C_part_2 C_FIRST ----------- partition------- OL_I_ID

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 96 of 130

 C_MIDDLE O_part_2 O_ENTRY_D ----------- partition-------

 C_LAST O_OL_CNT OL_part_2 OL_SUPPLY_W_ID

 C_STREET_1 ----------- partition------- OL_DELIVERY_D

 C_STREET_2 O_part_3 O_CARRIER_ID OL_QUANTITY

 C_CITY O_ALL_LOCAL OL_AMOUNT

 C_STATE ----------- partition-------

 C_ZIP OL_part_3 OL_DIST_INFO

 C_PHONE

 C_SINCE

----------partition-------

C_part_3 C_CREDIT

 C_CREDIT_LIM

 C_DISCOUNT

 C_BALANCE

 C_YTD_PAYMENT

 C_PAYMENT_CNT

 C_DELIVERY_CNT

----------partition-------

C_part_4 C_DATA

C_part_1

C_part_2

C_part_4

C_part_3

O_part_2O_part_1

OL_part_1 OL_part_2

O_part_3

OL_part_3

One WAREHOUSE Customer/Order/Order_line "cell"

8.1.5.5 Details of the 60-day space computations along with proof that the database is configured to sustain 8

hours of growth for the dynamic tables (Order, Order -Line, and History) must be d isclosed (see Clause 4.2.3).

8.1.6 Performance Metrics and Response Time Related Items

8.1.6.1 Measured tpmC must be reported .

8.1.6.2 Ninetieth percentile, maximum and average response times must be reported for all transaction types

as well as for the Menu response time.

8.1.6.3 The minimum, the average, and the maximum keying and think times must be reported for each

transaction type.

8.1.6.4 Response Time frequency d istribution curves (see Clause 5.6.1) must be reported for each transaction

type.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 97 of 130

8.1.6.5 The performance curve for response times versus throughput (see Clause 5.6.2) must be reported for

the New-Order transaction.

8.1.6.6 Think Time frequency d istribution curves (see Clause 5.6.3) must be reported for the New -Order

transaction.

8.1.6.7 There is no requirement to report Keying Time d istribution curves.

8.1.6.8 A graph of throughput versus elapsed time (see Clause 5.6.4) must be reported for the New -Order

transaction.

8.1.6.9 The method used to determine that the SUT had reached a steady state prior to commencing the

measurement interval (see Clause 5.5) must be described .

8.1.6.10 A description of how the work normally performed during a sustained test (for example

checkpointing, writing red o/ undo log records, etc.), actually occurred during the measurement interval must be

reported .

8.1.6.11 The start time and duration in seconds of at least the four (4) longest checkpoints during the

Measurement Interval must be d isclosed (see Clause 5.5.2.2 (2)).

8.1.6.12 A statement of the duration of the measurement interval for the reported Maximum Qualified

Throughput (tpmC) must be included .

8.1.6.13 The method of regulation of the transaction mix (e.g., card decks or weighted random d istribution)

must be described . If weighted d istribution is used and the RTE ad justs the weights associated with each transaction

type, the maximum ad justments to the weight from the initial value must be d isclosed .

8.1.6.14 The percentage of the total mix for each transaction type must be d isclosed .

8.1.6.15 The percentage of New -Order transactions rolled back as a result of invalid item number must be

d isclosed .

8.1.6.16 The average number of order-lines entered per New -Order transaction must be d isclosed .

8.1.6.17 The percentage of remote order-lines entered per New-Order transaction must be d isclosed .

8.1.6.18 The percentage of remote Payment transaction s must be d isclosed .

8.1.6.19 The percentage of customer selections by customer last name in the Payment and Order-Status

transactions must be d isclosed .

8.1.6.20 The percentage of Delivery transaction s skipped due to there being fewer than necessary orders in the

New-Order table must be d isclosed .

8.1.6.21 The number of checkpoints in the Measurement Interval, the time in seconds from the start of the

Measurement Interval to the first checkpoint and the Checkpoint Interval must be d isclosed .

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 98 of 130

8.1.7 SUT, Driver, and Communication Definition Related Items

8.1.7.1 The RTE input parameters, code fragments, functions, etc. used to generate each transaction input

field must be d isclosed .

Comment: The intent is to demonstrate the RTE was configured to generate transaction input data as specified in

Clause 2.

8.1.7.2 The number of terminal connections lost du ring the Measurement Interval must be d isclosed (see

Clause 6.6.2).

8.1.7.3 It must be demonstrated that the functionality and performance of the components being emulated in

the Driver System are equivalent to that of the priced system. Th e results of the test described in Clause 6.6.3.4 must

be d isclosed .

8.1.7.4 A complete functional d iagram of both the benchmark configuration and the configuration of the

proposed (target) system must be d isclosed . A detailed list of all software and har dware functionality being

performed on the Driver System, and its interface to the SUT must be d isclosed (see Clause 6.6.3.6).

8.1.7.5 The network configurations of both the tested services and the proposed (targ et) services which are

being represented and a thorough explanation of exactly which parts of the proposed configuration are being

replaced with the Driver System must be d isclosed (see Clause 6.6.4).

8.1.7.6 The bandwid th of the network(s) used in the tested / priced configuration must be d isclosed .

8.1.7.7 If the configuration requires operator intervention (see Clause 6.6.6), the mechanism and the frequency

of this intervention must be d isclosed .

8.1.8 Pricing Related Items

8.1.8.1 Rules for reporting pricing information are included in the current revision of the TPC Pricing

Specification, located at www.tpc.org.

8.1.9 Audit Related Items

8.1.9.1 The aud itor‟ s name, address, phone number, and a copy of the aud itor's attestation letter ind icating

the aud itor‟ s op inion of compliance must be included in the Full Disclosure Report .

8.2 Availability of the Full Disclosure Report

The Full Disclosure Report must be read ily available to the public at a reasonable charge, similar to charges for

similar documents by that test sponsor . The report must be made available when results are made public. In order to

use the phrase "TPC Benchmark™ C", the Full Disclosure Report must have been submitted to the TPC Administrator

as well as written permission obtained to d istribute same.

8.3 Revisions to the Full Disclosure Report

8.3.1 In add ition to the requirements for revising the Full Disclosure Report found in the current revision of

the TPC Pricing Specification , the following components in the priced configuration may be substitu ted if they are

no longer orderable:

http://www.tpc.org/

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 99 of 130

 front-end systems

 disks, d isk enclosures, external storage controllers

 terminal servers

 network adapters

 routers, bridges, repeaters, switches

 cables

8.3.2 Substitu tion of the Server or the Host system, OS, DBMS or TP Monitor is not allowed u nder any

circumstances.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 100 of 130

Clause 9: AUDIT

9.1 General Rules

9.1.1 An independent aud it of the benchmark results by an aud itor certified by the TPC is required . An

audit checklist is provided as part of this specification. Please obtain the current aud it checklist from one of the

aud itors. The term "independent" is defined as: "the outcome of the benchmark carries no financial benefit to the

aud iting agency other than fees earned d irectly related to the aud it." In add ition, the aud iting agency cannot have

supplied any performance consulting under contract for the benchmark under aud it. The term "certified" is defined

as: "the TPC has reviewed the qualification of the aud itor and certified t hat the aud itor is capable of verifying

compliance of the benchmark result." Please see the TPC Audit Policy for a d etailed description of the aud itor

certification process.

In add ition, the following conditions must be met:

1. The aud iting agency cannot be financially related to the sponsor. For example, the aud iting agency is

financially related if it is a dependent d ivision, the majority of its stock is owned by the sponsor, etc.

2. The aud iting agency cannot be financially related to any one of the sup pliers of the measured / priced

components, e.g., the DBMS supplier, the terminal or terminal concentrator supplier, etc.

9.1.2 The aud itor's attestation letter must be made read ily available to the public as part of the Full

Disclosure Report, bu t a detailed report from the aud itor is not required .

9.1.3 For the purpose of the audit, only transactions that are generated by the Driver System and the data

associated with those transactions should be used for the aud it tests, with the exception of the initial database

population verification.

9.1.4 In the case of aud ited TPC-C results which are used as a basis for new TPC-C results, the sponsor of

the new benchmark can claim that the results were aud ited if, and only if:

1. The aud itor ensures that the hardware and software products are the same.

2. The aud itor reviews the Full Disclosure Report (FDR) of the new results and ensures that they match what

is contained in the original sponsor's FDR.

3. The aud itor can attest to Clauses 9.2.8.

The aud itor is not required to follow any of the remaining aud itor's check list items from Clause 9.2.

9.2 Auditor's check list

9.2.1 Clause 1 Logical Database Design Related Items

9.2.1.1 Verify that specified attributes (i.e., columns) and rows exist, and that they conform to the

specifications.

9.2.1.2 Verify that the row identifiers are not d isk or file offsets.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 101 of 130

9.2.1.3 Verify that all tables support retrievals, inserts and deletes.

9.2.1.4 Verify the random ness of the input data to the system under test for all transact ions. Include

verification that the values generated are uniform across the entire set of rows in the configured database necessary

to support the claimed tpmC rating per Clause 5.4.

9.2.1.5 Verify whether any horizontal and / or vertical partit ioning has been used , and , if so, whether it was

implemented in accordance with the TPC-C requirements.

9.2.1.6 Verify whether any replication of tables has been used , and , if so, whether it was implemented in

accordance with the TPC-C requirements.

9.2.1.7 Verify that no more than 1%, or no more than one (1), whichever is greater, of the Delivery

transactions skipped because there were fewer than necessary orders present in the New -Order table.

9.2.2 Clause 2 Transaction and Terminal Profiles Related Items

9.2.2.1 Verify that the application programs match the respective transaction profiles.

9.2.2.2 Verify that the input data satisfy the requirements and that input/ outpu t scree n layouts are preserved .

9.2.2.3 Verify compliance with the error detection and reporting requirement as specified in clause 2.3.6.

Comment: This may be verified by code inspection at the d iscretion of the aud itor.

9.2.2.4 Verify that each New -Order transaction uses independently generated input data and not data from

rolled back transactions.

9.2.2.5 Verify that the random ly generated input data satisfies the following constraints:

1. At least 0.9% and at most 1.1% of the New -Order transactions roll back as a result of an unused item

number. For these transactions the required profile is executed , and the correct screen is d isp layed .

Furthermore, verify that the application makes only permitted use of the fact that the input data contains

an unused item number.

2. The average number of order-lines per order is in the range of 9.5 to 10.5 and the number of order -lines is

uniformly d istributed from 5 to 15 for the New -Order transactions that are submitted to the SUT during

the measurement interval.

3. The number of remote order-lines is at least 0.95% and at most 1.05% of the number of order-lines that are

filled in by the New -Order transactions that are submitted to the SUT during the measurement interval,

and the remote warehouse numbers are uniformly d istributed within the range of active warehouses (see

Clause 4.2.2).

4. The number of remote Payment transaction s is at least 14% and at most 16% of the number of Payment

transactions that are submitted to the SUT during the measurement interval, and the remote warehouse

numbers are uniformly d istributed within the range of active warehouses (see Clause 4.2.2).

5. The number of customer selections by customer last name in the Payment transaction is at least 57% and at

most 63% of the number of Payment transactions that are submitted to the SUT d uring the measurement

interval.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 102 of 130

6. The number of customer selections by customer last name in the Order-Status transaction is at least 57%

and at most 63% of the number of Order-Status transactions that are submitted to the SUT during the

measurement interval.

9.2.2.6 Verify that results from executing the Delivery transaction in deferred mode are recorded into a result

file. Verify that the result file is maintained on the proper type of durable medium. Furthermore, verify that no

action is recorded into the result file until after the action has been completed .

9.2.2.7 Verify that all input and ou tput fields that may change on screens are clear ed at the beginning of each

transaction.

9.2.2.8 Using one of the configured terminals, verify that the input/ output screen for each transaction types

provides all the features described in Clause 2.2.2.4.

9.2.2.9 The aud itor can further verify the compliance of the input data by querying the following attributes:

• O_ALL_LOCAL can be used to verify that approximately 10% of all orders contain at least one remote order -

line.

• C_PAYMENT_CNT can be used to verify that within the Payment tran saction customers were selected

accord ing to the required non -uniform random d istribution.

• S_YTD can be used to verify that within the New -Order transaction the quantity ordered for each item was

within the required range.

• S_ORDER_CNT can be used to verify that w ithin the New -Order transaction items were selected accord ing to

the required non-uniform random d istribution.

• S_REMOTE_CNT can be used to verify that within the New -Order transaction remote order-lines were

selected accord ing to the required uniform random d istribution.

9.2.3 Clause 3 Transactions and System Properties Related Items

9.2.3.1 Verify that the requirements of each of the ACID tests were met.

9.2.4 Clause 4 Scaling and Database Population Related Items

9.2.4.1 Verify that the database is initially populated with the properly scaled required population.

9.2.4.2 Verify the correct card inalities of the nine database tables, at the start of the benchmark run as well as

at the end of it, and that the growth in the New -Order table, in particular, is consistent with the number and type of

executed transactions.

9.2.6 Clause 5 Performance Metrics and Response Time Related Items

9.2.6.1 Verify that the mix of transactions as seen by the SUT satisfies the required minimum percentage of

mix.

9.2.6.2 Verify the valid ity of the method used to measure the response time at the RTE.

9.2.6.3 If part of the SUT is emulated , verify that the reported response tim e is no less than the response time

that would be seen by a real terminal user.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 103 of 130

9.2.6.4 Verify the method used to determine that the SUT had reached a steady state prior to commencing the

measurement interval (see Clause 5.5).

9.2.6.5 Verify that all work normally done in a steady state environment actually occurred during the

measurement interval, for example checkpointing, writing redo/ undo log record s to d isk, etc.

9.2.6.6 Verify the duration of the measurement interval for the reported tpmC.

9.2.6.7 Verify that the response times have been measured in the same time interval as the test.

9.2.6.8 Verify that the required Keying and Think Times for the emulated users occur in accordance with the

requirements.

9.2.6.9 Verify that the 90th percentile response time for each transaction type is greater than or equal to the

average response time of that transaction type.

9.2.6.10 If the RTE ad justs the weights associated to each transaction type, verify that these ad justments have

been limited to keep the weights within 5% on either side of their resp ective initial value.

9.2.6.11 If the RTE uses card decks (see Clause 5.2.4.2) verify that they meet the requirements.

9.2.6.12 If period ic checkpoints are used , verify that they are properly scheduled and executed during the

measurement interval.

9.2.6.13 Verify that the average think time for each transaction type is equal to or greater than the minimum

specified in Clause 5.2.5.7

9.2.7 Clause 6 SUT, Driver, and Communications Definition Related Items

9.2.7.1 Describe the method used to verify the accurate emulation of the tested terminal population by the

Driver System if one was used .

9.2.7.2 Verify terminal connectivity and context maintenance as required in Clause 6.6.2.

9.2.7.3 Verify that the restrictions on operator intervention are met.

9.2.8 Clause 7 Pricing Related Items

9.2.8.1 Rules for verification of pricing related items are included in the curr ent revision of the TPC Pricing

Specification, located at www.tpc.org.

9.2.9 TPC-Energy Related Items

9.2.9.1 When the optional TPC-Energy standard is used , the add itional aud it requirements must be followed .

In add ition, the requirements of the TPC-Energy Specification, located at www.tpc.org, must be met.

http://www.tpc.org/
http://www.tpc.org/

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 104 of 130

9.2.10 Full Disclosure Related Items

9.2.10.1 Verify that the enabled numbers of processors, cores and threads reported by the test sponsor are

consistent with those reported by the operating system and that any processors, cores or threads that existed on the

SUT, but are claimed as d isabled , do not contribute to the performance of the benchmark.

9.2.10.2 Any DBMS artifact, u tilized in a TPC-C application, requires public documentation or a letter from the

DBMS vendor to the aud itor, describing the behavior and ongoing support of the same behavior.

Comment: For example, a DBMS artifact is the selection of rows in the order of the primary index even though there

is no ORDER BY clause in the cursor definition.

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 105 of 130

Index

5

5-year pricing 83, 85

9

90th percentile response time 70, 74, 79, 99

A

ACID 6, 20, 37, 40, 44, 46, 54, 72, 78, 84, 90, 98

Adding 18

Application 6, 7, 9, 17, 18, 19, 20, 21, 23, 25, 26, 27, 30, 47, 51,

82, 83, 85, 86, 87, 97

Arbitrary 19, 50, 51

Atomicity 46

Attributes 17

Auditor's check list 96

B

Boundaries 17

Business transaction 20, 24, 25, 27, 32, 36, 39, 40, 41, 43, 44,

53, 67, 68, 71

C

C_LAST 13, 20, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 62, 65, 89,

90, 92

Card inality 10, 18, 59, 60, 66, 90

Checkpoint 58, 73, 86, 93, 94, 99, 127

Checkpoint interval 73, 94

Commercially available 6, 19, 21, 25, 26, 79, 82, 84, 90

Commit 47, 50, 51, 52, 53, 54, 55, 104, 106, 108, 109, 111, 114,

115, 116, 118, 119, 120, 122

Committed 18, 24, 29, 31, 34, 37, 40, 42, 44, 50, 56, 57, 58, 67,

84

Concentration 81

Consistency 46, 47, 48, 49, 58, 87

Context 9, 14, 26, 47, 54, 80, 81

Customer 13, 25, 28, 33, 36, 37, 42, 46, 47, 49, 60, 65, 89, 92

D

Daily-growth 61

Daily-spread 61

Data manipulation 19, 25, 29, 90

Database transaction 20, 23, 25, 27, 28, 29, 33, 34, 36, 37, 39,

40, 41, 42, 43, 44, 46, 47, 50, 53

Deck 69, 94, 99

Deletes 18, 50, 96

Deleting 18

Delivery transaction 39, 41, 50, 53, 54, 67, 68, 70, 71, 73, 80,

90, 94, 97, 98, 109

Dirty read 50

Dirty write 50

District 12, 28, 33, 43, 46, 47, 48, 58, 60, 64, 65

Driver 58, 78, 79, 80, 81, 83, 94, 96, 99

Durability 46, 56, 57

Durable 56

Dynamic-space 61

E

Emulated users 67

Executive summary 125

F

Free-space 61

Front-end systems 78, 95

Full Disclosure Report ∑ 7, 22, 46, 80, 81, 82, 86, 95, 96, 127

H

Hardware 7, 17, 19, 25, 58, 78, 79, 81, 82, 94, 96

Hashing 18

Horizontal partitioning 17

I

Inserts 18, 88, 96, 119

Integrity 18

Isolation 46, 50, 51, 52, 53, 54, 55, 90

K

Keying time 68, 69, 70

L

LAN 11, 13, 33, 35, 36, 37, 38, 42, 49, 53, 65, 87, 88, 89, 92

Last name 20, 22, 28, 32, 33, 35, 36, 37, 38, 62, 73, 94, 97, 123

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 106 of 130

Load balancing 25

Locking 6, 51, 87

Logical database design 88, 96

M

Measurement interval 10, 27, 32, 36, 39, 40, 46, 49, 58, 61, 67,

68, 69, 71, 72, 73, 74, 75, 84, 86, 93, 94, 97, 98, 99, 127

Memory 40, 56, 57, 84, 87, 88, 95

Menu 22, 67, 68

Mirroring 56, 57

Mix I, 3, 6, 7, 47, 68, 69, 70, 71, 72, 74, 78, 84, 86, 88, 90, 94, 98

Modifying 18

Multiplexing 25, 79, 80

N

Network configuration 81

New-Order 14, 28, 41, 47, 48, 49, 54, 55, 59, 60, 66, 84, 90

New-Order transaction 25, 27, 29, 31, 50, 51, 52, 53, 54, 55,

58, 66, 67, 68, 69, 70, 71, 72, 74, 75, 90, 93, 94, 97, 98, 103

Ninetieth percentile 93

Non-repeatable read 50

Non-uniform 20, 27, 32, 36, 65, 98, 123

Non-volatile 56

NURand 20, 27, 32, 36, 65, 112, 120

O

Operating system 17, 19, 42, 46, 57, 65, 66

Order 14, 15, 16, 28, 29, 37, 41, 42, 43, 47, 48, 49, 54, 55, 58, 59,

60, 61, 64, 66, 84, 90, 92, 98, 103, 105, 107, 109

Order-Line 29, 48, 49, 59, 60, 61, 84

Order-Status transaction 36, 38, 50, 51, 52, 55, 68, 73, 90, 94,

97, 107

Over-scaling 60

P

Pacing 67

Partitioned data 18, 19, 89

Payment transaction 32, 33, 35, 46, 47, 50, 53, 68, 72, 73, 90,

94, 97, 98, 105

Performance metrics 67, 93, 98

Phantom 50

Power supply 78

Precision 11, 18, 20, 62, 85

Priced configuration 83

Pricing 83, 84, 99

Primary key 14, 18, 32, 36, 90

R

Random 20, 27, 32, 36, 39, 43, 46, 47, 49, 53, 54, 60, 62, 63, 64,

65, 66, 68, 69, 84, 90, 94, 97, 98, 123

Randomly 20, 27, 32, 36, 39, 46, 47, 49, 54, 65, 69, 84, 97

Recovery 25, 84, 87

Remote order-lines 72, 90, 94, 97, 98

Remote payment transaction 72, 90, 94, 97

Replicated table 17, 54

Replication 17, 89

Response time 67

Response time constraints 69

Rollback 47, 50, 104, 123

Roll-forward 58, 84

Routers 87, 88, 95

RTE 20, 23, 57, 69, 70, 71, 72, 77, 78, 79, 80, 81, 94, 98, 99

S

Scaling 59, 90, 98

Space 10, 18, 22, 23, 30, 34, 37, 40, 44, 59, 60, 61, 66, 72, 84, 93

Static-space 61

Stock-Level transaction 43, 45, 46, 50, 51, 67, 68, 111

Storage 18, 56, 59, 60, 61, 66, 78, 83, 84, 90

SUT 20, 23, 25, 27, 28, 32, 33, 36, 39, 40, 43, 46, 49, 58, 59, 67,

68, 70, 71, 72, 73, 77, 78, 79, 80, 81, 82, 83, 85, 88, 90, 93, 94,

95, 97, 98, 99

T

Terminal 6, 20, 21, 22, 23, 25, 27, 29, 30, 31, 32, 34, 35, 36, 37,

38, 39, 40, 41, 43, 44, 45, 57, 58, 59, 60, 68, 69, 70, 71, 74, 78,

79, 80, 81, 83, 84, 86, 87, 90, 95, 96, 98, 99, 103

Test sponsor 22, 25, 41, 46, 51, 54, 58, 67, 68, 72, 80, 81, 95

Think time 68, 70, 74, 75, 93, 99, 127

Throughput 6, 54, 59, 60, 61, 67, 68, 70, 71, 72, 73, 74, 75, 79,

82, 85, 93

Timestamp 25, 70, 71, 103, 105, 109, 112, 113, 120, 121, 122

TPC Auditor 58

TPC-C transactions 46, 47, 51, 58, 92, 103

tpmC 3, 6, 49, 58, 59, 61, 71, 72, 75, 78, 81, 83, 84, 85, 86, 93,

94, 97, 99, 127

Transaction mix 7, 68, 69, 70, 71, 72, 74, 78, 84, 86, 88, 94, 127

Transaction monitors 25, 26, 87

Transaction profiles 17, 21, 25, 56, 59, 97

Transaction RT 25, 68, 69, 71

Transparency 18, 26

U

Uninterruptible Power Supply 56, 57, 85

Unique 10, 11, 12, 13, 14, 15, 16, 18, 20, 29, 32, 36, 43, 62, 63,

64, 65, 66, 87

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 107 of 130

V

Vertical partitioning 17

W

Warehouse 11, 28, 33, 46, 47, 48, 59, 60, 63, 64, 90

Workstations 78, 80, 87, 88

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 108 of 130

Appendix A: SAMPLE PROGRAMS

The following are examples of the TPC-C transactions and database load program in SQL embedded in C. Only the

basic functionality of the TPC-C transactions is supplied . All terminal I/ O Ooperations, and miscellaneous functions

have been left out of these examples. The code presented here is for demonstration purposes only, and is not meant

to be an optimal implementation.

Note: The examples in this appendix, in some areas, may not follow all the requirements of the benchmark. In case of

d iscrepancy between the specifications and the programming examples, the specifications prevail.

A.1 The New-Order Transaction

int neword()

{

 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 gettimestamp(datetime);

 EXEC SQL SELECT c_discount, c_last, c_cred it, w_tax

 INTO :c_discount, :c_last, :c_credit, :w_tax

 FROM customer, warehouse

 WHERE w_id = :w_id AND c_w_id = w_id AND

 c_d_id = :d_id AND c_id = :c_id ;

 EXEC SQL SELECT d_next_o_id , d_tax INTO :d_next_o_id , :d_tax

 FROM district

 WHERE d_id = :d_id AND d_w_id = :w_id ;

 EXEC SQL UPDATE district SET d_next_o_id = :d_next_o_id + 1

 WHERE d_id = :d_id AND d_w_id = :w_id ;

 o_id=d_next_o_id ;

 EXEC SQL INSERT INTO ORDERS (o_id , o_d_id , o_w_id , o_c_id ,

 o_entry_d , o_ol_cnt, o_all_local)

 VALUES (:o_id , :d_id , :w_id , :c_id ,

 :datetime, :o_ol_cnt, :o_all_local);

 EXEC SQL INSERT INTO NEW_ORDER (no_o_id , no_d_id , no_w_id)

 VALUES (:o_id , :d_id , :w_id);

 for (ol_number=1; ol_number<=o_ol_cnt; ol_number++)

 {

 ol_supply_w_id=atol(supware[ol_number-1]);

 if (ol_supply_w_id != w_id) o_all_local=0;

 ol_i_id=atol(itemid[ol_number-1]);

 ol_quantity=atol(qty[ol_number-1]);

 EXEC SQL WHENEVER NOT FOUND GOTO invalid item;

 EXEC SQL SELECT i_price, i_name , i_data

 INTO :i_price, :i_name, :i_data

 FROM item

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 109 of 130

 WHERE i_id = :ol_i_id ;

 price[ol_number-1] = i_price;

 strncpy(iname[ol_number-1],i_name,24);

 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;

 EXEC SQL SELECT s_quantity, s_data,

 s_d ist_01, s_dist_02, s_d ist_03, s_d ist_04, s_d ist_05

 s_d ist_06, s_dist_07, s_d ist_08, s_d ist_09, s_d ist_10

 INTO :s_quantity, :s_data,

 :s_d ist_01, :s_d ist_02, :s_dist_03, :s_d ist_04, :s_d ist_05

 :s_d ist_06, :s_d ist_07, :s_dist_08, :s_d ist_09, :s_d ist_10

 FROM stock

 WHERE s_i_id = :ol_i_id AND s_w_id = :ol_supply_w_id ;

 pick_dist_info(ol_d ist_info, ol_w_id); / / p ick correct s_dist_xx

 stock[ol_number-1] = s_quantity;

 if ((strstr(i_data,"original") != NULL) &&

 (strstr(s_data,"original") != NULL))

 bg[ol_number-1] = 'B';

 else

 bg[ol_number-1] = 'G';

 if (s_quantity > ol_quantity)

 s_quantity = s_quantity - ol_quantity;

 else

 s_quantity = s_quantity - ol_quantity + 91;

 EXEC SQL UPDATE stock SET s_quantity = :s_quantity

 WHERE s_i_id = :ol_i_id

 AND s_w_id = :ol_supply_w_id ;

 ol_amount = ol_quantity * i_price * (1+w_tax+d_tax) * (1-c_discount);

 amt[ol_number-1]=ol_amount;

 total += ol_amount;

 EXEC SQL INSERT

 INTO order_line (ol_o_id , ol_d_id , ol_w_id , ol_number,

 ol_i_id , ol_supply_w_id ,

 ol_quantity, ol_amount, ol_dist_info)

 VALUES (:o_id , :d_id , :w_id , :ol_number,

 :ol_i_id , :ol_supply_w_id ,

 :ol_quantity, :ol_amount, :ol_d ist_info);

 } / *End Order Lines*/

 EXEC SQL COMMIT WORK;

 return(0);

invalid item:

 EXEC SQL ROLLBACK WORK;

 printf("Item number is not valid");

 return(0);

sqlerr:

 error();

}

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 110 of 130

A.2 The Payment Transaction

int payment()

{

 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 gettimestamp(datetime);

 EXEC SQL UPDATE warehouse SET w_ytd = w_ytd + :h_amount

 WHERE w_id=:w_id ;

 EXEC SQL SELECT w_street_1, w_street_2, w_city, w_state, w_zip, w_name

 INTO :w_street_1, :w_street_2, :w_city, :w_state, :w_zip, :w_name

 FROM warehouse

 WHERE w_id=:w_id ;

 EXEC SQL UPDATE district SET d_ytd = d_ytd + :h_amount

 WHERE d_w_id=:w_id AND d_id=:d_id ;

 EXEC SQL SELECT d_street_1, d_street_2, d_city, d_state, d_zip, d_name

 INTO :d_street_1, :d_street_2, :d_city, :d_state, :d_zip, :d_name

 FROM district

 WHERE d_w_id=:w_id AND d_id=:d_id ;

 if (byname)

 {

 EXEC SQL SELECT count(c_id) INTO :namecnt

 FROM customer

 WHERE c_last=:c_last AND c_d_id=:c_d_id AND c_w_id=:c_w_id ;

 EXEC SQL DECLARE c_byname CURSOR FOR

 SELECT c_first, c_middle, c_id,

 c_street_1, c_street_2, c_city, c_state, c_zip,

 c_phone, c_cred it, c_cred it_lim,

 c_d iscount, c_balance, c_since

 FROM customer

 WHERE c_w_id=:c_w_id AND c_d_id=:c_d_id AND c_last=:c_last

 ORDER BY c_first;

 EXEC SQL OPEN c_byname;

 if (namecnt%2) namecnt++; / / Locate midpoint customer;

 for (n=0; n<namecnt/ 2; n++)

 {

 EXEC SQL FETCH c_byname

 INTO :c_first, :c_middle, :c_id,

 :c_street_1, :c_street_2, :c_city, :c_state, :c_zip,

 :c_phone, :c_cred it, :c_cred it_lim,

 :c_discount, :c_balance, :c_since;

 }

 EXEC SQL CLOSE c_byname;

 }

 else

 {

 EXEC SQL SELECT c_first, c_middle, c_last,

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 111 of 130

 c_street_1, c_street_2, c_city, c_state, c_zip,

 c_phone, c_cred it, c_cred it_lim,

 c_d iscount, c_balance, c_since

 INTO :c_first, :c_middle, :c_last,

 :c_street_1, :c_street_2, :c_city, :c_state, :c_zip,

 :c_phone, :c_cred it, :c_cred it_lim,

 :c_discount, :c_balance, :c_since

 FROM customer

 WHERE c_w_id=:c_w_id AND c_d_id=:c_d_id AND c_id=:c_id ;

 }

 c_balance += h_amount;

 c_credit[2]='\ 0';

 if (strstr(c_cred it, "BC"))

 {

 EXEC SQL SELECT c_data INTO :c_data

 FROM customer

 WHERE c_w_id=:c_w_id AND c_d_id=:c_d_id AND c_id=:c_id ;

 sprintf(c_new_data,"| %4d %2d %4d %2d %4d $%7.2f %12c %24c",

 c_id ,c_d_id ,c_w_id ,d_id ,w_id ,h_amount

 h_date, h_data);

 strncat(c_new_data,c_data,500-strlen(c_new_data));

 EXEC SQL UPDATE customer

 SET c_balance = :c_balance, c_data = :c_new_data

 WHERE c_w_id = :c_w_id AND c_d_id = :c_d_id AND

 c_id = :c_id;

 }

 else

 {

 EXEC SQL UPDATE customer SET c_balance = :c_balance

 WHERE c_w_id = :c_w_id AND c_d_id = :c_d_id AND

 c_id = :c_id;

 }

 strncpy(h_data,w_name,10);

 h_data[10]='\ 0';

 strncat(h_data,d_name,10);

 h_data[20]=' ';

 h_data[21]=' ';

 h_data[22]=' ';

 h_data[23]=' ';

 EXEC SQL INSERT INTO history (h_c_d_id , h_c_w_id, h_c_id , h_d_id ,

 h_w_id , h_date, h_amount, h_data)

 VALUES (:c_d_id, :c_w_id, :c_id , :d_id ,

 :w_id , :datetime, :h_amount, :h_data);

 EXEC SQL COMMIT WORK;

 return(0);

sqlerr:

 error();

}

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 112 of 130

A.3 The Order-Status Transaction
int ostat()

{

 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 if (byname)

 {

 EXEC SQL SELECT count(c_id) INTO :namecnt

 FROM customer

 WHERE c_last=:c_last AND c_d_id=:d_id AND c_w_id=:w_id;

 EXEC SQL DECLARE c_name CURSOR FOR

 SELECT c_balance, c_first, c_middle, c_id

 FROM customer

 WHERE c_last=:c_last AND c_d_id=:d_id AND c_w_id=:w_id

 ORDER BY c_first;

 EXEC SQL OPEN c_name;

 if (namecnt%2) namecnt++; / / Locate midpoint customer

 for (n=0; n<namecnt/ 2; n++)

 {

 EXEC SQL FETCH c_name

 INTO :c_balance, :c_first, :c_middle, :c_id ;

 }

 EXEC SQL CLOSE c_name;

 }

 else {

 EXEC SQL SELECT c_balance, c_first, c_middle, c_last

 INTO :c_balance, :c_first, :c_middle, :c_last

 FROM customer

 WHERE c_id=:c_id AND c_d_id=:d_id AND c_w_id=:w_id;

 }

 EXEC SQL SELECT o_id, o_carrier_id, o_entry_d

 INTO :o_id , :o_carrier_id , :entdate

 FROM orders

 ORDER BY o_id DESC;

 EXEC SQL DECLARE c_line CURSOR FOR

 SELECT ol_i_id , ol_supply_w_id , ol_quantity,

 ol_amount, ol_delivery_d

 FROM order_line

 WHERE ol_o_id=:o_id AND ol_d_id=:d_id AND ol_w_id=:w_id ;

 EXEC SQL OPEN c_line;

 EXEC SQL WHENEVER NOT FOUND CONTINUE;

 i=0;

 while (sql_notfound(FALSE))

 {

 i++;

 EXEC SQL FETCH c_line

 INTO :ol_i_id [i], :ol_supply_w_id[i], :ol_quantity[i],

 :ol_amount[i], :ol_delivery_d[i];

 }

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 113 of 130

 EXEC SQL CLOSE c_line;

 EXEC SQL COMMIT WORK;

 return(0);

sqlerr:

 error();

}

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 114 of 130

A.4 The Delivery Transaction

int delivery()

{

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 gettimestamp(datetime);

 / * For each district in warehouse */

 printf("W: %d\ n", w_id);

 for (d_id=1; d_id<=DIST_PER_WARE; d_id++)

 {

 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;

 EXEC SQL DECLARE c_no CURSOR FOR

 SELECT no_o_id

 FROM new_order

 WHERE no_d_id = :d_id AND no_w_id = :w_id

 ORDER BY no_o_id ASC;

 EXEC SQL OPEN c_no;

 EXEC SQL WHENEVER NOT FOUND continue;

 EXEC SQL FETCH c_no INTO :no_o_id ;

 EXEC SQL DELETE FROM new_order WHERE CURRENT OF c_no;

 EXEC SQL CLOSE c_no;

 EXEC SQL SELECT o_c_id INTO :c_id FROM orders

 WHERE o_id = :no_o_id AND o_d_id = :d_id AND

 o_w_id = :w_id ;

 EXEC SQL UPDATE orders SET o_carrier_id = :o_carrier_id

 WHERE o_id = :no_o_id AND o_d_id = :d_id AND

 o_w_id = :w_id ;

 EXEC SQL UPDATE order_line SET ol_delivery_d = :datetime

 WHERE ol_o_id = :no_o_id AND ol_d_id = :d_id AND

 ol_w_id = :w_id;

 EXEC SQL SELECT SUM(ol_amount) INTO :ol_total

 FROM order_line

 WHERE ol_o_id = :no_o_id AND ol_d_id = :d_id

 AND ol_w_id = :w_id;

 EXEC SQL UPDATE customer SET c_balance = c_balance + :ol_total

 WHERE c_id = :c_id AND c_d_id = :d_id AND

 c_w_id = :w_id ;

 EXEC SQL COMMIT WORK;

 printf("D: %d, O: %d, time: %d \ n", d_id , o_id , tad);

 }

 EXEC SQL COMMIT WORK;

 return(0);

sqlerr:

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 115 of 130

 error();

}

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 116 of 130

A.5 The Stock-Level Transaction

int slev()

{

 EXEC SQL WHENEVER NOT FOUND GOTO sqlerr;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 EXEC SQL SELECT d_next_o_id INTO :o_id

 FROM district

 WHERE d_w_id=:w_id AND d_id=:d_id ;

 EXEC SQL SELECT COUNT(DISTINCT (s_i_id)) INTO :stock_count

 FROM order_line, stock

 WHERE ol_w_id=:w_id AND

 ol_d_id=:d_id AND ol_o_id<:o_id AND

 ol_o_id>=:o_id -20 AND s_w_id=:w_id AND

 s_i_id=ol_i_id AND s_quantity < :threshold;

 EXEC SQL COMMIT WORK;

 return(0);

sqlerr:

 error();

}

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 117 of 130

A.6 Sample Load Program

/ *==+

 | Load TPCC tables

 +==*/

#define MAXITEMS 100000

#define CUST_PER_DIST 3000

#define DIST_PER_WARE 10

#define ORD_PER_DIST 3000

extern long count_ware;

/ * Functions */

long NURand ();

void LoadItems();

void LoadWare();

void LoadCust();

void LoadOrd();

void LoadNewOrd();

void Stock();

void District();

void Customer();

void Orders();

void New_Orders();

void MakeAddress();

void Error();

void Lastname();

/ * Global SQL Variables */

EXEC SQL BEGIN DECLARE SECTION;

 char timestamp[20];

 long count_ware;

EXEC SQL END DECLARE SECTION;

/ * Global Variables */

 int i;

 int option_debug = 0; / * 1 if generating debug output */

/ *==+

 | main()

 | ARGUMENTS

 | Warehouses n [Debug] [Help]

 +==*/

void main(argc, argv)

 int argc;

 char * argv[];

{

 char arg[2];

EXEC SQL WHENEVER SQLERROR GOTO Error_SqlCall;

 count_ware=0;

 for (i=1; i<argc; i++)

 {

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 118 of 130

 strncpy(arg,argv[i],2);

 arg[0] = toupper(arg[0]);

 switch (arg[0]) {

 case 'W': / * Warehouses */

 if (count_ware)

 {

 printf("Error - Warehouses specified more than once.\ n");

 exit(-1);

 }

 if (argc-1>i)

 {

 i++;

 count_ware=atoi(argv[i]);

 if (count_ware<=0)

 {

 printf("Invalid Warehouse Count.\ n");

 exit(-1);

 }

 }

 else

 {

 printf("Error - Warehouse count must follow Warehouse keyword \ n");

 exit(-1);

 }

 break;

/ ******* Generic Args *********************/

 case 'D': / * Debug Option */

 if (option_debug)

 {

 printf("Error - Debug option specified more than once\ n");

 exit(-1);

 }

 option_debug=1;

 break;

 case 'H ': / * List Args */

 printf("Usage - Warehouses n [Debug] [Help]\ n");

 exit(0);

 break;

 default : printf("Error - Unknown Argument (%s)\ n",arg);

 printf("Usage - Warehouses n [Debug] [Help]\ n");

 exit(-1);

 }

 }

 if (!(count_ware)) {

 printf("Not enough arguments.\ n");

 printf("Usage - Warehouses n ");

 printf(" [Debug] [Help]\ n");

 exit(-1);

 }

 SetSeed(time(0));

 / * Initialize timestamp (for date columns) */

 gettimestamp(timestamp);

 printf("TPCC Data Load Started ...\ n");

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 119 of 130

 LoadItems();

 LoadWare();

 LoadCust();

 LoadOrd();

 EXEC SQL COMMIT WORK RELEASE;

 printf("\ n...DATA LOADING COMPLETED SUCCESSFULLY.\ n");

 exit(0);

Error_SqlCall:

 Error();

}

/ *==+

 | ROUTINE NAME

 | LoadItems

 | DESCRIPTION

 | Loads the Item table

 | ARGUMENTS

 | none

 +==*/

void LoadItems()

{

 EXEC SQL BEGIN DECLARE SECTION;

 long i_id ;

 char i_name[24];

 float i_price;

 char i_data[50];

 EXEC SQL END DECLARE SECTION;

 int idatasiz;

 int orig[MAXITEMS];

 long pos;

 int i;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 printf("Loading Item \ n");

 for (i=0; i<MAXITEMS/ 10; i++) orig[i]=0;

 for (i=0; i<MAXITEMS/ 10; i++)

 {

 do

 {

 pos = RandomNumber(0L,MAXITEMS);

 } while (orig[pos]);

 orig[pos] = 1;

 }

 for (i_id=1; i_id<=MAXITEMS; i_id++) {

 / * Generate Item Data */

 MakeAlphaString(14, 24, i_name);

 i_price=((float) RandomNumber(100L,10000L))/ 100.0;

 idatasiz=MakeAlphaString(26,50,i_data);

 if (orig[i_id])

 {

 pos = RandomNumber(0L,idatasiz-8);

 i_data[pos]='o';

 i_data[pos+1]='r';

 i_data[pos+2]='i';

 i_data[pos+3]='g';

 i_data[pos+4]='i';

 i_data[pos+5]='n';

 i_data[pos+6]='a';

 i_data[pos+7]='l';

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 120 of 130

 }

 if (option_debug)

 printf("IID = %ld , Name= %16s, Price = %5.2f\ n",

 i_id , i_name, i_price);

 EXEC SQL INSERT INTO

 item (i_id , i_name, i_price, i_data)

 values (:i_id , :i_name, :i_price, :i_data);

 if (!(i_id % 100)) {

 printf(".");

 EXEC SQL COMMIT WORK;

 if (!(i_id % 5000)) printf(" %ld \ n",i_id);

 }

 }

 EXEC SQL COMMIT WORK;

 printf("Item Done. \ n");

 return;

sqlerr:

 Error();

}

/ *==+

 | ROUTINE NAME

 | LoadWare

 | DESCRIPTION

 | Loads the Warehouse table

 | Loads Stock, District as Warehouses are created

 | ARGUMENTS

 | none

 +==*/

void LoadWare()

{

 EXEC SQL BEGIN DECLARE SECTION;

 long w_id ;

 char w_name[10];

 char w_street_1[20];

 char w_street_2[20];

 char w_city[20];

 char w_state[2];

 char w_zip[9];

 float w_tax;

 float w_ytd ;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 printf("Loading Warehouse \ n");

 for (w_id=1L; w_id<=count_ware; w_id++) {

 / * Generate Warehouse Data */

 MakeAlphaString(6, 10, w_name);

 MakeAddress(w_street_1, w_street_2, w_city, w_state, w_zip);

 w_tax=((float)RandomNumber(10L,20L))/ 100.0;

 w_ytd=3000000.00;

 if (option_debug)

 printf("WID = %ld , Name= %16s, Tax = %5.2f\ n",

 w_id, w_name, w_tax);

 EXEC SQL INSERT INTO

 warehouse (w_id , w_name,

 w_street_1, w_street_2, w_city, w_state, w_zip,

 w_tax, w_ytd)

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 121 of 130

 values (:w_id , :w_name,

 :w_street_1, :w_street_2, :w_city, :w_state,

 :w_zip, :w_tax, :w_ytd);

 / ** Make Rows associated with Warehouse **/

 Stock(w_id);

 District(w_id);

 EXEC SQL COMMIT WORK;

 }

 return;

sqlerr:

 Error();

}

/ *==+

 | ROUTINE NAME

 | LoadCust

 | DESCRIPTION

 | Loads the Customer Table

 | ARGUMENTS

 | none

 +==*/

void LoadCust()

{

 EXEC SQL BEGIN DECLARE SECTION;

 EXEC SQL END DECLARE SECTION;

 long w_id ;

 long d_id;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 for (w_id=1L; w_id<=count_ware; w_id++)

 for (d_id=1L; d_id<=DIST_PER_WARE; d_id++)

 Customer(d_id ,w_id);

 EXEC SQL COMMIT WORK; / * Just in case */

 return;

sqlerr:

 Error();

}

/ *==+

 | ROUTINE NAME

 | LoadOrd

 | DESCRIPTION

 | Loads the Orders and Order_Line Tables

 | ARGUMENTS

 | none

 +==*/

void LoadOrd()

{

 EXEC SQL BEGIN DECLARE SECTION;

 long w_id ;

 float w_tax;

 long d_id;

 float d_tax;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 for (w_id=1L; w_id<=count_ware; w_id++)

 for (d_id=1L; d_id<=DIST_PER_WARE; d_id++)

 Orders(d_id , w_id);

 EXEC SQL COMMIT WORK; / * Just in case */

 return;

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 122 of 130

sqlerr:

 Error();

}

/ *==+

 | ROUTINE NAME

 | Stock

 | DESCRIPTION

 | Loads the Stock table

 | ARGUMENTS

 | w_id - warehouse id

 +==*/

void Stock(w_id)

 long w_id ;

{

 EXEC SQL BEGIN DECLARE SECTION;

 long s_i_id;

 long s_w_id ;

 long s_quantity;

 char s_d ist_01[24];

 char s_d ist_02[24];

 char s_d ist_03[24];

 char s_d ist_04[24];

 char s_d ist_05[24];

 char s_d ist_06[24];

 char s_d ist_07[24];

 char s_d ist_08[24];

 char s_d ist_09[24];

 char s_d ist_10[24];

 char s_data[50];

 EXEC SQL END DECLARE SECTION;

 int sdatasiz;

 long orig[MAXITEMS];

 long pos;

 int i;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 printf("Loading Stock Wid=%ld \ n",w_id);

 s_w_id=w_id ;

 for (i=0; i<MAXITEMS/ 10; i++) orig[i]=0;

 for (i=0; i<MAXITEMS/ 10; i++)

 {

 do

 {

 pos=RandomNumber(0L,MAXITEMS);

 } while (orig[pos]);

 orig[pos] = 1;

 }

 for (s_i_id=1; s_i_id<=MAXITEMS; s_i_id++) {

 / * Generate Stock Data */

 s_quantity=RandomNumber(10L,100L);

 MakeAlphaString(24,24,s_d ist_01);

 MakeAlphaString(24,24,s_d ist_02);

 MakeAlphaString(24,24,s_d ist_03);

 MakeAlphaString(24,24,s_d ist_04);

 MakeAlphaString(24,24,s_d ist_05);

 MakeAlphaString(24,24,s_d ist_06);

 MakeAlphaString(24,24,s_d ist_07);

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 123 of 130

 MakeAlphaString(24,24,s_d ist_08);

 MakeAlphaString(24,24,s_d ist_09);

 MakeAlphaString(24,24,s_d ist_10);

 sdatasiz=MakeAlphaString(26,50,s_data);

 if (orig[s_i_id])

 {

 pos=RandomNumber(0L,sdatasiz-8);

 s_data[pos]='o';

 s_data[pos+1]='r';

 s_data[pos+2]='i';

 s_data[pos+3]='g';

 s_data[pos+4]='i';

 s_data[pos+5]='n';

 s_data[pos+6]='a';

 s_data[pos+7]='l';

 }

 EXEC SQL INSERT INTO

 stock (s_i_id , s_w_id , s_quantity,

 s_dist_01, s_d ist_02, s_d ist_03, s_d ist_04, s_d ist_05,

 s_dist_06, s_d ist_07, s_d ist_08, s_d ist_09, s_d ist_10,

 s_data, s_ytd , s_cnt_order, s_cnt_remote)

 values (:s_i_id, :s_w_id , :s_quantity,

 :s_d ist_01, :s_d ist_02, :s_d ist_03, :s_d ist_04, :s_d ist_05,

 :s_d ist_06, :s_d ist_07, :s_d ist_08, :s_d ist_09, :s_d ist_10,

 :s_data, 0, 0, 0);

 if (option_debug)

 printf("SID = %ld , WID = %ld , Quan = %ld \ n",

 s_i_id , s_w_id , s_quantity);

 if (!(s_i_id % 100)) {

 EXEC SQL COMMIT WORK;

 printf(".");

 if (!(s_i_id % 5000)) printf(" %ld \ n",s_i_id);

 }

 }

 EXEC SQL COMMIT WORK;

 printf(" Stock Done.\ n");

 return;

sqlerr:

 Error();

}

/ *==+

 | ROUTINE NAME

 | District

 | DESCRIPTION

 | Loads the District table

 | ARGUMENTS

 | w_id - warehouse id

 +==*/

void District(w_id)

 long w_id ;

{

 EXEC SQL BEGIN DECLARE SECTION;

 long d_id ;

 long d_w_id ;

 char d_name[10];

 char d_street_1[20];

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 124 of 130

 char d_street_2[20];

 char d_city[20];

 char d_state[2];

 char d_zip[9];

 float d_tax;

 float d_ytd ;

 long d_next_o_id ;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 printf("Loading District\ n");

 d_w_id=w_id ;

 d_ytd=30000.0;

 d_next_o_id=3001L;

 for (d_id=1; d_id<=DIST_PER_WARE; d_id++) {

 / * Generate District Data */

 MakeAlphaString(6L,10L,d_name);

 MakeAddress(d_street_1, d_street_2, d_city, d_state, d_zip);

 d_tax=((float)RandomNumber(10L,20L))/ 100.0;

 EXEC SQL INSERT INTO

 d istrict (d_id , d_w_id, d_name,

 d_street_1, d_street_2, d_city, d_state, d_zip,

 d_tax, d_ytd , d_next_o_id)

 values (:d_id , :d_w_id, :d_name,

 :d_street_1, :d_street_2, :d_city, :d_state, :d_zip,

 :d_tax, :d_ytd , :d_next_o_id);

 if (option_debug)

 printf("DID = %ld , WID = %ld , Name = %10s, Tax = %5.2f\ n",

 d_id , d_w_id , d_name, d_tax);

 }

 EXEC SQL COMMIT WORK;

 return;

sqlerr:

 Error();

}

/ *==+

 | ROUTINE NAME

 | Customer

 | DESCRIPTION

 | Loads Customer Table

 | Also inserts corresponding history record

 | ARGUMENTS

 | id - customer id

 | d_id - d istrict id

 | w_id - warehouse id

 +==*/

void Customer(d_id , w_id)

 long d_id ;

 long w_id ;

{

 EXEC SQL BEGIN DECLARE SECTION;

 long c_id ;

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 125 of 130

 long c_d_id ;

 long c_w_id ;

 char c_first[16];

 char c_middle[2];

 char c_last[16];

 char c_street_1[20];

 char c_street_2[20];

 char c_city[20];

 char c_state[2];

 char c_zip[9];

 char c_phone[16];

 char c_since[11];

 char c_cred it[2];

 long c_cred it_lim;

 float c_d iscount;

 float c_balance;

 char c_data[500];

 float h_amount;

 char h_data[24];

 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

 printf("Loading Customer for DID=%ld , WID=%ld \ n",d_id ,w_id);

 for (c_id=1; c_id<=CUST_PER_DIST; c_id++) {

 / * Generate Customer Data */

 c_d_id=d_id ;

 c_w_id=w_id ;

 MakeAlphaString(8, 16, c_first);

 c_middle[0]='O'; c_middle[1]='E';

 if (c_id <= 1000)

 Lastname(c_id -1,c_last);

 else

 Lastname(NURand(255,0,999),c_last);

 MakeAddress(c_street_1, c_street_2, c_city, c_state, c_zip);

 MakeNumberString(16, 16, c_phone);

 if (RandomNumber(0L,1L))

 c_credit[0]='G';

 else

 c_credit[0]='B';

 c_cred it[1]='C';

 c_cred it_lim=50000;

 c_d iscount=((float)RandomNumber(0L,50L))/ 100.0;

 c_balance= -10.0;

 MakeAlphaString(300,500,c_data);

 EXEC SQL INSERT INTO

 customer (c_id , c_d_id, c_w_id ,

 c_first, c_middle, c_last,

 c_street_1, c_street_2, c_city, c_state, c_zip,

 c_phone, c_since, c_cred it,

 c_cred it_lim, c_discount, c_balance, c_data,

 c_ytd_payment, c_cnt_payment, c_cnt_delivery)

 values (:c_id , :c_d_id , :c_w_id,

 :c_first, :c_middle, :c_last,

 :c_street_1, :c_street_2, :c_city, :c_state, :c_zip,

 :c_phone, :timestamp, :c_cred it,

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 126 of 130

 :c_cred it_lim, :c_d iscount, :c_balance, :c_data,

 10.0, 1, 0) ;

 h_amount=10.0;

 MakeAlphaString(12,24,h_data);

 EXEC SQL INSERT INTO

 history (h_c_id , h_c_d_id , h_c_w_id ,

 h_w_id , h_d_id , h_date, h_amount, h_data)

 values (:c_id , :c_d_id , :c_w_id,

 :c_w_id , :c_d_id , :timestamp , :h_amount, :h_data);

 if (option_debug)

 printf("CID = %ld , LST = %s, P# = %s\ n",

 c_id , c_last, c_phone);

 if (!(c_id % 100)) {

 EXEC SQL COMMIT WORK;

 printf(".");

 if (!(c_id % 1000)) printf(" %ld \ n",c_id);

 }

 }

 printf("Customer Done.\ n");

 return;

sqlerr:

 Error();

}

/ *==+

 | ROUTINE NAME

 | Orders

 | DESCRIPTION

 | Loads the Orders table

 | Also loads the Order_Line table on the fly

 | ARGUMENTS

 | w_id - warehouse id

 +==*/

void Orders(d_id, w_id)

 long d_id , w_id ;

{

 EXEC SQL BEGIN DECLARE SECTION;

 long o_id ;

 long o_c_id ;

 long o_d_id ;

 long o_w_id ;

 long o_carrier_id ;

 long o_ol_cnt;

 long ol;

 long ol_i_id;

 long ol_supply_w_id;

 long ol_quantity;

 long ol_amount;

 char ol_d ist_info[24];

 float i_price;

 float c_d iscount;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerr;

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 127 of 130

 printf("Loading Orders for D=%ld , W= %ld \ n", d_id , w_id);

 o_d_id=d_id ;

 o_w_id=w_id ;

 InitPermutation(); / * initialize permutation of customer numbers */

 for (o_id=1; o_id<=ORD_PER_DIST; o_id++) {

 / * Generate Order Data */

 o_c_id=GetPermutation();

 o_carrier_id=RandomNumber(1L,10L);

 o_ol_cnt=RandomNumber(5L,15L);

 if (o_id > 2100) / * the last 900 orders have not been delivered) */

 {

 EXEC SQL INSERT INTO

 orders (o_id , o_c_id, o_d_id , o_w_id ,

 o_entry_d , o_carrier_id , o_ol_cnt, o_all_local)

 values (:o_id , :o_c_id , :o_d_id , :o_w_id ,

 :timestamp, NULL, :o_ol_cnt, 1);

 EXEC SQL INSERT INTO

 new_order (no_o_id , no_d_id , no_w_id)

 values (:o_id , :o_d_id, :o_w_id);

 }

 else

 EXEC SQL INSERT INTO

 orders (o_id , o_c_id, o_d_id , o_w_id ,

 o_entry_d , o_carrier_id , o_ol_cnt, o_all_local)

 values (:o_id , :o_c_id , :o_d_id , :o_w_id ,

 :timestamp, :o_carrier_id , :o_ol_cnt, 1);

 if (option_debug)

 printf("OID = %ld , CID = %ld , DID = %ld , WID = %ld \ n",

 o_id , o_c_id, o_d_id, o_w_id);

 for (ol=1; ol<=o_ol_cnt; ol++) {

 / * Generate Order Line Data */

 ol_i_id=RandomNumber(1L,MAXITEMS);

 ol_supply_w_id=o_w_id ;

 ol_quantity=5;

 ol_amount=0.0;

 MakeAlphaString(24,24,ol_d ist_info);

 if (o_id > 2100)

 EXEC SQL INSERT INTO

 order_line (ol_o_id , ol_d_id , ol_w_id, ol_number,

 ol_i_id, ol_supply_w_id , ol_quantity, ol_amount,

 ol_d ist_info, ol_delivery_d)

 values (:o_id , :o_d_id , :o_w_id , :ol,

 :ol_i_id , :ol_supply_w_id , :ol_quantity, :ol_amount,

 :ol_d ist_info, NULL);

 else

 EXEC SQL INSERT INTO

 order_line (ol_o_id , ol_d_id , ol_w_id, ol_number,

 ol_i_id, ol_supply_w_id , ol_quantity,

 ((float)(RandomNumber(10L, 10000L))/ 100.0,

 ol_d ist_info, ol_delivery_d)

 values (:o_id , :o_d_id , :o_w_id , :ol,

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 128 of 130

 :ol_i_id , :ol_supply_w_id , :ol_quantity,

 :ol_amount,

 :ol_d ist_info, datetime);

 if (option_debug)

 printf("OL = %ld , IID = %ld , QUAN = %ld , AMT = %8.2f\ n",

 ol, ol_i_id , ol_quantity, ol_amount);

 }

 if (!(o_id % 100)) {

 printf(".");

 EXEC SQL COMMIT WORK;

 if (!(o_id % 1000)) printf(" %ld \ n",o_id);

 }

 }

 EXEC SQL COMMIT WORK;

 printf("Orders Done.\ n");

 return;

sqlerr:

 Error();

}

/ *==+

 | ROUTINE NAME

 | MakeAddress()

 | DESCRIPTION

 | Build an Address

 | ARGUMENTS

 +==*/

void MakeAddress(str1,str2,city,state,zip)

 char *str1;

 char *str2;

 char *city;

 char *state;

 char *zip;

{

 MakeAlphaString(10,20,str1); / * Street 1*/

 MakeAlphaString(10,20,str2); / * Street 2*/

 MakeAlphaString(10,20,city); / * City */

 MakeAlphaString(2,2,state); / * State */

 MakeNumberString(9,9,zip); / * Zip */

}

/ *==+

 | ROUTINE NAME

 | Error()

 | DESCRIPTION

 | Handles an error from a SQL call.

 | ARGUMENTS

 +==*/

void Error()

{

 printf("SQL Error %d \ n", sqlca.sqlcode);

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK WORK RELEASE;

 exit(-1);

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 129 of 130

}

/ *==+

 | ROUTINE NAME

 | Lastname

 | DESCRIPTION

 | TPC-C Lastname Function.

 | ARGUMENTS

 | num - non-uniform random number

 | name - last name string

 +==*/

void Lastname(num, name)

 int num;

 char *name;

{

 int i;

 static char *n[] =

 {"BAR", "OUGHT", "ABLE", "PRI", "PRES",

 "ESE", "ANTI", "CALLY", "ATION", "EING"};

 strcpy(name,n[num/ 100]);

 strcat(name,n[(num/ 10)%10]);

 strcat(name,n[num%10]);

 return;

}

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 130 of 130

Appendix B: EXECUTIVE SUMMARY STATEMENT

The tables on the following page illustrate the format of the TPC Executive Summary Statement that must be used to

report the summary benchmark results. The latest version of the required format is ava ilable upon request from the

TPC administrator (see cover page).

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 131 of 130

TPC Benchmark™ C - Standard Specification, Revision 5.11 - Page 132 of 130

Appendix C: NUMERICAL QUANTITIES SUMMARY

The following table partially illustrates how to summarize all the numerical quantities re quired in the Full

Disclosure Report:

 MQTh, computed Maximum Qualified Throughput 105 tpmC

 Response Times (90th percentile/ Average/ maximum) in seconds
 - New-Order 4.9 / 2.8 / 28.0

 - Payment 2.1 / 1.0 / 12.8

 - Order-Status 3.5 / 1.7 / 9.4

 - Delivery (interactive portion) 0.5 / 0.2 / 0.9

 - Delivery (deferred portion) 15.2 / 8.1 / 45.5

 - Stock-Level 17.8 / 9.5 / 29.4

 - Menu 0.2 / 0.1 / 0.9

 - Response time delay added for emulated componen ts 0.35 seconds

 Transaction Mix, in percent of total transactions
 - New-Order 44.5 %

 - Payment 43.1 %

 - Order-Status 4.1 %

 - Delivery 4.2 %

 - Stock-Level 4.1 %

 Keying/Think Times (in seconds), Min. Average Max.
 - New-Order 9.2 / 6.1 18.5 / 12.2 37.1 / 25.2

 - Payment 1.6 / 6.1 3.1 / 12.2 6.2 / 24.7

 - Order-Status 1.1 / 5.1 2.1 / 10.2 4.2 / 21.2

 - Delivery 1.1 / 2.8 2.1 / 5.1 4.3 / 10.3

 - Stock-Level 1.0 / 2.7 2.1 / 5.1 4.3 / 10.2

 Test Duration

 - Ramp-up time 20 minutes

 - Measurement interval 120 minutes

 - Number of checkpoints 4

 - Checkpoint interval 30 minutes

 - Number of transactions (all types)

 completed in measurement interval 28,463

 (and all other numerical quantities required in the Full Disclosure Report)

	top

